Assessing Cumulative (Far-field) Effects of Aquaculture on Coastal Ecosystems

DFO/SUBPESCA Workshop, March 20, 2006

Canada

Fisheries and Oceans

Pêches et Océans Canada

B. T. Hargrave

Purpose

- Identify a minimum set of variables monitored at the farm-scale that provide an integrated measure of site husbandry and regional environmental quality at the ecosystem level
- Apply observations/model results on a baywide basis to determine cumulative impacts of all aquaculture sites in an area

Tracadie Bay Case Study

Area:		
Watershed (km ²)	117.4	
Low tide (km ²)	14.0	
Aquaculture (%)	50%	Con I
Mussel Culture:		2 Alexandre
No. socks	~300,000	
Biomass (tons)	~4,000	
Harvest (tons)	~1,900	
Value	\$2.66M	-
	The second second	

Mussels and other bivalves feeding on natural suspensions of particulate matter potentially affect pelagic and benthic ecosystem components

Effects on Nitrogen Cycle

Sediment Biogeochemistry

Salmon Aquaculture

- Addition of pelletized food creates the potential for localized effects due to sedimentation of waste feed. Impacts of organic loading may be localized as shown by model output (Depomod)
- Fecal matter settles more slowly and potentially moves away from a farm site

SWNB 2000 (NBDFA Survey)

When reducing conditions (S>1500 uM) occur close to or at the sediment surface, negative Eh potentials are correlated with total free S

o Ref ● near-farm ● farm

Shannon-Wiener Diversity Index (H')

Data from Pohle et al. (2001), Wildish et al. (2001), Wildish et al. (2004)

Near and Far-field Waste Organic Matter and Nutrient Loading Due to Salmon Aquaculture

 Fish growth model (temperature, initial smolt size, grow-out cycle)

• Farm efficiency (FCR), nutrition data (digestibility and assimilation coefficients)

 Mass balance model (waste fraction released in particulate and dissolved forms, respired, buried)

Mass Balance Model for Waste Release*

Feed Use: e.g. Nitrogen

feed = growth * FCR $N_{feed} = N_{growth} - N_{waste}$ $N_w = N_{fd} - N_g$

 $N_w/g = (0.16 * f_{prot} + 0.02 * f_{fat}) * DM_{fd} * FCR - f_{Nfish}$

*Strain and Hargrave (2005) Handbook of Environmental Chemistry (Springer)

Waste Feed and Feces Settling Rates

 assumed average settling rates for waste feed pellets (10 cm s⁻¹) and fecal matter (3 cm s⁻¹) used to determine dispersion distances (Depomod default values)

 distribution will be over an area at least as large as the total cage area in a farm

Dispersion distance calculations

Near-field dispersion distance over two tidal cycles for horizontal displacement (D) of particles with sinking rate (S) through depth (H) with depth-averaged current speed (\overline{U}) (D-(H/S)= \overline{U}). Here \overline{U} =15 cm s⁻¹, H=15 m and S is 10 cm s ⁻¹ for feed pellets (green) and 3 cm s⁻¹ for feces (blue)

Under-cage Waste Burial Rates

- The salmon physiological growth model showed that maximum carbon waste release occurred during the 2nd y
- For a stocking density 18 kg m⁻³, C_{burial} ~20 g org m⁻² d⁻¹
- correcting for density and OM, sediment accumulation at 3 farm sites in SWNB was estimated as ~0.25 cm y⁻¹ (~0.4 g org m⁻² d⁻¹)
- burial of organic matter under pens is thus 50 times smaller than estimated waste mass discharge rate

Conclusions

Determining the proportion of off-farm waste transport produced during salmon aquaculture

- waste release calculated from the number and size (weight) of fish (growth model).
- FCRs, number, diameter, depth of fish and predator nets.
- water depth, current velocity and variability.
- benthic observations of sediment geochemical variables (Eh, S, porosity, OM).

Conclusions

• Debris piles may indicate increased local sedimentation under mussel lines and finfish pens.

• However, a large proportion of particulate wastes may be transported off-site, even in depositional areas with low current velocities.

• Mass balance and simple sedimentation models can be used to assess the magnitude of potential benthic organic enrichment.