INFORME FINAL

FIP 2004-11

EVALUACION DIRECTA DE LANGOSTINO COLORADO Y LANGOSTINO AMARILLO ENTRE LA II Y VIII REGIONES, AÑO 2004

UNIDADES EJECUTORAS : AREA DE PESQUERIAS

DEPARTAMENTO BIOLOGIA MARINA UNIVERSIDAD CATOLICA DEL NORTE - SEDE COQUIMBO

DEPARTAMENTO DE OCEANOGRAFIA UNIVERSIDAD DE CONCEPCION

COQUIMBO, abril de 2005

COMPOSICIÓN Y ORGANIZACIÓN DEL EQUIPO PROFESIONAL Y TÉCNICO

NOMBRE	TÍTULO/GRADO	FUNCIÓN EN EL PROYECTO
Enzo Acuña	M.Sc. Oceanógrafo	Coordinación. Jefe de Proyecto. Análisis y
		elaboración de informes.
Pilar Haye	Ph.D. Ciencias	Análisis genético langostino colorado.
	Biológicas	
Alex Cortés	Biólogo Marino	Representación información cartográfica SIG.
		Análisis de frecuencias y proporción sexual.
Ana Olivares	Biólogo Marino	Coordinadora muestreos a bordo II-III Región,
		laboratorio, planificación. Digitación datos.
Ximena Bennett	Biólogo	Coordinadora muestreos a bordo IV-VIII Región,
		laboratorio, planificación. Digitación datos.
Rodrigo Grau	Biólogo Marino	Muestreo a bordo II-IV Regiones, Digitación de
		datos.
Manuel Andrade	Biólogo Marino	Muestreo a bordo V-VIII Regiones, Digitación de
		datos.
Danny Rivera	Téc. Pesquero	Muestreo a bordo V-VIII Regiones, Muestreo
	1	frecuencia y biológico-específico en laboratorio.
Claudia Valenzuela	Téc. Pesquero	Muestreo frecuencia y biológico-específico en
		laboratorio.
Hugo Arancibia	Dr. Recursos. Naturales	Distribución CPUE, cálculo de abundancia y
		biomasa. Coordinación muestreos zona Sur.
Luis Cubillos	Biólogo Pesquero	Distribución CPUE, cálculo de abundancia y
		biomasa.
Rafael León	Biólogo Marino	Fauna acompañante, Análisis comunitario.
	Biologo Marino	a will we ompanisme, i munois comunitario.
Sergio Neira	Biólogo Marino, M.Sc.	Simulación proyecciones de biomasa con
	Estadística	aproximación multiespecífica
Luis Poblete	Ing. Pesquero	Coordinador muestreos a bordo VIII Región
		Muestreo frecuencia y biológico-específico.
		Digitación datos en laboratorio.
Luis Cid	Ph.D. Estadística	Análisis estadísticos, diseño de muestreo.
		Biomasa método Thompson (1992).
Rubén Alarcón	M.Sc. Pesquerías	Biomasa, distribución, composición e importancia
	1	relativa.
Guillermo Martínez	Ing. Pesquero	Confección planos redes, Análisis APA.
	J 1	r

Este documento debe citarse:

Acuña, E., R. Alarcón, H. Arancibia, L. Cid, A. Cortés, L. Cubillos, P. Haye, R. León, G. Martínez y S. Neira. 2004. Evaluación directa de langostino colorado y langostino amarillo entre la II y VIII regiones, año 2004. Informe Final. Proyecto FIP Nº 2004-11, 405 pp.

RESUMEN EJECUTIVO

En el área de estudio, el muestreo se dirigió a los caladeros de las especies, definidos sobre la base de los resultados de estudios anteriores, realizados por la UCN y otras instituciones nacionales. Al interior de cada caladero, se utilizó un muestreo probabilístico (estocástico). Este modelo de muestreo corresponde a uno estratificado por celdas, de modo que dentro de cada una de éstas se obtuvo una muestra de tamaño nh = 9. También se realizaron muestreos en las zonas intercaladeros para comprobar posibles expansiones o reducciones de los mismos.

Se llevó a cabo en promedio el 85,2% de los lances propuestos, siendo más exitosos los lances efectuados dentro de los caladeros que aquellos de las zonas intercaladeros. En el langostino amarillo la mayor proporción de lances positivos se logró en la IV y V Regiones, destacando particularmente un sector con altas capturas ubicado dentro del ARPA de esta última. En el caso del langostino colorado, la mayor proporción de los lances ejecutados con pesca positiva se observó en la VIII Región, con 51%. En la zona sur, la especie sólo fue capturada en la VIII y VIII región, aunque el foco detectado en la primera de estas regiones es bastante reducido.

El rango de tallas global de langostino amarillo con sexos combinados, detectado en toda el área de estudio correspondió a 11-50 mm LC, mientras los rangos observados por región muestreadas corresponden a 12-43 mm LC en la II Región, 12-48 mm LC en la III Región, 11-50 mm LC en la IV Región, 20-46 mm LC en la V Región, 18-45 mm LC en la VI Región, 14-50 mm LC en la VII Región y 16-48 mm LC en la VIII Región. Las frecuencias de tallas de las siete regiones en porcentaje acumulado, muestran que la mayor proporción de ejemplares de tallas sobre los 27 mm LC se encuentra en la VI y VIII región y la menor en la II Región.

El rango de tallas global de langostino colorado con sexos combinados, detectado en toda el área de estudio correspondió a 10-45 mm LC, mientras los rangos observados en las tres regiones muestreadas corresponden a 18-43 mm LC en la II Región, 12-45 mm LC en la III Región, 12-43 mm LC en la IV Región, 12-42 mm LC en la VII Región y 10-37 mm LC en la VIII Región. Las frecuencias de tallas en porcentaje acumulado, muestran que la mayor proporción de ejemplares de tallas sobre los 27 mm LC se encuentra en la IV región y la menor en la VIII Región.

La proporción sexual de langostino amarillo muestra que las hembras predominan en la mayoría de los focos de la III Región, con un máximo de 61,17%. Desde el foco 10 (III Región) hacia el sur hasta la VIII región, los machos son más abundantes en las capturas, con la excepción del foco 17 (IV Región), presentando una leve tendencia latitudinal al aumento de los porcentajes de éstos, hasta llegar a un 82,91% en el foco 29. En cambio, en la proporción sexual a la talla del langostino colorado no se aprecia ninguna tendencia latitudinal en el predominio de alguno de los dos sexos, aunque tanto en la II como III Región hay más focos con predominio de las hembras, mientras que de la IV Región al sur hay un mayor número de focos donde predominan los machos.

La distribución espacial de los lances de pesca (negativos y positivos) para las dos especies, y el valor de la captura por unidad de área barrida (cpua, ton/km²) por latitud, revelaron la presencia de 30 focos de abundancia o caladeros de langostino amarillo y 18 focos de langostino colorado, cuyos límites fueron establecidos con el "Enfoque Geoestadístico Transitivo".

En el langostino amarillo, el área de estudio se dividió en cinco zonas, denominadas como ZAGs (Zonas de Análisis Geoestadístico). El análisis de variogramas unidireccionales reveló la presencia de efecto anisotrópico de la distribución espacial de la densidad poblacional de langostino amarillo en todas las ZAGs. En la ZAG-1, el efecto anisotrópico se observó en la dirección NE-SO. En cambio, en el caso de las ZAGs 2 a 5, el efecto direccional de la distribución espacial de la densidad se observó en la dirección N-S, asociado a la orientación de la plataforma continental y la línea de la costa. Para el langostino colorado, el área de estudio se dividió en tres ZAGs (Zonas de Análisis Geoestadístico). El análisis de variogramas unidireccionales reveló la presencia de efecto anisotrópico de la distribución espacial de la densidad poblacional en la dirección N-S en las tres ZAGs establecidas. En ambas especies el modelo de variograma teórico que mostró el mejor ajuste fue el esférico.

La propuesta técnica original del estudio consideraba la estimación de la abundancia de los recursos objetivo sólo por tres métodos de estimación: (1) enfoque geoestadístico, (2) Distribución Delta log normal y (3) estrategia de muestreo estratificado. Sin embargo, para efectos comparativos, la estimación de abundancia se llevó a cabo también por los métodos: (4) estimador de razón, (5) media aritmética, y (6) microceldas de estimación geoestadística.

En el langostino amarillo, la biomasa total del stock entre las Regiones II a VIII estimada con el enfoque geoestadístico alcanzó a 58.392,3 ton, con intervalo de confianza (IC) entre 58.250,5 y 58.534,1 ton y una abundancia total de 2.292,5 millones de ejemplares. La biomasa total del stock estimada mediante la Distribución Delta lognormal alcanzó 71.121,4 (IC: 63.718,2 – 77.118,5 ton), mediante el estimador de razón alcanzó a 64.560 ton (IC: 60.869,3 – 68.250,7 ton), y mediante el enfoque estratificado a 47.859,3 ton (IC: 45.422,0 – 50.297,0 ton), respectivamente. En el caso del langostino colorado, la biomasa total del stock entre las Regiones II a VIII estimada con el enfoque geoestadístico alcanzó a 22.833,1 ton, con IC: entre 22.726,1 y 22.940,1 ton y una abundancia total de 2.947,1 millones de ejemplares. La biomasa total del stock de langostino colorado estimada mediante la Distribución Delta lognormal alcanzó 19.815,2 (IC: 14.862,9 – 25.733,3 ton), mediante el estimador de razón a 24.207,5 ton (IC: 23.075,4 – 25.339,5 ton), y mediante el enfoque estratificado a 23.668,4 ton (IC: 22.414,5 – 24.922,2 ton), respectivamente.

La fauna acompañante estuvo representada por 31 taxa: 19 peces, 6 crustáceos, 4 moluscos y 2 mixinoídeos, destacando la merluza común, el lenguado de ojos grandes y el pejerrata *Nezumia pulchella*, los cuales concentraron el 80,51% de la captura total de la fauna acompañante. Las tres especies representan el 14,36% de la captura total de las especies objetivo, lo que es alto considerando que la captura total de la fauna acompañante fue similar al 17,83% de la captura de las especies objetivo. Las especies restantes presentaron una importancia muy baja, sólo 7 superaron el 5% y muchas representan menos del 1% de la captura total de la fauna acompañante.

El patrón general observado de dominancia de los peces *M. gayi*, *H. macrops* y *N. pulchella* se repitió en casi la totalidad de las regiones. El predominio ocurrió en la magnitud de abundancia relativa (CPUA), fracción respecto a la fauna acompañante y respecto a los recursos objetivos, así como en la frecuencia de ocurrencia en los lances efectuados. La excepción ocurrió en la II Región, donde la jaiba mochilera (*Lophorochinia parabranchia*) fue la especie de mayor importancia. Esta jaiba estuvo presente sólo en los lances efectuados en la II y IV Regiones.

M. gayi presentó la importancia relativa más alta en todas las profundidades, tanto respecto al resto de la fauna acompañante como a los recursos objetivos. Su abundancia relativa (CPUA) más alta fue observada en los 100-200 y 200-300 m. Por su parte *H. macrops* también presentó

los valores de abundancia relativa más altos en los estos estratos de profundidad, y en los estratos restantes su presencia fue baja. El pejerrata (*N. pulchella*) se encontró en mayor abundancia en los estratos 200-300 y 300-400 m de profundidad. En el estrato donde se superponen *N. pulchella* y *H. macrops*, esta última presenta una mayor importancia en todos los indicadores señalados.

Un análisis de clasificación permitió distinguir cuatro grupos de estaciones de muestreo (lances), cada uno de los cuales está conformado por estaciones con similitud superior al 50%. El análisis de ordenación distinguió, con un nivel de significancia moderadamente alto (Stress = p = 0,07), los mismos cuatro grupos de estaciones que el análisis de clasificación anterior. Con esto se definió los cuatro ensambles o grupos de especies, siendo las de mayor importancia relativa M. gayi, H. macrops y N. pulchella que se presentaron en todos los grupos y en la mayoría con los valores de importancia relativa más altos. La excepción ocurrió en el grupo III, siendo la especie de mayor importancia relativa la jibia (Disodicus gigas).

Desde el punto de vista espacial las cuatro asociaciones específicas presentaron un mismo comportamiento, con los tres primeros distribuidos a lo largo de todo el gradiente latitudinal del estudio. La cuarta asociación de especies se distribuyó sólo desde el centro al sur de la zona de estudio, lo que fue determinado por la importancia relativa del pejerrata (*N. pulchella*). En cuanto al comportamiento espacial en el sentido batimétrico, la asociación específica I estuvo presente en todo el gradiente de profundidad de la zona estudiada, comportamiento que se debe a la importancia del recurso merluza, mayor en todos los estratos de profundidad. En la asociación específica II el hecho que la especie de mayor importancia fuera el lenguado *H. macrops* y, a su vez, ésta fuera la segunda en importancia en los estratos de 300 m y profundidades menores, explica que esta asociación específica estuviera entre las profundidades 150 a 250 m. La distribución batimétrica de los grupos III y IV también obedeció a la importancia de la especie que los diferenció en los distintos estratos de profundidad. Estas especies fueron la jibia (*D. gigas*) y el pejerrata (*N. pulchella*), para las asociaciones III y IV, respectivamente.

Las curvas k-dominancia presentaron una configuración opuesta en la asociación I y IV. En la primera, se observó un predominio de la abundancia en peso por sobre aquella en número. En cambio en la asociación específica IV se observó un predominio de la abundancia en número por sobre aquella en peso. Comparativamente, la asociación I es más k-estratega y la asociación IV es

más r-estratega. En I, *M. gayi* tuvo mayor importancia relativa y en IV, la tuvo *N. pulchella*. *M. gayi* es más k-estratega y *N. pulchella* es más r-estratega, comparando sus tamaños corporales y productividad, P/B=0,39 año⁻¹, P/B=0,70 año⁻¹ (Arancibia & Neira, 2003), respectivamente.

La situación del stock de langostino colorado y langostino amarillo de las zonas centro-norte (II-IV Regiones) y centro-sur (V-VIII Regiones), se evaluó sobre la base del Modelo Coleraine. El análisis estructural se ajusta bien a las diferentes piezas de información, particularmente la estructura de tallas de los cruceros de evaluación como la biomasa explotable. El langostino colorado de la zona centro-norte exhibe una biomasa total cercana a 22 mil ton a comienzos de 2004. A su vez, se han observado bajas tasas de explotación en el 2003 y 2004, lo que unido a un reclutamiento importante en el 2003 determina condiciones favorables para consolidar un crecimiento de la biomasa del stock. En el caso del langostino colorado del sur, esta especie se caracteriza por la probabilidad latente de fallas importantes en el reclutamiento anual. Pero, en los últimos cuatro años se verifica el ingreso de reclutamientos que están permitiendo una recuperación de la biomasa total, la que aún no se consolida en la fracción explotable.

En los últimos cuatro años se han aplicado tasas de explotación bajas lo que en concomitancia con el ingreso de reclutamientos importantes están incidiendo en una recuperación del stock de langostino amarillo de la zona centro-norte, tanto en la biomasa total como explotable en el 2004.

La tendencia de la biomasa de langostino colorado y langostino amarillo entre los años 1990 y 2002 utilizando un modelo multiespecífico y series de tiempo de mortalidad por pesca es proyectada correctamente por EwE. Esto implica que junto con la mortalidad por pesca, las relaciones tróficas en la forma de predación también pueden haber jugado un rol importante en la dinámica de la biomasa de estos recursos en el pasado. Además, la mortalidad por predación también podría jugar un rol importante en la recuperación de la biomasa de ambos recursos en el futuro.

Finalmente, los análisis genéticos basados en genes mitocondriales muestran que hay una sola especie de *Pleuroncodes* a lo largo de la costa de Chile, y que la forma enana presente en la I y II Regiones corresponde a un ecotipo.

TABLA DE CONTENIDOS

				Pag.
CC	MPOS	SICIÓN	Y ORGANIZACIÓN DEL EQUIPO PROFESIONAL Y TÉCNICO	i
RE	SUME	N EJEC	CUTIVO	i
ÍNI	DICE I	DE FIGU	JRAS	xxi
ÍNI	DICE I	DE ANE	XOS	xxviii
1.	OBJI	ETIVOS		1
	1.1.		vo General	
	1.2.	Objetiv	vo Específicos	1
2.	INTE	RODUC	CIÓN	2
	2.1.		stino colorado	
	2.2.	Langos	stino amarillo	6
3.	MET	ODOLO	OGIA	9
	3.1.		alidades	
	3.2.	Estand	arización de las naves	9
	3.3.	Anális	is de las redes de arrastre y levantamiento de planos	10
	3.4.	Medici	ión directa de la abertura de punta de alas	11
	3.5.	Descri	ptores estadísticos de APA e interacción nave-patrón de pesca-arte	11
	3.6.	Registr	ros de información (datos) del lance y capturas	13
		3.6.1.	Datos del lance	13
		3.6.2.	Datos de capturas	14
			3.6.2.1. Captura por lance	14
			3.6.2.2. Captura estandarizada por lance	14
		3.6.3.	Muestreos de longitud cefalotorácica y biológico-específicos	15
		3.6.4.	Método de muestreo.	15
		3.6.5.	Plan de muestreo y número de lances	18
			3.6.5.1. Muestreo en los caladeros	18
			3.6.5.2. Muestreo en zonas intercaladeros	22
		3.6.6.	Determinación de la densidad en cada lance	
		3.6.7.	Aplicaciones SIG para el manejo y tratamiento de la información	28

		3.6.7.1. Presentación	. 28
		3.6.7.2. Datum de referencia espacial	. 29
		3.6.7.3. Ingreso de la información a un formato digital de base de datos	. 29
		3.6.7.4. Ingreso de la información a un SIG (Sistema de Información	ción
		Geográficos)	. 29
		3.6.7.5. Cartografía base del SIG	. 30
		3.6.7.6. Análisis de la Información	. 30
3.7.	Objetiv	o Específico 1	. 31
3.8.	Objetiv	o Específico 2	. 36
	3.8.1.	Método geoestadístico intrínseco	. 36
	3.8.2.	Método de la Distribución Delta-lognormal	. 38
	3.8.3.	Estimador de razón	. 39
	3.8.4.	Media aritmética	. 41
	3.8.5.	Microceldas de estimación geoestadística	. 42
	3.8.6.	Estimación del área por geoestadística transitiva	. 43
	3.8.7.	Varianza total de estimación de biomasa	. 45
	3.8.8.	Relación longitud-peso	. 50
	3.8.9.	Pesos medios por intervalo de talla	. 52
3.9.	Objetiv	o Específico 3	. 52
	3.9.1.	Muestreo biológico a bordo de la nave	. 52
	3.9.2.	Determinación del estado de desarrollo embrionario de huevos	. 53
	3.9.3.	Proporción sexual	. 53
	3.9.4.	Talla promedio de madurez sexual	. 55
	3.9.5.	Análisis de fecundidad	. 56
	3.9.6.	Determinación del potencial reproductivo	. 58
3.10.	Objetiv	o Específico 4	. 59
	3.10.1.	Generación de la información	. 59
	3.10.2.	Descripción de la abundancia de la fauna acompañante	. 60
	3.10.3.	Identificación y caracterización espacial de las asociaciones específicas	. 61
	3.10.4.	Identificación de asociaciones específicas	. 61
	3.10.5.	Diferencias entre asociaciones mediante Análisis de Similitud (ANOSIM)	. 62

		3.10.5.1. Análisis de Similitud (ANOSIM)	. 62
		3.10.5.2. Curvas k-dominancia (Curvas ABC)	. 63
	3.10.6.	Importancia relativa de merluza común como by-catch	. 64
		3.10.6.1. Importancia relativa	. 64
		3.10.6.2. Distribución espacial de la producción de merluza común	. 65
3.11.	Objetiv	o Específico 5	. 67
	3.11.1.	Modelo 1. COLERAINE Versión 3.0	. 67
		3.11.1.1 Dinámica de la abundancia	. 68
		3.11.1.2. Reclutamiento.	. 69
		3.11.1.3. Condiciones iniciales	. 70
		3.11.1.4. Selectividad	. 71
		3.11.1.5. Crecimiento	. 72
		3.11.1.6. Predicción de datos observados	. 73
		3.11.1.7. Funciones de log-verosimilitud	. 73
		3.11.1.8. Evaluación de políticas de explotación	. 75
	3.11.2.	Modelo 2. Quinn et al. (1998)	. 75
		3.11.2.1. Mortalidad	. 78
		3.11.2.2. Abundancia explotable	. 79
		3.11.2.3. Crecimiento	. 79
	3.11.3.	Modelo 3, de Sullivan et al. (1990)	. 81
		3.11.3.1. Dinámica básica	. 81
		3.11.3.2. Reclutamiento.	. 83
		3.11.3.3. Mortalidad por pesca y Selectividad	. 84
		3.11.3.4. Predicciones y funciones de verosimilitud	. 85
		3.11.3.5. Proceso de Estimación	. 85
3.12.	Objetiv	o Específico 6 (Adicional)	. 86
	3.12.1.	Introducción	. 86
	3.12.2.	Metodología	. 87
		3.12.2.1. Estimación de la mortalidad natural (M) y por predación (M2)	. 87
		3.12.2.2. Cambios en F y M2 y su efecto sobre la biomasa	. 89
3.13.	Objetiv	vo Específico 7 (Adicional)	. 91

		3.13.1. Introducción	91
		3.13.2. Metodología	94
	3.14.	Taller Metodológico	95
4.	RESU	ULTADOS	96
	4.1.	Aspectos operacionales de los cruceros	96
	4.2.	Características técnicas de las naves y redes utilizadas	97
	4.3.	Estimación directa de la abertura entre punta de alas (APA)	98
		4.3.1. Cálculo del error en la medición de la APA	98
		4.3.2. Modelo funcional de la APA	99
	4.4.	Capturas y densidad local (CPUA) por lance de pesca	100
	4.5.	Aspectos biológicos	101
		4.5.1. Capturas y muestreo biológico	101
		4.5.2. Composición de tamaños	102
		4.5.2.1. Langostino amarillo	103
		4.5.2.2. Langostino colorado	117
		4.5.3. Relación longitud-peso	127
		4.5.4. Proporción sexual	129
		4.5.4.1. Langostino amarillo	129
		4.5.4.1.1. Proporción sexual por Región	129
		4.5.4.1.2. Proporción sexual a la talla	129
		4.5.4.1.3. Proporción sexual a la talla por foco de abundancia	137
		4.5.4.2. Langostino colorado	138
		4.5.4.2.1. Proporción sexual por Región	138
		4.5.4.2.2. Proporción sexual a la talla	139
		4.5.4.1.3. Proporción sexual a la talla por foco de abundancia	145
	4.6.	Objetivo Específico 1	146
		4.6.1. Identificación de focos de abundancia	146
		4.6.1.1. Langostino amarillo	147
		4.6.1.2. Langostino colorado	155
		4.6.2. Análisis estructural	161
		4.6.2.1 Langostino amarillo	161

		4.6.2.2. Langostino colorado	165
4.7.	Objetiv	vo Específico 2	168
	4.7.1.	Enfoque geoestadístico	168
		4.7.1.1. Langostino amarillo	168
		4.7.1.2. Langostino colorado	172
		4.7.1.3. Abundancia	176
	4.7.2.	Método de la Distribución Delta-lognormal	177
		4.7.2.1. Langostino amarillo	177
		4.7.2.1. Langostino colorado	181
	4.7.3.	Estimador de razón	183
	4.7.4.	Media aritmética	186
		4.7.4.1. Langostino amarillo	186
		4.7.4.2. Langostino colorado	188
	4.7.5.	Microceldas de estimación geoestadística	189
	4.7.6.	Estrategia de muestreo estratificado	190
4.8.	Objeti	vo Específico Nº 3	194
	4.8.1.	Condición reproductiva del langostino amarillo	194
		4.8.1.1. Estados de madurez embrionaria de las hembras ovíferas	194
		4.8.1.2.Distribución mensual de las hembras ovíferas por región de	pesca
			194
		4.8.1.3. Distribución de la talla corporal de las hembras ovíferas por	estado
		de madurez embrionaria	196
		4.8.1.4. Distribución geográfica global de las hembras ovíferas por esta	ado de
		madurez embrionaria	198
		4.8.1.5. Distribución batimétrica de las hembras ovíferas según su esta	ado de
		madurez embrionaria	199
	4.8.2.	Langostino colorado	200
		4.8.2.1. Estados de madurez embrionaria de las hembras ovíferas	200
		4.8.2.2.Distribución mensual de las hembras ovíferas por región de	pesca
			201

			4.8.2.3. Distribución de la talla corporal de las hembras ovíferas po	r estado
			de madurez embrionaria.	202
			4.8.2.4. Distribución geográfica global de las hembras ovíferas por es	stado de
			madurez embrionaria	204
			4.8.2.5. Distribución batimétrica de las hembras ovíferas según su es	stado de
			madurez embrionaria	205
		4.9.	Objetivo Específico Nº 4	207
		4.9.1.	Descripción de la abundancia de la fauna acompañante	207
			4.9.1.1. Composición específica general de la fauna acompañante	207
			4.9.1.2. Distribución de la fauna acompañante en sentido latitudinal	207
			4.9.1.3. Distribución de la fauna acompañante en sentido batimétrico	210
		4.9.2.	Identificación y caracterización espacial de las asociaciones específica	as 212
			4.9.2.1. Identificación de asociaciones específicas	212
			4.9.2.2. Detección de diferencias entre asociaciones	218
		2	4.9.2.2.1. Análisis de similitud (ANOSIM)	218
		2	4.9.2.2.2. Curvas K-Dominancia (Curvas ABC)	218
	4.10.	Objeti	vo N° 5	220
		4.10.1.	Langostino colorado	220
			4.10.1.1. Unidad de Pesquería II – IV Regiones	220
			4.10.1.2. Unidad de Pesquería V-VIII	225
		4.10.2.	Langostino amarillo	230
			4.10.2. 1. Unidad de Pesquería II-IV	230
	4.11.	Objetiv	vo N° 6	235
		4.11.1	Estimación de M y M2 para langostino colorado y langostino amaril	lo entre
		las Reg	giones V y la VIII (Chile central)	235
		4.11.2.	Cambios en F y M2 y su efecto sobre la biomasa de langostinos	236
		4.11.3.	Tendencia de la biomasa de langostino amarillo y langostino colora	do ante
		cambio	os en los niveles de F y aumento de M2	238
		4.11.4.	Discusión y Conclusiones	240
5.	DISC	USIÓN,	, ANÁLISIS CRÍTICO DE RESULTADOS Y CONCLUSIONES	247
	5.1.	Diseño	de muestreo	247

		5.1.1.	Langostino amarillo	247
		5.1.2.	Langostino colorado	251
	5.2.	Distrib	oución del recurso	255
		5.2.1.	Langostino amarillo	255
		5.2.2.	Langostino colorado	258
	5.3.	Area d	e distribución de los recursos	259
	5.4.	Estima	ación de biomasa	264
		5.4.1.	Langostino amarillo	264
		5.4.2.	Langostino colorado	266
	5.5.	Conclu	usiones	269
5.	6. TA	LLER I	DE DIFUSIÓN	273
7.	REFI	ERENCI	IAS BIBLIOGRÁFICAS	278
3.	Anex	os		287
9.	Plan	detallad	o de asignación del personal profesional y técnico	373
	9.1.	Objetiv	vo específico 1	373
	9.2.	Objetiv	vo específico 2.	374
	9.3.	Objetiv	vo específico 3.	375
	9.4.	Objetiv	vo específico 4.	376
	9.5.	Objetiv	vo específico 5.	377
	9.6.	Objetiv	vo específico 6.	378
	97	Ohietiv	vo específico 7	379

INDICE DE TABLAS

Tabla 1.	Fraccionamiento de las Cuotas globales anuales de captura (ton) de langostino
	colorado asignadas en el período 1999-2004 y Decreto correspondiente, en la Unidad
	de Pesquería I a IV Región.
Tabla 2.	Evolución de las biomasas estimadas en las evaluaciones directas (ton) de langostino
	colorado, 2000-2003. Fuente: Subsecretaría de Pesca (2002) y Proyectos FIP 5
Tabla 3.	Fraccionamiento de las Cuotas globales anuales de captura (ton) de langostino
	amarillo asignadas en el período 1999-2004 y Decreto correspondiente, en la Unidad
	de Pesquería III - IV Región
Tabla 4.	Estados de desarrollo embrionario de langostino amarillo (Escuela de Ciencias del
	Mar (1999) y langostino colorado (Arana y Palma, 1997)
Tabla 5.	Variables operativas del estudio de evaluación directa de langostino amarillo y
	langostino colorado entre la II y VIII Regiones
Tabla 6.	Número de lances propuestos y efectuados totales en los caladeros históricos de
	langostino amarillo y langostino colorado, por Región
Tabla 7.	Lances con captura de langostino amarillo y langostino colorado, por Región,
	porcentaje con respecto al total de lances efectuados
Tabla 8.	Resumen de la estimación de error de medición de la APA en las embarcaciones
	PAM "FOCHE" y L/M "ISABEL S", participantes del crucero de evaluación directa
	entre la II y IV regiones. N= número de mediciones
Tabla 9.	Parámetros de la relación funcional entre la APA (variable dependiente) y las
	variables independientes LCC, Prof y Vel en las embarcaciones PAM "FOCHE" y
	L/M "ISABEL S", participantes del crucero de evaluación directa entre la II y VIII
	regiones. r^2 = coeficiente de determinación de la correlación multiple
Tabla 10.	Capturas obtenidas entre la II y IV Regiones, por embarcación. LA = langostino
	amarillo, LC = langostino colorado y CA = camarón nailon
Tabla 11.	Esfuerzo total de muestreo de frecuencia (medidos) y biológico específicos (pesados)
	de la captura de langostino amarillo entre la II y VIII Regiones. s/h = hembras sir
	huevos, c/h = hembras con huevos.

Tabla 12.	Estuerzo total de muestreo de frecuencia (medidos) y biológico específicos (pesados)
	de la captura de langostino colorado entre la II y IV Regiones. s/h = hembras sin
	huevos, c/h = hembras con huevos. 102
Tabla 13.	Parámetros de la relación talla-peso de langostino amarillo (C. johni, ambos sexos)
	por foco y total. SCR = suma de cuadrados residuales
Tabla 14.	Parámetros de la relación talla-peso de langostino colorado (P. monodon, ambos
	sexos) por foco y total. SCR = suma de cuadrados residuales
Tabla 15.	Proporción sexual (%) de los ejemplares de langostino amarillo medidos en el
	muestreo de frecuencia de tallas por región
Tabla 16.	Proporción sexual a la talla en langostino amarillo, en la II Región
Tabla 17.	Proporción sexual a la talla en langostino amarillo, en la III Región
Tabla 18.	Proporción sexual a la talla en langostino amarillo, en la IV Región
Tabla 19.	Proporción sexual a la talla en langostino amarillo, en la V Región
Tabla 20.	Proporción sexual a la talla en langostino amarillo, en la VI Región
Tabla 21.	Proporción sexual a la talla en langostino amarillo, en la VII Región
Tabla 22.	Proporción sexual a la talla en langostino amarillo, en la VIII Región
Tabla 23.	Proporción sexual en langostino amarillo, por foco de abundancia
Tabla 24.	Proporción sexual (%) de los ejemplares de langostino colorado medidos en el
	muestreo de frecuencia de tallas por región.
Tabla 25.	Proporción sexual a la talla en langostino colorado, en la II Región
Tabla 26.	Proporción sexual a la talla en langostino colorado, en la III Región
Tabla 27.	Proporción sexual a la talla en langostino colorado, en la IV Región
Tabla 28.	Proporción sexual a la talla en langostino colorado, en la VII Región
Tabla 29.	Proporción sexual a la talla en langostino colorado, en la VIII Región
Tabla 30.	Proporción sexual en langostino colorado, por foco de abundancia
Tabla 31.	Límites latitudinales de las Zonas de Análisis Geoestadístico (ZAGs) para el
	langostino amarillo (C. johni) y número de lances de pesca involucrados en cada
	caso
Tabla 32.	Límites latitudinales de los focos de abundancia de langostino amarillo (C. johni) y
	área (mn2 v km2) correspondiente.

Tabla 33.	Fracción de área (km2) de los caladeros de langostino amarillo (C. johni) dentro y
	fuera de las 5 mn de exclusión artesanal. 152
Tabla 34.	Límites latitudinales de las Zonas de Análisis Geoestadístico (ZAGs) para el
	langostino colorado (P. monodon) y número de lances de pesca involucrados en cada
	caso
Tabla 35.	Límites latitudinales de los focos de abundancia de langostino colorado (P. monodon)
	y área (mn2 y km2) correspondiente. 160
Tabla 36.	Fracción de área (km2) de los caladeros de langostino colorado (P. monodon) dentro
	y fuera de las 5 mn de exclusión artesanal.
Tabla 37.	Parámetros del variograma teórico según el modelo esférico para las ZAGs de
	langostino amarillo (C. johni). SCR: suma de cuadrados de los residuos, VNE
	Varianza no explicada
Tabla 38.	Parámetros del variograma teórico según el modelo esférico para las ZAGs de
	langostino colorado (P. monodon). SCR: suma de cuadrados de los residuos, VNE
	Varianza no explicada
Tabla 39.	Densidad poblacional (cpua, ton/km2) promedio, desviación estándar, tamaño de
	muestra (n) e intervalos de confianza (LI = límite inferior; LS = límite superior) de
	langostino amarillo (C. johni) por fracción de área de los focos de abundancia entre la
	II y IV Región.ARPA: 1 = OUT, 2 = IN
Tabla 40.	Biomasa estimada (toneladas) de langostino amarillo (C. johni), error estándar de la
	estimación (EEE, tons) e intervalos de confianza (LI = límite inferior; LS = límite
	superior) por foco de abundancia entre la II y VIII Región
Tabla 41.	Biomasa estimada (toneladas) de langostino amarillo (C. johni) e intervalos de
	confianza (LI = límite inferior; LS = límite superior) por Región, fuera y dentro de la
	ARPA. ARPA: 1 = OUT, 2 = IN
Tabla 42.	Densidad poblacional (cpua, ton/km2) promedio, desviación estándar, tamaño de
	muestra (n) e intervalos de confianza (LI = límite inferior; LS = límite superior) de
	langostino colorado (P. monodon) por fracción de área de los focos de abundancia
	entre la II y IV Región.ARPA: 1 = OUT, 2 = IN

Tabla 43.	Biomasa estimada (toneladas) de langostino colorado (<i>P. monodon</i>), error estándar de
	la estimación (EEE, tons) e intervalos de confianza (LI = límite inferior; LS = límite
	superior) por foco de abundancia entre la II y VIII Región
Tabla 44.	Biomasa estimada (toneladas) de langostino colorado (P. monodon) e intervalos de
	confianza (LI = límite inferior; LS = límite superior) por Región, fuera y dentro de la
	ARPA. ARPA: 1 = OUT, 2 = IN
Tabla 45.	Estimador de la densidad poblacional (ton/mn²) de langostino amarillo (C. johni)
	mediante el estimador de la Distribución Delta
Tabla 46.	Biomasa estimada (toneladas) de langostino amarillo (C. johni), error estándar de la
	estimación (EEE, tons) e intervalos de confianza (LI = límite inferior; LS = límite
	superior) por foco de abundancia entre la II y IV Región. Distribución Delta 180
Tabla 47.	Estimador de la densidad poblacional (ton/mn2) de langostino colorado (P. monodon)
	mediante el estimador de la Distribución Delta
Tabla 48.	Biomasa estimada (toneladas) de langostino colorado (P. monodon), error estándar de
	la estimación (EEE, tons) e intervalos de confianza (LI = límite inferior; LS = límite
	superior) por foco de abundancia entre la II y VIII Región. Distribución Delta 182
Tabla 49.	Densidad poblacional (cpua, ton/km2), error de estimación (EE, ton/km2), biomasa
	(tons) e intervalos de confianza inferior (LI, tons) y superior (LS, tons) de langostino
	amarillo (C. johni) entre la II y VIII Región.ARPA: 1 = OUT, 2 = IN. Estimador de
	razón
Tabla 50.	Densidad poblacional (cpua, ton/km2), error de estimación (EE, ton/km2), biomasa
	(tons) e intervalos de confianza inferior (LI, tons) y superior (LS, tons) de langostino
	colorado (P. monodon) entre la II y IV Región.ARPA: 1 = OUT, 2 = IN. Estimador
	de razón
Tabla 51.	Estimador de la densidad poblacional (ton/mn2) de langostino amarillo (C. johni)
	mediante la media aritmética. LI = límite inferior y LS = límite superior del intervalo
	de confianza.
Tabla 52.	Biomasa estimada (toneladas) de langostino amarillo (C. johni), error estándar de la
	estimación (EEE, tons) e intervalos de confianza (LI = límite inferior; LS = límite
	superior) por foco de abundancia entre la II y IV Región. Media aritmética 187

Tabla 53.	Estimador de la densidad poblacional (ton/mn²) de langostino colorado (P. monodon)
	mediante la media aritmética. LI = límite inferior y LS = límite superior del intervalo
	de confianza. 188
Tabla 54.	Biomasa estimada (toneladas) de langostino colorado (P. monodon), error de
	estimación (EEE, tons) e intervalos de confianza (LI = límite inferior; LS = límite
	superior) por foco de abundancia entre la II y VIII Región. Media aritmética 188
Tabla 55.	Biomasa estimada (toneladas) de langostino amarillo (C. johni) e intervalos de
	confianza (LI = límite inferior; LS = límite superior) por foco de abundancia entre la
	II y VIII Región. Microceldas de estimación geoestadística
Tabla 56.	Biomasa estimada (toneladas) de langostino colorado (P. monodon) e intervalos de
	confianza (LI = límite inferior; LS = límite superior) por foco de abundancia entre la
	II y VIII Región. Microceldas de estimación geoestadística
Tabla 57.	Distribución y tamaño de los estratos. Nh = tamaño estrato, nh = tamaño de muestra,
	nhe = tamaño de la muestra efectiva, nh% = porcentaje del tamaño de muestra 191
Tabla 58.	Biomasa de langostino amarillo y langostino colorado por región y total (tons), área
	de los estratos (km²), cpua (tons/km²) e intervalos de confianza para el estimador de
	biomasa por región
Tabla 59.	Distribución por región de las hembras ovíferas de langostino amarillo capturadas en
	Abril, según su estado de desarrollo.
Tabla 60.	Distribución por región de las hembras ovíferas de langostino amarillo capturadas en
	Mayo, según su estado de desarrollo.
Tabla 61.	Distribución por región de las hembras ovíferas de langostino amarillo capturadas en
	Junio, según su estado de desarrollo
Tabla 62.	Distribución por región de las hembras ovíferas de langostino amarillo capturadas en
	Julio, según su estado de desarrollo
Tabla 63.	Características morfométricas de las hembras de langostino amarillo, por estado de
	desarrollo de los huevos
Tabla 64.	Distribución de frecuencia de tamaño y estados de madurez del langostino amarillo.
Tabla 65.	Distribución del estado de madurez embrionario de hembras ovíferas de langostino
	amarillo por Región

Tabla 66.	Distribución de frecuencia por rango de profundidad y estados de madurez del
	langostino amarillo. 200
Tabla 67.	Distribución por región de las hembras ovíferas de langostino colorado capturadas en
	Abril, según su estado de desarrollo.
Tabla 68.	Distribución por región de las hembras ovíferas de langostino colorado capturadas en
	Mayo, según su estado de desarrollo.
Tabla 69.	Distribución por región de las hembras ovíferas de langostino colorado capturadas en
	Junio, según su estado de desarrollo
Tabla 70.	Distribución por región de las hembras ovíferas de langostino colorado capturadas en
	Julio, según su estado de desarrollo
Tabla 71.	Características morfométricas de las hembras de langostino colorado por estado de
	desarrollo del huevo. 203
Tabla 72.	Distribución de frecuencia de tamaño y estados de madurez del langostino colorado.
Tabla 73.	Distribución del estado de madurez embrionario de hembras ovíferas de langostino
	colorado por Región. 205
Tabla 74.	Distribución de frecuencia por rango de profundidad y estados de madurez del
	langostino colorado
Tabla 75.	Listado de las especies que conforman la fauna acompañante en capturas de
	langostino colorado (P. monodon) y langostino amarillo (C. johni). IIRFA= índice de
	importancia relativa respecto a la captura total en peso de la fauna acompañante,
	IIRO= índice de importancia relativa respecto a la captura total en peso de los
	recursos objetivo. 208
Tabla 76.	Listado de las especies que conforman la fauna acompañante en las capturas de
	langostino colorado (P. monodon) y langostino amarillo (C. johni), cuya CPUA fue
	mayor a 5%, ordenados por región. IIRFA= índice de importancia relativa respecto a
	la captura total en peso de la fauna acompañante, IIRO= índice de importancia
	relativa respecto a la captura total en peso de los recursos objetivo
Tabla 77.	Fauna acompañante en las capturas de langostino colorado (P. monodon) y langostino
	amarillo (C. johni), cuya CPUA fue mayor a 5%, ordenados por estratos de
	profundidad. IIRFA= índice de importancia relativa respecto a la captura total en

	peso de la fauna acompañante, IIRO= índice de importancia relativa respecto a la
	captura total en peso de los recursos objetivo
Tabla 78.	Fauna acompañante en las capturas de langostino colorado (P. monodon) y langostino
	amarillo (C. johni), cuya CPUA fue mayor a 5%, ordenados por grupos identificados
	por clasificación y ordenación. IIRFA= índice de importancia relativa respecto a la
	captura total en peso de la fauna acompañante
Tabla 79.	Correlación de la abundancia de las especies más relevantes de la fauna acompañante
	y los recursos objetivo. 215
Tabla 80.	Resultado del contraste entre asociaciones específicas por medio de ANOSIM 218
Tabla 81.	Resumen de la evaluación de la biomasa total, explotable y desovante (hembras) de
	langostino colorado, tasa de explotación anual, y comparación entre la biomasa
	evaluada en los cruceros con la salida del modelo. Regiones II-IV
Tabla 82.	Resumen de la evaluación de la biomasa total, explotable y desovante (hembras) de
	langostino colorado, tasa de explotación anual, y comparación entre la biomasa
	evaluada en los cruceros con la salida del modelo. Regiones II-IV
Tabla 83.	Resumen de la evaluación de la biomasa total, explotable y desovante (hembras) de
	langostino colorado, tasa de explotación anual, y comparación entre la biomasa
	evaluada en los cruceros con la salida del modelo. Regiones V-VIII
Tabla 84.	Resumen de la evaluación de la biomasa total, explotable y desovante (hembras) de
	langostino colorado, tasa de explotación anual, y comparación entre la biomasa
	evaluada en los cruceros con la salida del modelo. Regiones III-IV
Tabla 85.	Número de lances totales, con pesca, positivos para langostino amarillo (C. johni) y
	efectividad de pesca (en paréntesis) según el diseño de muestreo utilizado
Tabla 86.	Número de lances totales, con pesca, positivos para langostino colorado (P.
	monodon) y efectividad de pesca (en paréntesis) según el diseño de muestreo
	utilizado. 254
Tabla 87.	Estimaciones de biomasa (ton) de langostino amarillo (C. johni) entre la II y VIII
	Región según diferentes autores y metodologías de estimación
Tabla 88	Comparación de los estimadores de densidad poblacional (cpua, tons/km²), y área
	(km²) de los focos de abundancia de langostino amarillo (<i>C. johni</i>) entre la II y VIII

	Región señalados por Bahamonde et al. (2004) y los focos detectados en es	te estudio
	en posiciones geográficas equivalentes.	266
Tabla 89.	Estimaciones de biomasa (ton) de langostino colorado entre la II y VIII Reg	ión según
	diferentes autores y metodologías de estimación.	268
Tabla 90.	Lista de invitados y participantes (en negrita) al taller técnico de dif	fusión de
	resultados FIP Nº 2004-11	274

ÍNDICE DE FIGURAS

Fig. 1.	Caladeros de langostino colorado (rojo) y langostino amarillo (amarillo) entre la II y
	VIII Regiones (para explicaciones ver texto)
Fig. 2.	Esquema de pasos en un análisis multivariado basado en Indice de Similitud para
	identificar asociaciones específicas (Clarke & Warwick, 1994)
Fig. 3.	Curva k-dominancia hipotética para abundancia y biomasa, mostrando distintos
	grados de perturbación
Fig. 4.	Representación de los flujos entre la fracción vulnerable (V_i) e invulnerable (B_i-V_i)
	de la biomasa de la presa en \mathbf{EwE} . El parámetro \mathbf{a}_{ij} es la tasa de búsqueda de la presa a
	por el predador j , v es la tasa de intercambio entre el estado vulnerable y el
	invulnerable. El balance instantáneo entre ambos estados de la biomasa de la presa
	implica que $V_i = \nu B_i/(2\nu + aB_j)$. Modificado de Walters <i>et al.</i> (1997)
Fig. 5.	Evolución temporal de la APA del PAM "FOCHE" en la experiencia con cabo
	restrictor. La línea roja representa el cabo restrictor sin supuesto de elongación y la
	línea roja la longitud del cabo restrictor asumiendo 5% de elongación
Fig. 6.	Evolución temporal de la APA de la L/M "ISABEL S" en la experiencia con cabo
	restrictor. La línea roja representa el cabo restrictor sin supuesto de elongación y la
	línea roja la longitud del cabo restrictor asumiendo 5% de elongación
Fig. 7.	Distribución de frecuencias de tamaño y porcentaje acumulado de machos de
	langostino amarillo (C. johni). Focos 1 a 10
Fig. 8.	Distribución de frecuencias de tamaño y porcentaje acumulado de machos de
	langostino amarillo (<i>C. johni</i>). Focos 11 a 18
Fig. 9.	Distribución de frecuencia de tallas y porcentaje acumulado de machos de langostino
	amarillo (C. johni), Focos 19 a 30.
Fig. 10.	Distribución de frecuencias de tamaño y porcentaje acumulado de hembras de
	langostino amarillo (<i>C. johni</i>). Focos 1 a 10
Fig. 11.	Distribución de frecuencias de tamaño y porcentaje acumulado de hembras de
	langostino amarillo (C. johni). Focos 11 a 18
Fig. 12.	Distribución de frecuencia de tallas y porcentaje acumulado de hembras de langostino
	amarillo (C. johni), Focos 19 a 30.

Fig. 13.	Distribución de frecuencias de tamaño de langostino amarillo (C. johni), sexos
	combinados (% y porcentaje acumulado), por Región
Fig. 14.	Distribuciones de frecuencia de tamaño de langostino amarillo (C. johni), sexos
	combinados (% y porcentaje acumulado), regiones V a VIII
Fig. 15.	Distribución de frecuencias de tamaño de machos de langostino amarillo (C. johni)
	(% y porcentaje acumulado), por Región.
Fig. 16.	Distribuciones de frecuencia de tamaño de langostino amarillo (C. johni), sexos
	combinados (% y porcentaje acumulado), regiones V a VIII
Fig. 17.	Distribución de frecuencias de tamaño de hembras de langostino amarillo (C. johni),
	(% y porcentaje acumulado), por Región
Fig. 18.	Distribuciones de frecuencia de tamaño de langostino amarillo (C. johni), hembras (%
	y porcentaje acumulado), regiones V a VIII
Fig. 19.	Distribución de frecuencias de tamaño y porcentaje acumulado de machos de
	langostino colorado (P. monodon). Focos 1 a 6
Fig. 20.	Distribución de frecuencias de tamaño y porcentaje acumulado de machos de
	langostino colorado (P. monodon). Focos 7 a 12
Fig. 21.	Distribución de frecuencias de tamaño y porcentaje acumulado de machos de
	langostino colorado (P. monodon). Focos 13 a 18
Fig. 22.	Distribución de frecuencias de tamaño y porcentaje acumulado de hembras de
	langostino colorado (P. monodon). Focos 1 a 6
Fig. 23.	Distribución de frecuencias de tamaño y porcentaje acumulado de hembras de
	langostino colorado (<i>P. monodon</i>). Focos 7 a 12
Fig. 24.	Distribución de frecuencias de tamaño y porcentaje acumulado de hembras de
	langostino colorado (P. monodon). Focos 13 a 18
Fig. 25.	Distribución de frecuencias de tamaño de langostino colorado (P. monodon), sexos
	combinados (% y porcentaje acumulado), por Región
Fig. 26.	Distribuciones de frecuencia de tamaño de langostino colorado (P. monodon), sexos
	combinados, (% y porcentaje acumulado), regiones V a VIII
Fig. 27.	Distribución de frecuencias de tamaño de machos de langostino colorado (P.
	monodon) (% y porcentaje acumulado), por Región

Fig. 28.	Distribución de frecuencias de tamaño de hembras de langostino colorado (P.
	monodon), (% y porcentaje acumulado), por Región
Fig. 29.	Proporción sexual en langostino amarillo, por foco de abundancia
Fig. 30.	Proporción sexual en langostino colorado, por foco de abundancia
Fig. 31.	Disposición espacial de los lances de pesca (puntos azules) y delimitación de las
	Zonas de Análisis Geoestadístico (ZAGs) para langostino amarillo (C. johni). Para
	detalles ver texto. 148
Fig. 32.	Disposición espacial de los focos de abundancia de langostino amarillo (C. johni) en
	las tres Zonas de Análisis Geoestadístico (ZAGs). Para detalles ver texto
Fig. 33.	Disposición espacial de los lances de pesca (puntos azules) y delimitación de las
	Zonas de Análisis Geoestadístico (ZAGs) para langostino colorado (P. monodon).
	Para detalles ver texto. 156
Fig. 34.	Disposición espacial de los focos de abundancia de langostino colorado (P. monodon)
	en las tres Zonas de Análisis Geoestadístico (ZAGs). Para detalles ver texto 158
Fig. 35.	Variograma experimental (puntos) y variograma teórico (modelo esférico, línea
	continua). La información considerada corresponde a la ZAG-1 de langostino
	amarillo (<i>C. johni</i>).
Fig. 36.	Variograma experimental (puntos) y variograma teórico (modelo esférico, línea
	continua). La información considerada corresponde a la ZAG-2 de langostino
	amarillo (<i>C. johni</i>).
Fig. 37.	Variograma experimental (puntos) y variograma teórico (modelo esférico, línea
	continua). La información considerada corresponde a la ZAG-3 de langostino
	amarillo (<i>C. johni</i>).
Fig. 38.	Variograma experimental (puntos) y variograma teórico (modelo esférico, línea
	continua). La información considerada corresponde a la ZAG-4 de langostino
	amarillo (<i>C. johni</i>).
Fig. 39.	Variograma experimental (puntos) y variograma teórico (modelo esférico, línea
	continua). La información considerada corresponde a la ZAG-5 de langostino
	amarillo (<i>Cervimunida johni</i>)

Fig. 40.	Variograma experimental (puntos) y variograma teórico (modelo esférico, línea
	continua). La información considerada corresponde a la ZAG-1 de langostino
	colorado (Pleuroncodes monodon)
Fig. 41.	Variograma experimental (puntos) y variograma teórico (modelo esférico, línea
	continua). La información considerada corresponde a la ZAG-2 de langostino
	colorado (P. monodon).
Fig. 42.	Variograma experimental (puntos) y variograma teórico (modelo esférico, línea
	continua). La información considerada corresponde a la ZAG-3 de langostino
	colorado (P. monodon).
Fig. 43.	Distribución de frecuencias del logaritmo de la captura por unidad de área (ln[cpua])
	de langostino amarillo (<i>C. johni</i>). A =ZAG-1, B = ZAG-2, C = ZAG-3 y D = ZAG-4.
Fig. 44.	Distribución de frecuencias del logaritmo de la captura por unidad de área (ln[cpua])
	de langostino amarillo (<i>C. johni</i>) en la ZAG-5
Fig. 45.	Distribución de frecuencias del logaritmo de la captura por unidad de área (ln[cpua])
	de langostino colorado (<i>P. monodon</i>). A =ZAG-1, B = ZAG-2 y C = ZAG-3 181
Fig. 46.	Distribución de frecuencia de tamaños de las hembras ovíferas de langostino amarillo
	por estado de desarrollo de los huevos.
Fig. 47.	Distribución de frecuencia de tamaños de las hembras ovíferas de langostino colorado
	por estado de desarrollo del huevo.
Fig. 48.	Análisis de clasificación de la abundancia relativa (CPUA) de la fauna acompañante
	presente en las capturas de los langostinos amarillo y colorado en las regiones II a
	VIII
Fig. 49.	Análisis de ordenación (MDS) de la abundancia relativa (CPUA) de la fauna
	acompañante presente en las capturas de los langostinos amarillo y colorado en las
	regiones II a VIII. Stress (valor-p) =0,07
Fig. 50.	Distribución espacial en el gradiente latitudinal de las cuatro asociaciones específicas
	de fauna acompañante (grupos).
Fig. 51.	Distribución espacial en el gradiente batimétrico de las cuatro asociaciones
	específicas de fauna acompañante (grupos).

Fig. 52.	Curvas k-dominancia (Curvas ABC) con abundancia en peso y numero de las
	especies que conforman la fauna acompañante en cada una de las asociaciones
	específicas identificadas (Grupos).
Fig. 53.	Desembarque total anual de langostino colorado en la zona centro-norte de Chile
	(Regiones II-IV)
Fig. 54.	Estructura de tallas de langostino colorado en los cruceros de evaluación del periodo
	2000-2004 en la zona centro-norte. Las barras representan los datos observados y la
	línea contínua el ajuste del modelo de evaluación
Fig. 55.	Estructura de tallas de langostino colorado en los desembarques de la flota en e
	periodo 1998-2002 en la zona centro-norte. Las barras representan los datos
	observados y la línea contínua el ajuste del modelo de evaluación
Fig. 56.	Tendencias de la biomasa total, explotable, desovante (hembras) y capturas de
	langostino colorado entre 1998 y 2004. Regiones II-IV
Fig. 57.	Reclutamiento en número de individuos (edad 2) de machos y hembras de langostino
	colorado
Fig. 58.	Desembarque total anual de langostino colorado en la zona centro-sur de Chile
	(Regiones V-VIII)
Fig. 59.	Estructura de tallas de langostino colorado en los cruceros de evaluación del periodo
	1991-2004 en la zona centro-sur (V-VIII Regiones). Las barras representan los datos
	observados y la línea contínua el ajuste del modelo de evaluación
Fig. 60.	Reclutamiento en número de individuos (edad 2) de machos y hembras de langostino
	colorado en la zona centro-sur.
Fig. 61.	Tendencias de la biomasa total, explotable, desovante (hembras) y capturas de
	langostino colorado entre 1990 y 2004. Regiones V-VIII
Fig. 62.	Desembarque total anual de langostino amarillo en la zona centro-norte de Chile
	(Regiones III-IV)
Fig. 63.	Estructura de tallas de langostino amarillo en los cruceros de evaluación del periodo
	1995-2004 en la zona centro-norte (III-IV Regiones). Las barras representan los datos
	observados y la línea contínua el ajuste del modelo de evaluación
Fig. 64.	Tendencias de la biomasa total, explotable, desovante (hembras) y capturas de
5	langostino amarillo entre 1995 y 2004

Fig. 65.	Reclutamiento en número de individuos (edad 2) de machos y hembras de langostino amarillo en la zona centro-norte.
Fig. 66.	Mortalidad por predación (M2) y mortalidad por "otras causas" (M0) expresadas
115.00.	como porcentaje de la mortalidad total (Z). Para fines comparativos se incorpora
	también la mortalidad por pesca (F). a) langostino colorado; b) langostino amarillo
Ei~ 67	Ajuste de la biomasa por el modelo multiespecífico EwE utilizando mortalidad por
Fig. 67.	pesca como función forzante. a) langostino colorado; b) langostino amarillo 237
Fig. 68.	Tendencia de las biomasas de langostino colorado ante escenario de no pesca (F=0)
	durante 10 años y aumento de M2 a partir del año 2003. a) langostino colorado. b) langostino amarillo
Fig. 69.	Tendencia de la biomasa de langostino colorado ante cambios en los niveles de F y
<i>8.</i>	aumento de M2 a partir del año 2003. a) F=0.05; b) F=0.1; c) F=0.15; d) F=0.2 239
Fig. 70.	Tendencia de la biomasa de langostino amarillo ante cambios en los niveles de F y
	aumento de M2 a partir del año 2003. a) F=0.05; b) F=0.1; c) F=0.15; d) F=0.2 240
Fig. 71.	Ajuste de la biomasa de merluza común por el modelo multiespecífico EwE utilizando
	mortalidad por pesca como función forzante
Fig. 72.	Correlación entre la abundancia de las presas y su principal predador. a) langostino
E: 72	colorado; b) langostino amarillo.
Fig. 73.	
	Izquierda: Forma 'normal' encontrada en la costa de Chile y conocida como P.
	monodon. Derecha: Forma enana, o langostino enano, de la I Región, que Baez
E: 74	(2001, 2002) denomina <i>Pleuroncodes</i> sp
Fig. 74.	Porción de la secuencia del gen COII alineada para todos los individuos incluidos en
	el estudio, ordenados de norte a sur en las filas. Las columnas corresponden a los
	caracteres. Las columnas seleccionadas representan tres sitios variables. Los dos
	primeros sitios muestran diferencias existentes en un solo individuo, mientras que la
	tercera (a la derecha) muestra el sitio más variable
Fig. 75.	Árbol filogenético del gen COII para <i>Pleuroncodes</i> de la costa de Chile. Las distintas
	regiones de las que provienen las muestras están representadas con distintos colores.

	Se aprecia fácilmente que no hay un patrón de parentesco de las secuencias asociado
	a la geografía240
Fig. 76.	Distribución de los lances de los Proyectos FIP Nº 99-30 (círculos rojos), 2000-0
	(triángulos negros), 2001-06 (cuadrados verdes) y 2002-06 (círculos celestes), con
	respecto a los caladeros de langostino amarillo en la IV Región (círculos amarillos)
Fig. 77.	Distribución de los lances de los Proyectos FIP N° 2000-05 (triángulos azules), 2001
	06 (círculos amarillos) y 2002-06 (círculos verdes), con respecto a los caladeros d
	langostino colorado en la IV Región (círculos rojos)
Fig. 78.	Caladeros de langostino amarillo entre la III y VIII Regiones según antecedente
	recopilados en los últimos ocho años por la Universidad Católica del Norte 25'
Fig. 79.	Disposición espacial de los focos de abundancia de langostino colorado entre la II
	IV Región según Acuña et al. (2003).
Fig. 80.	Posición y forma de los caladeros de langostino colorado de la IV región, definido
	durante el estudio FIP 2003-03 (rojo) y FIP 2003-31 (azul). Los puntos negro
	corresponden a lances negativos del proyecto FIP 2003-31. En amarillo caladeros d
	langostino amarillo de acuerdo a Acuña et al. (2002).
Fig. 81.	Invitación utilizada en el taller de difusión de resultados del proyecto FIP 2004-11
	realizado en el Coquimbo, el 12 de noviembre de 2004

ÍNDICE DE ANEXOS

Anexo 1.	Características técnicas de las embarcaciones y planos de las redes utilizadas 288
Anexo 2.	Sistema NETMIND para medir APA
Anexo 3.	Registros de posición, distancia lineal recorrida, captura de especies objetivo,
	abertura de punta de alas, área barrida y CPUA
Anexo 4.	Biomasa (tons) y Abundancia (miles de ejemplares) de langostino amarillo y
	langostino colorado, por caladero, sexo, dentro y fuera del arpa y región
Anexo 5.	Fechas y lugares geográficos de los muestreos
Anexo 6.	Mapas de distribución espacial de densidad poblacional y superficie de densidad de
	langostino amarillo y langostino colorado

1. OBJETIVOS

1.1. Objetivo General

Estimar mediante evaluación directa, y utilizando el método de área barrida, la biomasa y abundancia de langostino amarillo y langostino colorado en el litoral comprendido entre la II y la VIII Regiones.

1.2. Objetivo Específicos

- 2.1. Determinar la distribución espacial de los recursos langostino amarillo y langostino colorado, en el área de estudio.
- 2.2. Determinar la biomasa vulnerable total (en peso) y la abundancia vulnerable total (en número), según talla y sexo, del langostino amarillo y langostino colorado en el área de estudio, por región y focos de abundancia, según corresponda.
- 2.3 Determinar la condición reproductiva del langostino amarillo y langostino colorado, en el área y período de estudio.
- 2.4 Determinar la composición e importancia relativa de las especies que constituyan fauna acompañante de estos dos recursos durante los cruceros de evaluación.
- 2.5 Analizar la situación actual de los recursos en la zona de estudio, considerando los antecedentes de la pesquería y los resultados del proyecto.
- 2.6 Estimar coeficientes de mortalidad natural (M) y mortalidad por predación (M2) para los stocks de langostino amarillo y colorado, y simular tendencias de su biomasa por cambios en la mortalidad por pesca (F) y por predación (M2).
- 2.7 Analizar la variabilidad y diferenciación genética dentro y entre los morfos de langostino colorado presentes en Chile, y determinar si las distintas formas encontradas corresponden a una única especie polimórfica y/o stocks.

2. INTRODUCCIÓN

Las pesquerías industriales y artesanales de los langostinos colorado (*Pleuroncodes monodon*) y amarillo (*Cervimunida johni*) han sido tradicionalmente una actividad económica de relevancia, tanto en la zona centro-sur como últimamente en la III y IV Región. La pesquería de la zona centro-norte ha cobrado una importancia mayor, en particular los tres últimos años, debido a que la pesquería del sur de ambas especies está sometida a una veda desde principios del año 2001 entre la V y X Región (D.E. N° 421 y 422 de 22.12.2000, desde el 1 de enero al 31 de diciembre de 2001; D.E. N° 900 y 901 de 18.12.2001, desde el 1 de enero al 31 de diciembre de 2002; D.E. N° 1.130 y 1.131 de 26.12.2002, desde el 1 de enero al 31 de diciembre de 2003), la que aún se mantiene vigente para el presente año 2004 (D.E. N° 854 y 855 de 22.12.2003), también desde el 1 de enero al 31 de diciembre.

2.1. Langostino colorado

En la zona norte, la pesquería de langostino colorado, realizada en la Unidad de Pesquería I a IV Región, se inició en 1998 principalmente en la IV Región, centrada en la zona de Coquimbo, aunque ya en 1994 Acuña *et al.* (1995) habían detectado la presencia de la especie cerca de Caldera en la III Región. Las cuotas de captura de esta especie crecieron desde niveles de 500 ton en 1998 y 1999 hasta 4.100 ton en el 2002 (D.E. N° 928 del 31 de diciembre de 2001), siendo ésta dividida por primera vez en fracciones temporales en la II y III Región, además del fraccionamiento entre flota industrial y artesanal, 100 ton para fines de investigación y 35 ton para ser extraída como fauna acompañante de otros recursos pesqueros ese año (Tabla 1).

Posteriormente, las cuotas han sido de 2.530 ton para el 2003 (D.E. Nº 1.108 de 26.12.2002) y 2.700 para el 2004 (D.E. Nº 830 de 22.12.2003). Todos los detalles del fraccionamiento de estas cuotas se resumen en la Tabla 1. Paralelamente, el año 2001, basándose en la estimación de biomasa realizada por Canales *et al.* (2002) y la evolución de los rendimientos de pesca, lo que llevó a considerar que el recurso se encontraba en un nivel de biomasa notablemente disminuido al sur de la III Región, se determinó establecer una veda para proteger los procesos de reproducción, reclutamiento y de crecimiento de la especie en la toda IV Región además de la zona ya señalada entre la V y X región (D.E. Nº 900 del 18 de diciembre de 2001).

Fraccionamiento de las Cuotas globales anuales de captura (ton) de langostino colorado asignadas en el período 1999-2004 y Decreto correspondiente, en la Unidad de Pesquería I a IV Región. Tabla 1.

Custimosotro	1000	0000	2001	11	2002)2	20	2003	2004	4(
Cuanimesuc	1999	7000	Industrial	Artesanal	Industrial	Artesanal	Industrial	Artesanal	Industrial	Artesanal
Total por flota			1.529	955	2.985		1.708	732	1.834	982
Cuota I-IV Región			1.376 (01.02 - 31.10)	2 - 31.10	865		469	8	519	91
01 Ene 31 Mar.			153 (01.11 – 31.12)	-31.12)	258		352	9	161	28
01 Abr 31 Ago.					349		70	1	171	30
01 Sep 31 Dic.					258		47	1	187	33
Cuota III Región					2.120		969	290	663	969
01 Ene 31 Mar.					632		522	442	205	185
01 Abr 31 Ago.					856		104	68	219	197
01 Sep 31 Dic.					632		70	59	239	214
Cuota IV Región					Veda D.E. 900 18.12.2001	0 18.12.2001	808	119	617	84
01 Ene 31 Mar.							381	68	191	26
01 Abr 31 Ago.							9/	18	204	27
01 Sep 31 Dic.							51	12	222	31
Investigación			90		100	0		90	80	(
Fauna acompañante			135		35		35	15	35	15
En Langostino amarillo			10% en peso / viaje	so / viaje	5% en peso / viaje	so / viaje	15	7	15	7
En Camarón nailon			10% en peso / viaje	so / viaje	5% en peso / viaje	so / viaje	19	8	19	8
En Merluza común			1% en peso / viaje	o / viaje	1% en peso / viaje	so / viaje	1	•	1	
Total anual (tons)	500 ton	2.370 ton	2.670 ton	ton	4.100 ton	ton	2.530 ton) ton	2.700 ton	ton
	D C No	D.E. N°	D.E. N° 359 de	359 de						
Decreto	213	Inf. Técnico	de 28.11.2000; D.E. N° de 28.11.2000; D.E. N°	0. D.E. N°	D.E. N° 928 de 31.12.2001	e 31.12.2001	D.E. Nº	D.E. N° 1.108 de	D.E. N° 830 de	830 de
	28.04.1999	SubPesca	436 de 26.12.2001 y D.E.	2001 y D.E.			26.12.2002	7007	22.12.2003	2003
		59/2000	N° 926 de 21.12.2001	1.12.2001						

* entre el 1 de enero y el 30 de junio; ** entre el 1 de julio y el 31 de diciembre.

Debido al fuerte impacto de esta veda y al planteamiento de los industriales langostineros de la IV Región, en el sentido que se requería de antecedentes respecto a la especie durante una época del año en la que habitualmente no se han efectuado cruceros de evaluación, debido a los posibles cambios en disponibilidad del recurso, la Subsecretaría de Pesca autorizó, mediante la Resolución Nº 579 del 19 de marzo de 2002, una Pesca de Investigación a la Universidad Católica de Valparaíso. Esta tuvo como Objetivo General: Determinar, mediante evaluación directa y utilizando el método de área barrida, la biomasa y abundancia del langostino colorado (*Pleuroncodes monodon*) en la IV Región (29°10'S – 32°10'S) (Arana *et al.*, 2002).

Los resultados obtenidos por Arana *et al.* (2002) mostraron que la biomasa vulnerable estimada era de mayor magnitud que las obtenidas previamente por Escuela de Ciencias del Mar (2000) y Canales *et al.* (2002), proponiendo fracciones explotables entre 230 y 670 ton, en la IV Región. Posteriormente, Canales *et al.* (2003), durante la ejecución del Proyecto FIP N° 2002-06, determinan en la IV Región, una vez más, un nivel de biomasa bastante inferior al obtenido por Arana *et al.* (2002), aunque superior al de Canales *et al.* (2002) durante su evaluación realizada el año 2001. Este hecho se vuelve a repetir en la evaluación directa realizada durante el 2003 por IFOP (2003 en Subsecretaría de Pesca, 2003).

En la Tabla 2 se entrega un resumen de las biomasas determinadas durante las últimas cuatro evaluaciones directas realizadas en los Proyectos FIP N° 2000-05 (Escuela de Ciencias del Mar, 2000), FIP N° 2001-06 (Canales *et al.*, 2002), FIP N° 2002-06 (Canales *et al.*, 2003) y FIP N° 2003-31 IFOP (2003 en Subsecretaría de Pesca, 2003), las que se comparan con la evaluación directa realizada en la IV Región por Arana *et al.* (2002). Aunque los datos más contradictorios corresponden a la IV Región, también se observa una situación compleja en las biomasas para la III Región, observándose primero un aumento de más de un 40% entre el 2000 - 2001 y luego una reducción de aproximadamente 10 veces (10,9%) entre la biomasa estimada en el 2001 y el 2002.

En la II Región se observa primero una disminución de un 24% entre 2000 - 2001 y luego un aumento del 40% entre el 2001 y 2002. Por otra parte, la biomasa estimada en el 2002, en todo el litoral de la II a la IV Región, es un 42% inferior a la estimada entre julio y septiembre del 2001 y

Tabla 2. Evolución de las biomasas estimadas en las evaluaciones directas (ton) de langostino colorado, 2000-2003. Fuente: Subsecretaría de Pesca (2002) y Proyectos FIP.

Región	2000*	2001**	2002	2002	2003++	2003+++	2003++++
II	9.286	7.071^{+}		11.800	2.261	5.992	6.248
III	10.150	17.861+		1.952	12.210	5.838	5.242
IV	802	243	4.240***	918	3.190	1.091	1.154
Total	20.238	25.175		14.670	17.661	12.291	12.644

^{*} promedio de cuatro estimadores Proyecto FIP Nº 2000-05 y ** Proyecto FIP Nº 2001-06

también menor a la determinada en el año 2000 (Subsecretaría de Pesca, 2002). Con el objeto dedilucidar estas diferencias, el Consejo de Investigación Pesquera efectuó un Llamado Público (16 de enero de 2003) para la presentación de propuestas para realizar la evaluación directa del recurso langostino colorado de la III y IV Región (Proyecto FIP 2003-03), el que fuera asignado a la Universidad Católica del Norte. Durante este estudio, Acuña et al. (2003) determinaron la existencia de una biomasa cercana a las 17.500 ton en la zona entre Taltal (II Región) y Lengua de Vaca (IV Región), la que resulta ser un 19% mayor que aquella calculada por Canales et al. (2003) y un 38% mayor que la obtenida por IFOP (2003, en Subsecretaría de Pesca, 2003) en su evaluación directa del 2003.

En todo caso en la Tabla (2) se observa que en la III región existe una coincidencia en términos de magnitud entre las evaluaciones del 2000 y 20001 y la de la Acuña et al. (2003), al igual que entre la estimación de Arana et al. (2002) y aquella de Acuña et al. (2003) para la IV Región.

La pesquería de langostino colorado de la zona sur, fue incorporada en 1989 al Régimen de pesquería en estado de Plena Explotación en el art. 1 letra e) transitorio de la Ley General de Pesca y Acuicultura y asimilada en el Art. 4 a Pesquería en Recuperación con Subastas Públicas. En los últimos 5 años, la especie alcanzó cuotas anuales de 12.000 tons en el año 1999 (D.S. N° 505 del 20.11.1998), para luego disminuir a 10.000 tons en el 2000 (D.S. N° 429 del 30.11.1999). Posteriormente, y considerando que de acuerdo a las evaluaciones de stock y la evolución de los rendimientos de pesca en el área marítima al sur de la V Región se determinó que el recurso se encontraba en un nivel de biomasa notablemente disminuido, se estableció una veda biológica

^{***} evaluación efectuada en marzo 2002 (UCV)

⁺ valores intercambiados en la Tabla original del Informe de Subsecretaría.

⁺⁺ promedio de dos estimadores, Proyecto FIP Nº 2003-03 (UCN)

promedio de tres estimadores, Proyecto FIP N° 2003-03 (UCN)

promedio de tres estimadores, Proyecto FIP N° 2003-31 (IFOP)

estimador geoestadístico, Proyecto FIP Nº 2003-31 (IFOP)

para proteger los procesos de reproducción, de reclutamiento y de crecimiento en el área señalada, desde el 1 de enero del año 2001, de acuerdo a los Decretos Exentos ya señalados en el comienzo de esta Introducción.

2.2. Langostino amarillo

La cuota global fijada para el año 2003 volvió a aumentar a 2.250 ton (D.E. N° 1.107 de 26.12.2002), mientras que para el año 2004 se reduce drásticamente a 1.326 ton. Detalles de las cuotas de los últimos seis años y su fraccionamiento se entregan en la Tabla 3. En Chile existen dos Unidades de Pesquería de la especie *Cervimunida johni*: una en la zona norte entre la III y IV Región y una en la zona sur entre la V y VIII Región. En la zona norte, la administración de la pesquería de langostino amarillo, comienza con la declaración de estado de plena explotación del recurso (D. E. N° 377 del 23.06.1995) en la Unidad de Pesquería III y IV Región. Desde 1996, mediante el D.E. N° 324 de 18.12.1996) la especie está sometida a una veda biológica anual entre los días 1 de enero y 30 de marzo, por lo cual no se realizan actividades pesqueras durante ese período en las dos Unidades de Pesquería (III a la VIII Región). Las cuotas de captura de esta especie decrecieron desde niveles de 6.000 ton en el trienio 1997 - 1999 hasta 750 ton en el 2002 (D.E. N° 927 de 31.12.2001). La cuota global fijada para el año 2003 volvió a aumentar a 2.250 ton (D.E. N° 1.107 de 26.12.2002), mientras que para el año 2004 se reduce drásticamente a 1.326 ton (Tabla 3).

En la zona sur, la pesquería de la especie se reabre después de una prolongada veda, siendo declarada pesquería en régimen de Pesquería en Recuperación (D.S. N° 787 del 20.10.1996) y entrando al sistema de Subastas Públicas. La pesquería se desarrolló durante los siguientes tres años, fijándose cuotas anuales de captura de 4.200 ton para 1998 por fuera del área de reserva artesanal (D.E. N° 727 de 1997) y de 900 ton en el ARA (D.E. N° 132 de 28.01.1998); de 3.700 ton para el año 1999 (D.E. N° 506 de 25.11.1998) y de 400 ton para el año 2000 (D.E. N° 428 de 30.11.1999). Posteriormente, y considerando que de acuerdo a las evaluaciones de stock y la evolución de los rendimientos de pesca en el área marítima al sur de la V Región se determinó que el recurso se encontraba en un nivel de biomasa notablemente disminuido, se establece una veda biológica para proteger los procesos de reproducción, de reclutamiento y de crecimiento en el área señalada, de acuerdo a los Decretos Exentos ya señalados en esta Introducción.

Fraccionamiento de las Cuotas globales anuales de captura (ton) de langostino amarillo asignadas en el período 1999-2004 y Decreto correspondiente, en la Unidad de Pesquería III - IV Región. Tabla 3.

onto carinto	1000	0000	2001	01	20	2002	20	2003	2004	7(
Cuaninicsuc	1999	7000	Industrial	Artesanal	Industrial	Artesanal	Industrial	Artesanal	Industrial	Artesanal
Total por flota			1.375	525	424	246	1.467	723	820	441
Cuota I-IV Región					424	246				
01 Abr 31 Ago.	3.600	2.400	819	525	212*	123*				
01 Sep 31 Dic.	2.400	1.600	526	•	212**	123**				
Cuota III Región							431	429	427	275
01 Abr 31 Jun.							216	215	214	137
01 Jul 31 Sep.							129	129	128	83
01 Oct31 Dic.							98	85	85	55
Cuota IV Región							1.006	279	364	150
01 Abr 31 Jun.							503	139	182	75
01 Jul 31 Sep.							302	84	109	45
01 Oct31 Dic.							201	95	73	30
Investigación			90	0	\$	50	9	09	5 9	5
Fauna acompañante			200	0(3	30	20	15	29	16
En Langostino colorado			10% en peso / viaje	sso / viaje	5% en pe	5% en peso / viaje	15	7	14	8
En Camarón nailon			10% en pe	10% en peso / viaje	5% en pe	5% en peso / viaje	15	7	15	7
En Merluza común			1% en peso / viaje	so / viaje	1% en pe	1% en peso / viaje		1		1
Total anual (tons)	000'9	4.000	2.150	50	7.	750	2.2	2.250	1.326	97
	D.S. Nº	D.E. N° 500	D.E. N° 432 de 26.12.2000, modifificado por D.E. N° 106 de 2001,	432 de modifificado	D.E. N	D.E. Nº 927 de	D.E. N°	D.E. Nº 1.107 de	D.E. N° 829 de	829 de
Decreto	550 16.12.1998	250 de 16.12.1998 24.12.1999	N° D.E. N° 247 de 24.05.2001, y D.E. N°	√° 247 de , y D.E. N°	31.12.2001	2001	26.12.2002	.2002	22.12.2003	2003
775 de 9.11.2001	,		775 de 9.11.2001	11.2001	,					

^{*} entre el 1 de septiembre y el 31 de octubre; ** entre el 1 de noviembre y el 31 de diciembre.

Al igual que lo hace todos los años, el Consejo de Investigación Pesquera ha considerado oportuno incluir un estudio para evaluar las biomasas y abundancias de las especies *Pleuroncodes monodon y Cervimunida johni*, con el objeto de contar con información actualizada y oportuna para seguir administrando las pesquerías de estas especies en Chile. La Universidad Católica del Norte - Sede Coquimbo en conjunto con la Universidad de Concepción, responde al Llamado Público con las presentes Propuestas Técnica y Económica, incorporando un nuevo equipo electrónico para determinar la Abertura de Punta de Alas (APA), el que mediante la cooperación internacional en la persona del Dr. Gerard Y. Conan, M.Sc., Ph.D. FAO (United Nations) Aquatic Living Resources Accredited Expert, Profesor Asociado del Muséum National d' Histoire Naturelle, Paris, se utilizó por primera vez en el Proyecto FIP Nº 2003-03 (Acuña *et al.*, 2003). Durante el citado estudio, el Dr. Conan que tiene una amplia experiencia internacional y diversas publicaciones e Informes Técnicos sobre la evaluación de poblaciones de crustáceos en Europa y Canadá. Además el Dr. Conan capacitó al personal del Area de Pesquerías de la UCN en el uso del sistema elctrónico para realizar mediciones en la red de marca NETMIND.

También se debe destacar la capacidad de los patrones de pesca que operan en las naves comerciales, tanto industriales como artesanales. Adicionalmente, los profesionales poseen vasta experiencia en trabajo conjunto con patrones de pesca y tripulaciones que operan en la explotación de los recursos langostino colorado y langostino amarillo, y por lo tanto conocen la distribución del recurso, lo que asegura el logro de los resultados esperados, cumpliéndose cabalmente con los objetivos específicos establecidos en las Bases Especiales.

3. METODOLOGIA

3.1. Generalidades

Esta propuesta contempla la realización de un crucero de evaluación directa por el método de área barrida, que originalmente fue desarrollado por Alverson & Pereyra (1969). En las operaciones de pesca, se utilizaron una nave pesquera de alta mar (PAM) y una lancha a motor (L/M) arrastrera langostinera, pertenecientes a las empresas pesqueras ISLA DAMAS y ELABORADORA ARTIC S.A. de Coquimbo. Cabe destacar que ambas embarcaciones consideradas, han participado en uno o varios de los estudios de evaluación directa de crustáceos realizados anteriormente, por lo tanto, sus redes ya son conocidas y se cuenta con sus planos en formato FAO. Además, los patrones de pesca y las tripulaciones tienen vasta experiencia en la pesca comercial de los recursos langostino amarillo y langostino colorado y en cruceros de evaluación directa, y lo propio ocurre con el personal participante de la Universidad Católica del Norte.

Los mapas para presentar la distribución espacial de la densidad de cada uno de los recursos en el área de estudio se entregan en escala 1:1.000.000, considerando las cartas náuticas electrónicas 1000, 2000 y 3000 del SHOA de la Armada de Chile.

3.2. Estandarización de las naves

La estandarización de las naves se justifica si aquellas no son homogéneas en cuanto a sus características físicas o en su poder de pesca. En este proyecto se operó sólo con dos embarcaciones arrastreras langostineras, por lo que no es posible utilizar estadística multivariada para analizar el poder de pesca en relación a la captura. Sin embargo, el método más directo se encuentra en FAO Doc. Téc. Pesca 306/1 (Sparre y Venema (1995), págs. 303 y 304). Allí se define "la potencia de pesca relativa" de cada nave i, que se denomina "poder de pesca relativo" (ρ_i), como

$$\rho_i = \frac{CPUE_i}{CPUE_s}$$

donde $CPUE_i$ corresponde a la captura por unidad de esfuerzo estándar; i representa a la i-ésima nave y s a la nave estándar.

Se seleccionó la nave estándar, de entre aquellas que participen en el proyecto, después de analizar las CPUE para todos los lances por nave. El criterio de selección de la nave estándar corresponderá a aquella nave que presente el menor coeficiente de variación (CV) de la CPUE. Se comparará las CPUE promedio entre naves con varianzas desiguales (Sokal & Rohlf, 1979) mediante la aplicación del test t-Student para probar la existencia de diferencias significativas. En el caso que tales diferencias ocurran, entonces se procederá a corregir el esfuerzo de pesca nominal (por ejemplo, distancia de barrido) multiplicándolo por el poder de pesca relativo de cada nave.

3.3. Análisis de las redes de arrastre y levantamiento de planos

De acuerdo con las Bases Especiales del Proyecto FIP N° 2004-11, el levantamiento de planos técnicos para la red de arrastre de cada nave se debe efectuar bajo las normas que sugiere el Catálogo FAO de Planos de Aparejos de Pesca (FAO, 1972). Para cumplir con tal exigencia, los planos se dibujaron con el software de diseño de planos qCAD de Linux. Para realizar el dibujo técnico de los planos y analizar en forma estática su diseño, se registró las dimensiones de las estructuras de la red tal como relinga, borlón y lachas, así como la cantidad y tamaño de mallas por cuerpo, las dimensiones de los paños, el material y diámetro de los hilos, y la razón de corte de cada cuerpo, tanto para el panel superior como para el inferior de las redes. El análisis de las redes de cada nave y el levantamiento de los planos fue efectuado por un profesional Ingeniero Pesquero parte del equipo de trabajo, el que trabajó con los planos disponibles de las naves realizados con motivo de otros proyectos de evaluación directa de crustáceos.

3.4. Medición directa de la abertura de punta de alas

La medición directa de la abertura de punta de alas (APA) se efectuó por el equipo de trabajo utilizando el Sistema NETMIND de medición electrónica. Al respecto, el equipo profesional de la Universidad Católica del Norte fue capacitado en el uso y aplicaciones del Sistema NETMIND por el Dr. Gerard Conan (M.Sc., Ph.D., FAO Aquatic Living Resources Accredited Expert y Profesor Asociado del Muséum National d' Histoire Naturelle de Paris), en el marco del Proyecto FIP 2003-03 recientemente ejecutado por la esta Universidad.

Con el sistema NETMIND se registra continuamente la APA mediante sensores sónicos adosados a la red en su parte anterior, lo que permite medir la distancia entre las puntas de alas de la red. El sistema de transmisión sónico para registrar APA es clásico y consiste en que un transmisor (master) envía una señal sónica (onda sonora) desde la punta de ala de babor (o estribor), la que es recepcionada y respondida por otro sensor ubicado en la punta de ala de estribor (o babor) de la red. Seguidamente, la información sónica es transmitida a un hidrófono adecuadamente ubicado por debajo del casco de la nave. La información se registró en un computador al que se conecta serialmente el hidrófono, y que posee un software *ad hoc* que proporciona el proveedor de NETMIND, obteniéndose archivos con registros a intervalos de tiempo fijados por el usuario, en cada lance.

La APA se registró *in situ* con el Sistema NETMIND al menos en 30% de los lances de pesca efectivamente realizados, dependiendo de las condiciones del estado del mar y/o climáticas. Operacionalmente, en cada uno de aquellos lances en que se utilizaron sensores hidrofónicos se registró APA, distancia entre el hidrófono y el sensor master, velocidad de arrastre, profundidad, longitud del cable de cala y otros.

3.5. Descriptores estadísticos de APA e interacción nave-patrón de pesca-arte

Debido a que las mediciones de APA a bordo son continuas, se obtuvieron registros automáticos de APA cada 1 ó 2 segundos por lance, los cuales fueron almacenados también automáticamente en una base de datos electrónico pues el equipo opera conectado en línea con un computador.

Asumiendo que los lances de pesca tienen una duración de 15 minutos, las mediciones de APA por lance permiten determinar los estadígrafos descriptivos de tendencia central de APA (promedio, moda, mediana) y de dispersión (desviación estándar).

Se realizaron pruebas estadísticas para indagar si distribucionalmente la variable APA se asociaba a algún tipo de distribución estadística conocida (normal, log-normal u otra) con la finalidad de determinar y usar correctamente, en sentido estadístico, los estadígrafos señalados para, posteriormente, efectuar comparaciones de la variable APA entre las naves con las que se efectuaron los lances de pesca. En el caso que la variable APA no se asocie a una distribución estadística conocida, entonces se acudirá a técnicas de bootstraping no paramétrico para determinar las medias de tendencia central y de dispersión señaladas anteriormente.

Para analizar las relaciones de aspecto y profundidad para cada nave se efectuaron lances para registrar APA a distintas profundidades de pesca. La información se agrupó en rangos de 50 m de profundidad, dependiendo de la cantidad de lances disponibles con registros de APA y que permitan efectuar análisis estadísticos como ANOVA. En cualquier caso (que la variable APA se asocie a una distribución estadística conocida o no), el propósito es analizar también la relación entre APA y longitud del cable de cala, APA v/s profundidad, y APA v/s cociente longitud cable de cala/profundidad para probar la existencia de efectos de tales variables sobre APA ya que, especialmente esta última razón, es la utilizada operacionalmente por el patrón de cada nave basándose exclusivamente en su experiencia.

Adicionalmente la interacción nave-patrón de pesca-arte se investigó a partir del análisis de datos históricos registrados en los monitoreos de la pesquería de langostinos amarillo y colorado ejecutados por la Universidad Católica del Norte en los años 2000, 2001 y 2003. Al respecto, se ejecutó un análisis de regresión múltiple, considerando como variable dependiente la CPUE por lance de pesca, y dentro de las variables independientes, obligatoriamente se consideró los años de experiencia que tiene el patrón de pesca de la embarcación. Al respecto, aquí se asume que la CPUE por lance de pesca es una función de las características geométricas de la red de arrastre (θ_{red}), variables operacionales (θ_{oper} , longitud del cable de cala (Lc), velocidad de arrastre (V) y los años de experiencia del patrón de pesca (AEPP), esto es:

$$CPUE = f(\theta_{red}, \theta_{oper}, AEPP)$$

donde θ es un conjunto de variables asociadas a la red o a la operación de pesca.

En la pesquería de langostinos amarillo y colorado, así como en otras pesquerías, las embarcaciones normalmente mantienen un mismo patrón de pesca durante toda la temporada de extracción, y eventualmente, se utiliza el mismo diseño de red. Sin embargo, hay ocasiones en que por diversas razones, en una misma embarcación ocurre el reemplazo del patrón de pesca. Teniendo en consideración lo anterior, para las embarcaciones que participarán en los cruceros de evaluación se rescató la información obtenida en los monitoreos de la pesquería en que hayan participado distintos patrones de pesca.

Por lo tanto, para una misma zona de pesca (por ejemplo el foco de abundancia localizado en la IV Región según el FIP N° 2003-03), si en todos los lances se ha utilizado el mismo diseño de red (o la misma red), la variablidad de la CPUE sólo será función de la experiencia del patrón de pesca que ha ejecutado el lance, esto es:

$$CPUE = f(\rho, AEPP)$$

donde ρ es una constante derivada de la geometría de la red.

3.6. Registros de información (datos) del lance y capturas

3.6.1. Datos del lance

A bordo, además de los registros señalados anteriormente, en cada lance se registró adecuadamente (grados, minutos y segundos con 2 decimales) la geoposición con un GPS a distintos tiempos (calado, red sobre el fondo, virado, red a bordo). El momento en que la red está efectivamente sobre el fondo se determinó mediante un sensor de ángulo de NORTHSTAR Technicals ubicado en el piso anteriorde la red. La profundidad (m) del piso marino se registró mediante un ecosonda en los mismos tiempos del lance. La velocidad de arrastre se obtuvo de las

lecturas del mismo GPS a distintos tiempo de operación de la red y se determinó el promedio. La distancia recorrida por la red entre los tiempos de inicio del arrastre sobre el fondo y el virado se determinó tanto con el Teorema de Pitágoras (Sparre y Venema (1995), Doc. Téc. Pesca 306/1, pág. 351) como con el producto entre la distancia de recorrido y el tiempo. Adicionalmente, se analizó posibles discrepancias entre las dos mediciones.

3.6.2. Datos de capturas

3.6.2.1. Captura por lance

La captura (kg) a bordo para la especie objetivo se registra de acuerdo a procedimientos estándar para este tipo de estudios, encajonando toda la captura en bandejas (cajas) apilables, una vez depositada la pesca sobre la cubierta y abierto el copo. Las cajas se llenan de langostinos y en esta oportunidad, permitiéndolo el estado del mar, se pesaron todas a bordo en una **Balanza de Sobrepiso PESAMATIC Modelo FS**, diseñada para aplicaciones Industriales en ambientes hostíles con plataforma e Indicador Digital, con el objeto de tener el peso exacto de la captura. En cada lance, la fauna acompañante se separó de la especie objetivo y se procedió a su muestreo y contabilización (en peso), según se detalla en la descripción metodológica del Obj. Espec. Nº 4 (Composición e importancia relativa de las especies que constituyen la fauna acompañante), se obtuvo el peso total con la balanza ya señalada. Los procedimientos e identificación de especies han sido aplicados a este tipo de estudios por Acuña *et al.* (2002).

3.6.2.2. Captura estandarizada por lance

Para cada lance se debe estandarizar la captura debido a que la distancia recorrida puede variar entre lances tanto por variaciones en la velocidad de arrastre de la red por la nave (por causas como el viento, el estado del mar, la velocidad de la corriente, el piso marino, otros) como a que el tiempo de arrastre efectivo puede no ser siempre de 15 minutos (por causas como cambio repentino en la topografía del piso marino u otras). La captura (kg) estandarizada, por lance, se obtiene simplemente como la captura del recurso objetivo en el lance dividido por la distancia efectivamente arrastrada por la red.

3.6.3. Muestreos de longitud cefalotorácica y biológico-específicos

Los muestreos para determinar la distribución de tamaños (longitud cefalotorácica, LC) de langostinos se realizaron obteniendo, en cada lance con pesca, una muestra completamente aleatoria de ejemplares. La muestra se obtuvo de la captura después que ésta fue depositada sobre la cubierta de la embarcación. Si se asume que la distribución de la variable LC es normal (con media poblacional μ y varianza σ^2), entonces, para muestras grandes ($\alpha = 0.05$) se tiene que el tamaño de muestra (n) por lances es mayor o igual a 400 ejemplares (sin diferenciar por sexo). Para muestreos biológico-específicos (por ejemplo, para registrar sexo, peso y tamaño), el tamaño muestral se presenta en el Obj. Esp. Nº 3 (Condición reproductiva).

3.6.4. Método de muestreo.

Desde el punto de vista estadístico, es importante señalar que las estrategias de muestreo deben determinarse, primariamente, por las características distribucionales de la población en estudio (la que en el caso del langostino colorado y amarillo es altamente agregada), y no por los requerimientos del tipo de análisis a realizar. Al respecto, en este estudio se utiliza un diseño muestral que comprende toda el área de estudio entre las Regiones II y VIII teniendo en cuenta que, de acuerdo con lo establecido en las Bases Especiales del proyecto, debe realizarse una intensificación de los muestreos al interior de cada foco de abundancia.

El enfoque muestral propuesto para esta evaluación directa de la biomasa del langostino amarillo y colorado considera la información existente generada por investigaciones anteriores tanto propias (Acuña *et al.*, 1995; Acuña *et al.*, 2000; Acuña *et al.*, 2001 y Acuña *et al.*, 2002a,b) como de otros grupos de investigación como Escuela de Ciencias del Mar (2000), Canales *et al.* (2002), Canales *et al.* (2003) y Arana *et al.* (2002), las que confirmaron la distribución latitudinalmente discontinua de ambos langostinos y permiten determinar con precisión los límites latitudinales y longitudinales de las zonas de abundancia. Dado el conocimiento relativamente exacto que se posee de la ubicación y dimensiones de los caladeros, el estudio se realiza separadamente para estos y para las zonas intercaladeros (Fig. 1).

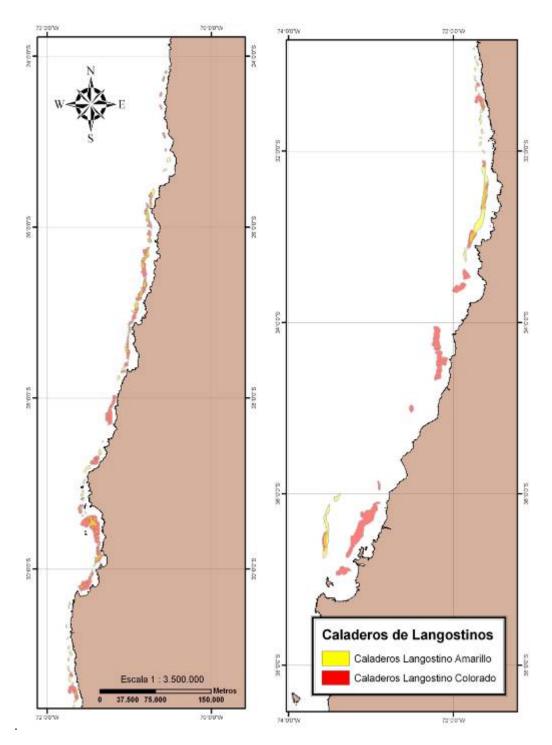


Fig. 1. Caladeros de langostino colorado (rojo) y langostino amarillo (amarillo) entre la II y VIII Regiones (para explicaciones ver texto).

Al interior de los caladeros ya descritos (Fig. 1), y que para los efectos de este estudio se consideran como aquellos que representan mejor las abundancias detectadas de la especie, se realizó un muestreo estratificado por celdas. Esta estrategia permite evaluar integralmente la

abundancia y la densidad de los focos de mayor densidad al interior de los caladeros. La principal ventaja de este esquema de muestreo *es permitir la intensificación del esfuerzo de muestreo en las áreas en que la pesca ha sido históricamente exitosa*. Con ello se consiguen tres objetivos, a saber:

- Primero, precisar los contornos de los caladeros en relación a la distribución longitudinal de los parches del recurso en estudio;
- Segundo, se reduce la varianza del estimador al aumentar el número de observaciones al interior del caladero, particularmente en los focos, y,
- Tercero, se reduce significativamente el porcentaje de lances sin pesca. En este caso, la densidad se presenta en un gradiente creciente desde los contornos hacia el centro del parche, como fuera demostrado en el langostino amarillo de la III y IV Región por Acuña et al. (1995).

Esta estrategia de muestreo permite estimar con relativa facilidad las abundancias promedio \bar{y}_{ST} y sus respectivas varianzas $Var(\bar{y}_{ST})$, mediante las expresiones

$$\bar{y}_{ST} = \sum_{h=1}^{L} W_h \cdot \bar{y}_h \qquad Var(\bar{y}_{ST}) = \left(\sum_{h=1}^{L} W_h^2\right) \cdot Var(\bar{y}_h),$$

cuyo estimador muestral es de la forma:

$$S^{2}(\bar{y}_{ST}) = \sum_{h=1}^{L} W_{h}^{2} \frac{S_{h}^{2}}{n_{h}} \frac{N_{h} - n_{h}}{N_{h}}$$

donde \bar{y}_h es el promedio de cada estrato h, con h = 1, 2, ..., L y W_h corresponde a un coeficiente de ponderación por estrato y que puede estar determinado, por ejemplo, por el tamaño de cada estrato. N_h y n_h corresponden al tamaño del estrato y de la muestra seleccionada desde es estrato h respectivamente.

De esta misma forma pueden obtenerse los estimadores para los totales poblacionales

$$\hat{Y}_{ST} = N \cdot \bar{y}_{ST}$$
 con varianza estimada por $S^2(\hat{Y}_{ST}) = \sum_{h=1}^{L} N_h (N_h - n_h) \frac{S_h^2}{n_h}$

A partir de estas expresiones e posible obtener los límites de confianza para el total poblacional mediante la expresión

$$N \cdot \bar{y}_{ST} \pm t_{1-\alpha/2} \sqrt{\sum_{h=1}^{L} N_h (N_h - n_h) \frac{S_h^2}{n_h}}$$

Los criterios de ponderación de los estratos obedecen en este caso a una asignación de ponderaciones proporcionales al tamaño de cada estrato. El error asociado en la estimación depende de tres factores: (*i*) el tamaño de la muestra, (*ii*) el nivel de confianza (se utiliza el 95%) y (*iii*) la varianza (hasta el momento desconocida). En consecuencia, el error asociado a la estimación de biomasa será determinado a partir del intervalo de confianza una vez conocidas las varianzas muestreales.

En términos generales, el tipo de muestreo propuesto ahora implica mayor eficiencia en el uso del esfuerzo de muestreo, mayor precisión en la determinación de los focos de abundancia y la obtención de estimadores más eficientes (respecto del error cuadrático medio).

3.6.5. Plan de muestreo y número de lances

3.6.5.1. Muestreo en los caladeros

Para este diseño se considera que la red es arrastrada por una distancia fija a lo largo del fondo del océano y que la densidad es estimada como función de la cantidad del recurso capturado y el área cubierta por la red, tomando en consideración la abertura de punta de alas de la misma. Para estos efectos, se supone que todos los ejemplares son capturados al paso de la red. La estrategia

propuesta intenta reducir el esfuerzo en regiones de baja abundancia, dejando más tiempo y recursos para la exploración de regiones de alta densidad.

Al interior de cada caladero, en la plataforma continental y talud de las Regiones III y IV, *el muestreo es probabilístico (estocástico)*. El modelo probabilístico de muestreo *al interior de cada caladero* corresponde a un muestreo estratificado, de modo que dentro de cada uno de los estratos se realizará un muestreo aleatorio simple, seleccionado una muestra de tamaño $n_h = 9$ de acuerdo a las siguientes consideraciones:

Para la definición de los estratos, se consideró la posición conocida de los caladeros, definidas en base a los resultados contenidos en la Figura (1) definiéndose sobre ellos, estratos de 12 mn² de forma poligonal, formadas por 12 subunidades cuadradas de 1 mn de lado, dispuestas de forma que éstas cubran íntegramente los caladeros, tanto en su orientación latitudinal como longitudinal. El Proyecto FIP N° 2003-03, consideró estratos de 4 mn² en los cuales se realizaron cuatro lances, los resultados del proyecto muestran, por otra parte, que en promedio, sólo el 42% de los lances resultan exitosos; es decir, en promedio menos de dos lances por estrato, lo que impide obtener estimadores adecuados para la media y la varianza por estrato, debiendo en muchos casos, tener que agrupar estratos contiguos para obtener estimadores de los parámetros antes citados. Por este motivo, y para mantener el número de lances dentro de los límites posibles de acuerdo a las estimaciones de costo por lance, se decidió incrementar el número de unidades (de 1 mn²) o tamaño de los estratos a 12 mn², realizando en cada uno de ellos 9 lances, de modo que de repetirse la frecuencia de lances exitosos, se debía lograr, en promedio, un número superior a cuatro lances exitosos, lo que permite una más adecuanda estimación de las medias y varianzas de cada estrato.

El número de lances fue determinado considerando el número mínimo necesario para obtener un estimador insesgado de la varianza del estrato (celda), número que coincide además con un equivalente a un lance por cada mn², que corresponde además a la unidad muestral tradicionalmente utilizada para estos propósitos.

En la determinación de los tamaños muestrales influyen no sólo las disponibilidades presupuestarias, sino también los niveles de precisión y confianza deseados. Sin embargo, todo lo anterior está condicionado a los valores de la varianza poblacional, la que debe ser estimada a partir de la información muestral. En efecto, dado un nivel de confianza estándar de un 95%, la fórmula básica para estimar la precisión de la estimación corresponde a

$$E = \frac{Z_{1-\alpha/2} S}{\sqrt{n}}$$

en el caso de la estimación del error para muestras estratificadas, esta se obtiene por la expresión

$$E = Z_{1-\alpha/2} \sqrt{\sum_{h=1}^{L} N_h (N_h - n_h) \frac{S_h^2}{n_h}}$$

De esta última expresión sólo se conoce los tamaños poblacionales y eventualmente los tamaños de los estratos, no se dispone por tanto aún, de información sobre las varianzas de cada uno de los estratos, por lo que resulta difícil obtener un valor aproximado del error global. Sería posible, no obstante, obtener valores estimados de la varianza considerando los antecedentes obtenidos de cruceros anteriores. Sin embargo, dado que este proyecto presenta modificaciones innovativas respecto de evaluaciones anteriores, en particular la definición de estratos de muestreo, resulta imposible obtener estimaciones de las varianzas por estrato. Por lo tanto, en desconocimiento de la varianza poblacional, cualquier estimación del error de estimación asociado al número de lances, sería aventurada e irresponsable.

Cada estrato se analizó independientemente. La selección aleatoria de la posición del lance se determinó mediante la división de la celda en 48 subceldas de igual tamaño (0,5 x 0,5 min por lado), de entre las cuales se seleccionaron aleatoriamente 9 para iniciar en ellas el lance. De acuerdo con este criterio, y dado que los estratos son aproximadamente del mismo tamaño (12 mn²), éste no influirá significativamente en los procesos de estimación de los promedios ni las varianzas por estrato, al ser todos de igual peso W_h.

Es importante señalar por qué internacionalmente existe una preferencia por el uso de celdas en vez de transectas, en particular en las estimaciones geoestadísticas (Gerard Conan, com. pers.):

- Efectivamente el muestreo en transectas se usa en geoestadística y no es el más eficiente. El mejor diseño asociado a una estimación geoestadística, es una grilla regular.
- Para el cálculo del variograma es importante tener pares de puntos ubicados a distancias cortas variadas en todas direcciones, sino falta información para construirlo. Con un sistema de transectas, en la dirección perpendicular a éstas, la distancia entre puntos de un par no puede ser más pequeña que la distancia entre transectas. Ese problema no existe con el sistema de celdas.
- Cuando se dibuja un mapa del recurso, aparecen muchos "artefactos" cuando se usa un diseño con transectas. Los algoritmos frecuentemente no logran encontrar camino de una a otra y dibujan círculos o elipses alrededor de los puntos muestreados a lo largo de las transectas.

Se harán lances de 15 minutos como es la tendencia a nivel mundial (Gerard Conan, com. pers.), dado que :

- En geoestadística tradicional, cada muestra corresponde a una medida puntual en el mapa. Un lance largo funciona como un computador obteniendo promedios al metro cuadrado a lo largo del lance, entonces borra parte de la estructura espacial. Este efecto, se llama "regularización" en geoestadística y resulta en variogramas deformados. Es difícil de corregir los datos, pues en el caso de lances de arrastre, el promedio se obtiene según un recorrido largo y estrecho, con rumbos a veces variables.
- A un lance largo corresponden normalmente capturas importantes. Es muy difícil muestrear dentro de las capturas de un lance. La distribución de las especies y de las tallas dentro del copo no es nada de aleatoria. Es preferible tener capturas pequeñas y contar y/o medir todos los individuos capturados. Muestreando dentro de un copo introduce más

variabilidad, tanto sesgo como falta de precisión, que la dispersión espacial natural en el fondo.

- Antiguamente, los métodos de navegación eran muy poco precisos, se utilizaban métodos de cálculo de biomasa no georeferenciados. Los lances largos permitían borrar un poco de variabilidad. Ahora al contrario la meta es utilizar el conocimiento de la variabilidad espacial para mejorar las estimaciones, lances cortos procuran un mejor conocimiento de esta variabilidad.
- Las características de captura de la red se modifican a medida que se llena el copo. El agua no entra ni filtra bien en la red cuando está llena, las especies en parte se escapan en vez de ser retenidas por las mallas. Resultan capturas que no son proporcionales al largo del lance. Los lances cortos limitan la importancia de este efecto.
- Eso si que la distancia recorrida por un lance corto tiene que ser medida con alta precisión. Es preciso determinar exactamente cuando la red llega al fondo y cuando se levanta del fondo, lo que se obtuvo mediante el uso de un sensor de ángulo de NORTHSTAR Technicals ubicado en el piso anteriorde la red.

3.6.5.2. Muestreo en zonas intercaladeros

Para evaluar las zonas intercaladeros, se realizaron lances en sentido longitudinal, en aquellos casos en que los caladeros estaban separados por 5 o más min de latitud. La finalidad de este muestreo es exploratoria, para determinar posibles desplazamientos de los caladeros en sentido latitudinal. Cada estrato se defininió por cuadrículas de 1 mn², suponiendo que dentro de cada cuadrícula la densidad del recurso es homogénea. Se realizó un lance al interior una de cada dos cuadrículas en la transecta.

La estimación de la densidad media del recurso en estudio, y su varianza respectiva, así como de los respectivos intervalos de confianza se obtienen de los estimadores clásicos de Cochran (1977), y con el estimador de la Distribución Delta (Pennington, 1983; Pennington, 1986), entre

otros métodos clásicos, sin descartar otros aplicables a la información de captura por unidad de esfuerzo (CPUE) o captura por unidad de área (CPUA).

3.6.6. Determinación de la densidad en cada lance

La densidad de langostino amarillo o colorado en cada lance de pesca se define como

$$z(x,y) = \frac{C(x,y)}{a \cdot A \cdot (x,y)}$$

donde C(x,y) es la captura en peso en la estación de muestreo (x,y); x es la latitud, y es la longitud; $0 < a \le 1$ es el coeficiente de capturabilidad local, definido como la fracción del stock que se encuentra dentro del área de barrido que es efectivamente capturada; A(x,y) es el área barrida por el aparejo en la estación de muestreo (x,y). Nótese que a no tiene unidades, mientras que C tiene unidades de captura (por ejemplo, en kg), y A tiene unidades de área (por ejemplo, km²), lo cual resulta en que z tiene unidades de captura por unidad de área, o CPUA (por ejemplo, kg/km²).

Es importante no confundir el coeficiente de capturabilidad local a con el coeficiente de capturabilidad global, q. Este último define una relación entre la biomasa global y la CPUE, y corresponde a la fracción del stock global que es removido por una unidad de esfuerzo. Mientras que a no tiene unidades, q tiene unidades de esfuerzo⁻¹, y además mientras que a debe ser cercano a 1 (es decir la red remueve casi todos los ejemplares del recurso objetivo que encuentra a su paso), q es un número muy pequeño, usualmente de orden 10^{-5} , pues una unidad de esfuerzo remueve una fracción muy baja de todo el stock.

A continuación se analiza cada uno de los términos de la definición de densidad, en el sentido de cómo son calculados o estimados y cómo se calculan las varianzas de estimación si hay error asociado. Es muy difícil estimar un valor del coeficiente de capturabilidad local (*a*), y la varianza de este estimador con los datos de pesca por área barrida. De hecho, la única manera directa sería

conocer la abundancia de langostinos en una franja de fondo marino que será barrida por la red antes de que pase la red, y luego conocer la captura una vez que ha pasado la red. Si se contara con varios de esos recuentos antes que pase la red y después que lo haga, entonces se podría estimar *a* como el promedio de la razón entre la captura y la abundancia antes que pase la red. Luego, la varianza del estimador se podría calcular mediante las repeticiones de la observación.

Obviamente, este método directo no es factible de ser implementado pues requeriría de equipamiento de video submarino que no está disponible para los fines de este proyecto. Una opción indirecta sería conocer las velocidades de natación de los langostinos amarillo y colorado, y comparar esa velocidad con la velocidad del arrastre, calculando la probabilidad de escape, Pr(Escape), y utilizando $\bar{a} = 1 - Pr(Escape)$ como un estimador de a. Sin embargo, no se conoce la velocidad de natación de los individuos de langostinos amarillo y colorado ni mucho menos la relación funcional entre esta velocidad, la velocidad del arrastre y la Pr(Escape).

Una segunda opción indirecta es mediante los datos de distribución de los ejemplares de langostinos amarillo o colorado en la red cuando ella está dispuesta sobre la cubierta de trabajo de la nave. Así, se supone que los langostinos amarillo o colorado de tallas vulnerables, y que están dentro de la ruta de barrido de la red, pueden escapar de la red por arriba de la boca de la misma o por los costados. Luego, la probabilidad que un ejemplar de langostino amarillo o colorado escape, dado que fue capturado, aumenta a medida que éste es observado más lejos del copo y más cerca de la boca de la red, una vez que la red está desplegada sobre la popa sin haber descargado la pesca. Entonces, la probabilidad que un ejemplar de langostino amarillo o colorado hubiese escapado no es la misma que la Pr(Escape), pero se aproxima a ella. Entonces, una forma indirecta de estimar la Pr(Escape) es evaluar la cantidad en peso de los ejemplares de langostinos amarillo o colorado que se encuentren en la red pero lejos del copo en relación a la cantidad en peso de ejemplares de éstos en el copo, cuando, en lugar de descargar la pesca sobre la cubierta de trabajo, la red con captura se tiende sobre ella cuidando de no alterar la distribución de los langostinos amarillo o colorado a lo largo de la red.

Esta medición se puede realizar en una muestra de lances donde deliberadamente se manipula con extremo cuidado la bolsa (copo) para no alterar la distribución de los langostinos amarillo o

colorado a lo largo de la red. Entonces, el promedio de la Pr(Escape) a través de la muestra de n lances puede servir como un estimador aproximado del coeficiente de capturabilidad local (a), y la varianza muestral a través la muestra de los n lances puede servir como un estimador de la varianza del estimador de a.

El problema de definir desde que punto de la red se considera que un ejemplar de langostino amarillo o colorado tuvo una probabilidad de escape, se puede abordar considerando que los individuos en el copo no tuvieron ninguna probabilidad de escape. Luego, todos los ejemplares que están fuera del copo tuvieron una probabilidad de escape y, por lo tanto, serán contados. Esta es una manera cruda de aproximarse al problema pero es la única solución realista dada la imposibilidad de estimar *a* directamente, más el desconocimiento acerca de las velocidades de natación de los langostinos amarillo y colorado.

Sea entonces,

$$\hat{a}_{i}(x,y) \cong 1 - \frac{C'_{i}(x,y)}{C'_{i}(x,y) + C''_{i}(x,y)}$$

la diferencia entre 1 y la razón entre la captura de langostino amarillo o colorado entre la boca de la red y el copo de la red (C'), y la captura de éstos en el copo de la red (C''). Luego,

$$\bar{a} = \frac{1}{n_a} \sum_{i=1}^{n_a} \hat{a}_i(x, y) \qquad \hat{\sigma}_a^2 = \frac{1}{n_a - 1} \sum_{i=1}^{n_a} (\hat{a}_i(x, y) - \bar{a})^2$$

son estimaciones del coeficiente de capturabilidad local y su varianza de estimación, respectivamente, donde n_a es el número de lances en que deliberadamente se trata a la pesca con extremo cuidado para no alterar la distribución de los langostinos amarillo o colorado a lo largo de la red.

Se intentará recolectar ejemplares de la red (fuera del copo) y en el copo al menos en 20 de estos lances. Probablemente, \bar{a} será un número cercano aunque distinto a 1, pero eso da cuenta del hecho que, probablemente, los langostinos amarillo o colorado tienen una capacidad natatoria

limitada y no tienen mucho éxito intentando escapar de la red. En el siguiente capítulo se abordará el problema de incorporar la varianza en la estimación de a en la estimación de biomasa (B). La captura en peso en cada estación de muestreo, C(x,y), es igual al producto entre el número de cajas estándar de 15 kg de capacidad, que se usa para recolectar la pesca, y el peso medio de cada caja llena del recurso langostino amarillo o colorado. Se supone que la captura, de esta manera, se mide sin error debido a la baja variación del pesaje de cada caja y al prácticamente nulo error en el recuento de las cajas.

El tercer término en la definición de la densidad del recurso es el área barrida en cada lance, que se calcula como el producto entre la distancia recorrida por la red y la abertura de punta de alas (APA). La distancia recorrida se calcula mediante las lecturas del GPS a lo largo del recorrido de la red durante cada arrastre. Si la nave describe una trayectoria lineal, entonces basta con medir la distancia con la primera y la última lectura y utilizando el Teorema de Pitágoras. Si, en cambio, la nave describe una trayectoria no lineal, se utilizará varias lecturas del GPS y varias aplicaciones parciales del Teorema de Pitágoras para aproximarse a la distancia recorrida. Se supone que no hay error en esta medición de distancia. La APA, en cambio, suele variar durante el arrastre dependiendo de las condiciones del fondo, de la velocidad y rumbo de las corrientes, de la velocidad y rumbo de la embarcación y de la cantidad de pesca. Entonces, se determinará esta variación mediante lecturas secuenciales del APA con el equipamiento electrónico NETMIND, implementado en los barcos que participarán en el crucero. Luego, se tiene $n_{APA(x,y)}$ lecturas electrónicas de APA en el lance l en la posición $(x,y)_l$, entonces la APA a utilizar en la determinación de la densidad local, es decir para cada lance, será

$$\overline{APA}(x,y)_l = \frac{1}{n_{APA(x,y)_l}} \sum_{i=1}^{n_{APA(x,y)}} APA_i(x,y)_l$$

luego, la varianza de la APA por lance de pesca (l) en que ésta se registró electrónicamente será:

$$\hat{\sigma}_{l}^{2}(APA) = \frac{1}{n_{APA(x,y)_{l}} - 1} \sum_{i=1}^{n_{APA(x,y)}} \left(APA_{i}(x,y)_{l} - \overline{APA}(x,y)_{l} \right)^{2}$$

donde $n_{APA(x,y)}$ es el número de observaciones de la APA registrados durante la ejecución del lance de pesca, $APA_i(x,y)_l$ es el valor de la APA en la posición (x,y) registrada durante la ejecución del lance l.

El valor de la APA promedio (\overline{APA}) y su varianza $\hat{\sigma}_{APA}^2$ para el estudio se deriva de la teoría estadística tradicional y se calculan como:

$$\overline{APA} = \frac{1}{n_l} \sum_{l=1}^{n} \overline{APA}(x, y)_l \qquad \qquad y \qquad \hat{\sigma}_{APA}^2 = \frac{1}{n_l - 1} \sum_{l=1}^{n} \left(\overline{APA}(x, y)_l - \overline{APA} \right)^2$$

donde n_l es el número de lances de pesca en que se registró electrónicamente la APA

Nótese que el coeficiente de capturabilidad local *a* no varía dentro de cada lance sino sólo entre lances, mientras que APA varía dentro de cada lance y entre lances. Por lo tanto, dentro de cada lance la única fuente de error es la variabilidad de la APA. Luego, es natural suponer que la densidad local corresponde a

$$z(x, y) = E[\hat{z}(x, y) + \varepsilon_z(x, y)],$$
 $\varepsilon_z(x, y) \sim N(0, \sigma_z^2)$

donde $\hat{z}(x,y)$ es la densidad observada y ε_z es la variación aleatoria debida a la variabilidad de APA.

Puesto que hay muchas lecturas de APA dentro de cada lance, y esta variable varía continuamente durante la trayectoria del lance, es natural también suponer que la variación aleatoria dentro de cada lance debida a la APA tiene distribución normal. Localmente también se determina la densidad en número de la siguiente forma:

$$\hat{z}_{N}(x,y) = \frac{\hat{z}(x,y)}{\hat{w}(x,y)} + \varepsilon_{z}(x,y), \qquad \varepsilon_{z}(x,y) \sim N\left(0, \frac{\sigma_{z}^{2}}{\overline{w}^{2}}\right)$$

donde $\hat{w}(x, y)$ es el peso medio de los individuos en una muestra biológica grande de la captura de cada lance, de tal manera que se puede ignorar el error de esta medición, y \overline{w} es el peso medio de los individuos a través de toda la población.

Para cada lance se calcula también la densidad en peso y número de machos y hembras. Sea p_w la proporción sexual en peso y p_N la proporción sexual en número de cualquiera de ambos sexos, entonces

$$\hat{z}_{p_w}(x,y) = \hat{z}(x,y)p_w + \varepsilon_{z_{pw}}(x,y), \qquad \varepsilon_{z_{pw}}(x,y) \sim N(0,\sigma_{z_{pw}}^2)$$

$$\hat{z}_{p_N}(x,y) = \hat{z}(x,y)p_N + \varepsilon_{z_{p_N}}(x,y), \qquad \varepsilon_{z_{p_N}}(x,y) \sim N\left(0, \frac{\sigma_{z_{p_N}}^2}{\overline{W}_p^2}\right)$$

donde se supone que las proporciones no estarán tan lejos de 0,5 de tal manera que la aproximación normal a la distribución binomial es apropiada.

3.6.7. Aplicaciones SIG para el manejo y tratamiento de la información

3.6.7.1. Presentación

En el mundo actual, la buena gestión de los recursos es cada vez más función de la calidad de la información que se dispone y genera, y de la capacidad para su manejo. Así, la capacidad de manejo de información junto a conceptos claros de gestión permiten identificar bien fortalezas y debilidades para realizar un diseño superior de programas de acción, y una planificación eficiente para alcanzar objetivos de desarrollo de largo plazo (FAO, 1996).

Los Sistemas de Información Geográfica permiten visualizar un fondo cartográfico constituido por capas de información, las que se despliegan una sobre otra a voluntad. Así, se pueden exhibir -separada o conjuntamente- líneas de costa, veriles de profundidad, hitos submarinos relevantes (montañas o abismos sumarinos, volcanes sumergidos, etc), y lo que resulta relevante para este

proyecto, la distribución espacial de los lances de pesca, límites de la distribución del recurso objetivo y focos de abundancia. Además, para cada elemento identificado en la representación digital, se puede asociar en la pantalla una tabla con todas las propiedades que se hayan ingresado al sistema, que correspondan a ese elemento.

3.6.7.2. Datum de referencia espacial

La precisión de la ubicación de los lances se mejoró con la configuración de todos los GPS a través del uso de un mismo Datum de referencia espacial. Se optó por el Datum WGS 84 (World Geodetic System 1984) por ser un estándar internacional, además de estar presente en todos los GPS. Las coordenadas se expresan en formato geográfico sexagesimal (grados, minutos y segundos) por el hecho que los patrones de pesca están acostumbrados a este formato.

3.6.7.3. Ingreso de la información a un formato digital de base de datos

Las bitácoras son ingresadas a una base de datos en Excel - Access, donde las coordenadas son convertidas a grados decimales. La ubicación puntual del lance es estimada promediando las coordenadas iniciales (cuando la red toca fondo) y las coordenadas finales (inicio del virado). Luego, las coordenadas se proyectan utilizando el estándar nacional UTM (Universal Transversal de Mercator), Zona 19 con el Datum Provisorio Sudamericano de 1956 a través de la herramienta ArcToolBox de ArcGIS. Esto permite estimar correctamente las áreas y distancias de los caladeros y lances.

3.6.7.4. Ingreso de la información a un SIG (Sistema de Información Geográficos)

La información de los lances de pesca efectuados se ingresó al programa ArcGIS de la empresa ESRI para visualizar la distribución de los lances. Al igual que en el proyecto FIP N° 2003-03 (Acuña *et al.*, 2003), la herramienta SIG asistió en la optimización de los días de embarque, trazando aquellas rutas que permitan realizar la mayor cantidad de lances en el menor tiempo. Esta optimización de navegación consideró la ubicación de los lances propuestos, distancias entre ellos, ubicación de los puertos de desembarque y autonomía de la embarcación.

La información de cada lance (geoposición y capturas especie-específica) se agregó a través de la base de datos relacional del software. De esta forma se puede consultar toda la información para cada uno de los lances. Durante el período de embarques se realizó el seguimiento diario de la ejecución de los lances realizados para visualizar el avance del proyecto.

3.6.7.5. Cartografía base del SIG

Como cartografía base se utiliza las Cartas Náuticas electrónicas (CNE) 1000, 2000 y 3000 del Servicio Hidrográfico y Oceanográfico de la Armada de Chile (SHOA). También se dispone del modelo digital de elevación (DEM) creado en la Universidad Católica del Norte, a partir de una base de puntos georreferenciados con valores batimétricos; el cual ya ha sido utilizado exitosamente en el proyecto FIP N° 2003-03 (Acuña *et al.*, 2003).

3.6.7.6. Análisis de la Información

Debido a que todos los procesos ecológicos ocurren en un contexto espacial, Hobbs (1997) recomienda una búsqueda permanente de patrones espaciales. Una vez evaluado el patrón espacial es necesario identificar los procesos espaciales explícitos de manera que modelos predictivos permitan asistir en la administración del recurso (Burrough y McDonnell, 1998). Para esto, una vez que se obtuvo los parámetros geoestadísticos a través de la metodología descrita en 3.7, se ingresó al programa ArcGIS por medio de la extensión Geostatistical Analyst. Esto permite incorporar al SIG las interpolaciones geoestadísticas del estudio, el DEM de la zona de estudio y los lances efectuados con su base de datos asociada. Aprovechando las capacidades gráficas de la herramienta SIG se logra tener una visión integral de la situación del recurso.

Para comprobar si existe alguna relación entre la ubicación del lance respecto al centro del caladero se generó una cobertura de puntos de los centros geométricos de cada uno de los caladeros. Se llevó a cabo un análisis para ver si existe alguna relación entre la ubicación del lance, distancia al centro geométrico del caladero al cual pertenece, la captura de la especie objetivo, la captura de fauna acompañante, APA y profundidad. Para el análisis estadístico se llevó a cabo un análisis de regresión múltiple "stepwise", a través del cual se determinaron los aportes de cada variable al modelo explicativo.

3.7. Objetivo Específico 1

Determinar la distribución espacial de los recursos langostino amarillo y langostino colorado, en el area de estudio.

Se entiende la distribución espacial de los recursos langostino amarillo o colorado en un sentido amplio. Por esto se estudiaron 5 variables medidas en cada estación de muestreo, a saber:

- la densidad total en peso,
- la densidad de machos en peso,
- la densidad de hembras en peso,
- la talla media de machos, y
- la talla media de hembras.

El objetivo de mapear las últimas variables es apuntar al conocimiento de la distribución de las cohortes en el espacio. La técnica de análisis más apropiada para este efecto es la geoestadística, que ha venido usándose en Chile para estudiar la distribución espacial de crustáceos desde 1996 y ya constituye una herramienta estándar de estudio. Una propiedad importante de este método de análisis es que supone que la variable medida localmente (densidad o talla media en nuestro caso) es la realización de una variable aleatoria y, por lo tanto, se puede dar cuenta rigurosamente del error en la determinación de la variable localmente.

Para esto se define que el parámetro *nugget* del modelo de variograma está compuesto de la suma de dos efectos independientes: el error de observación debido a la variabilidad del APA y la micro-varianza debida a covarianzas espaciales a distancias menores que la menor distancia entre las muestras. Por esto es que el término de error en la ecuación de la densidad local total, que es debido a la APA, se toma en cuenta en el análisis de la distribución espacial mediante geoestadística. En particular, SURFER 8 contiene las especificaciones correctas para incluir esta fuente de varianza en la modelación de la distribución espacial. El análisis geoestadístico, cuando se aplica con todas las especificaciones correctas y cuando se cuenta con una estimación independiente del error de observación debido a la variabilidad de la APA dentro de cada lance, cumple con el requerimiento de las Bases Especiales de incluir el efecto de la variabilidad de la

APA. Esto será así tanto en el análisis de la distribución espacial (Obj. Específico 1) como en la estimación de biomasa (Obj. Específico 2).

Se supuso que existe estacionaridad de segundo orden, es decir, que la media del proceso aleatorio bajo estudio es constante en el área de prospección y la covarianza entre dos puntos de muestreo depende sólo de sus distancias relativas (Isaaks y Srivastava, 1989). Este no es un requerimiento muy fuerte pues en la etapa de interpolación por kriging sólo se necesita la ausencia de una tendencia en la vecindad de los puntos observados. La variante teórica a utilizar es la geoestadística intrínseca, que se basa en un modelo de covarianza espacial. En este caso en particular, ese modelo corresponde al variograma, definido (Journel y Huijbregts 1978) como la esperanza de la variable aleatoria $(Z(x)+Z(x+h))^2$, ó

$$2\gamma(x,h) = E[(Z(x)-Z(x+h))^2]$$

donde hemos omitido el índice de longitud (y) sólo para evitar notación excesiva.

Bajo la hipótesis intrínseca es posible estimar el variograma $2\gamma(h)$ a partir de los datos mediante el variograma experimental $2\gamma^*(h)$, que es la media aritmética de las diferencias al cuadrado entre dos mediciones experimentales, $Z(x_i) - Z(x_i + h)$, realizadas en dos puntos cualesquiera separados por el vector h, o sea:

$$\gamma^* = \frac{1}{2N(h)} \sum_{i=1}^{N(h)} (z(x_i) - z(x_i + h))^2$$

donde N(h) es el número de pares de datos experimentales separados por el vector h.

Cuando existe efecto proporcional en los datos, es decir, cuando los cambios espaciales en la media local tienen asociado un cambio proporcional en su variabilidad, es conveniente utilizar variogramas experimentales relativos o estandarizados (Isaaks y Srivastava, 1989) de la forma

$$\gamma_{s} = \frac{\gamma^{*}(h)}{\sigma_{-h}\sigma_{+h}}$$

$$\sigma_{-h}^{2} = \frac{1}{N(h)} \sum_{i=1}^{N(h)} z^{2}(x_{i}) - m_{-h}^{2} \qquad m_{-h} = \frac{1}{N(h)} \sum_{i=1}^{N(h)} z(x_{i})$$

$$\sigma_{+h}^{2} = \frac{1}{N(h)} \sum_{i=1}^{N(h)} z^{2}(x_{i} + h) - m_{+h}^{2} \qquad m_{+h} = \frac{1}{N(h)} \sum_{i=1}^{N(h)} z(x_{i} + h)$$

donde la semivarianza en cada intervalo de distancia está ponderada por su variabilidad local.

En este estudio se usan variogramas estandarizados en todos los análisis pues esta opción no afecta la estimación del parámetro relevante del modelo y la hace mucho más eficiente. Se realizará este cálculo en dos direcciones (N-S y E-O) para investigar así la existencia de diferencias direccionales en la estructura del proceso (*i.e.* anisotropía). Una vez calculados los variogramas experimentales se ajustan los modelos que permiten relacionar la estructura observada con el supuesto proceso generador. Los dos modelos a considerar para las densidades serán el esférico y el exponencial, que están dados (Cressie, 1993),

$$\gamma(h;\theta) = \begin{cases} 0, & h = 0 \\ c_0 + c \left(\frac{3}{2} \left(\frac{\|h\|}{\beta}\right)\right) - \frac{1}{2} \left(\frac{\|h\|}{\beta}\right)^3, & 0 < \|h\| \le \beta \\ c_0 + c, & \|h\| \ge \beta \end{cases}$$

para el modelo esférico, y

$$\gamma(h;\theta) = \begin{cases} 0, & h = 0 \\ c_0 + c \left(1 - \exp\left(-\frac{\|h\|}{\beta}\right)\right), & h \neq 0 \end{cases}$$

para el modelo exponencial, donde c_0 es el efecto *nugget*, que caracteriza la variabilidad de microescala, c es el valor asintótico o *sill* del variograma menos el *nugget*, y β es el rango del variograma, más allá del cual los datos ya no presentan correlación.

Adicionalmente, para las tallas medias de cada lance por sexo, se estudia el modelo Gaussiano, cuya forma es

$$\gamma(h;\theta) = \begin{cases} 0, & h = 0\\ c_0 + c \left[1 - \exp\left(-\frac{3\|h\|^2}{a^2}\right)\right], & h \neq 0 \end{cases}$$

pues ese resultó ser apropiado en un análisis de las tallas medias de langostino colorado (Roa y Tapia, 2000).

Los modelos se ajustaron a los datos del variograma experimental mediante el método de mínimos cuadrados descrito por Cressie (1993), minimizando la sumatoria, esto es,

$$\sum_{i=1}^{H} N(h_i) \left(\frac{\hat{\gamma}(h_i)}{\gamma(h_i)} - 1 \right)^2$$

donde H es el número de intervalos en que se dividirá la distancia entre puntos de muestreo.

Cada residuo al cuadrado se pondera según $N(h_i)$, que es el número de pares utilizado para calcular $\hat{\gamma}(h_i)$, y según el inverso de $\gamma(h_i)^2$. Este procedimiento tiene la ventaja de disminuir la ponderación de pares menos representados en la muestra y aumentar la de puntos cercanos al origen del variograma, que es donde posteriormente se hace la interpolación por kriging.

Previo a la estimación de la distribución espacial del recurso se realiza una validación cruzada de los parámetros del variograma teórico ajustado y de los parámetros a utilizar en la interpolación por *kriging* (*i.e.* parámetros del variograma teórico, radio de búsqueda, número máximo de pares a utilizar en la interpolación). El método de validación cruzada (Deutsch y Journel 1998) consiste

en eliminar uno a uno los puntos en que se realizó el muestreo y utilizar el resto de los datos para estimar el valor de la variable en ese punto, utilizando el modelo de variograma y parámetros de *kriging* seleccionados. De esta forma, se define el error de predicción en cada localidad muestreada como la diferencia entre el valor medido y el estimado a partir del resto de los datos (Isaaks y Srivastava 1989). El objetivo final de este procedimiento no paramétrico es obtener un criterio de decisión para seleccionar una combinación dada de parámetros del variograma teórico y del *kriging*.

Se utiliza el promedio de los errores de estimación (*i.e.* sesgo) como criterio primario, dado que el objetivo central del análisis es obtener una estimación insesgada de la densidad media (Z^*) en la zona de prospección (Isaaks y Srivastava 1989). Además, como criterio secundario, y con el objetivo de incorporar una medida conjunta del sesgo y de la dispersión de las estimaciones con respecto a los valores verdaderos, se calculará el cuadrado medio del error según

$$CME = \left(\frac{1}{N} \sum_{j=1}^{N} \left[z^{*(k)}(x_{j}, y_{j}) - z(x_{j}, y_{j})\right]\right)^{2} + \frac{1}{N-1} \sum_{j=1}^{N} \left[z^{*(k)}(x_{j}, y_{j}) - z(x_{j}, y_{j})\right]^{2}$$

$$CME = sesgo^{2} + DE_{E}^{2}$$

donde DE_E es la desviación estándar de los errores de estimación.

Se utiliza el *kriging puntual ordinario* como método de interpolación para obtener una estimación de la densidad media de langostino amarillo y colorado sobre cada estrato y sobre cada foco de abundancia. Se considera la distancia media entre las estaciones de muestreo como la distancia internodal de la grilla de interpolación. Los parámetros del variograma teórico y del *kriging* seleccionados después de la validación cruzada, ser utilizaron para calcular las ponderaciones óptimas a ser asignadas a cada punto de muestreo y para estimar la densidad $Z(x_0, y_0)$ en las localidades (x_0, y_0) , utilizando

$$z^*(x_0, y_0) = \sum_{i=1}^n \omega_i z(x_i, y_i)$$

donde ω_i representa las ponderaciones asignadas a cada localidad muestreada.

La suma de estas ponderaciones es igual a 1 (*i.e.* constituyen una combinación lineal convexa), y por lo tanto la estimación es insesgada $(E[z^*(x_0)-z(x_0)]=0)$. Cada ponderación es estimada de tal forma que el error de estimación $(\sigma_k^{*2}(x_0))$, llamado *varianza de kriging*, sea minimizada.

Como se indicó previamente, los métodos recién descritos se aplicaron a las 5 variables por separado para producir mapas de distribución espacial de la densidad en peso de hembras y machos, la densidad total, y la talla media por lance para cada sexo. El mapeo geoestadístico se implementará en la última versión del programa SURFER, el SURFER 8, que trae una suite completa de análisis geoestadístico hasta el mapeo, incluyendo validación cruzada.

3.8. Objetivo Específico 2

Determinar la biomasa vulnerable total (en peso) y la abundancia vulnerable total (en número), según talla y sexo, del langostino amarillo y langostino colorado en el área de estudio, por región y focos de abundancia, según corresponda.

3.8.1. Método geoestadístico intrínseco

Los métodos presentados para el objetivo específico 1, de distribución espacial de la densidad en peso total, de machos y de hembras, se utilizaron en esta parte para estimar biomasa mediante la integración a través de la grilla generada por kriging dentro de un polígono que define el área del stock en cada estrato y foco de abundancia. Dentro de cada uno de estos polígonos, la densidad media (z^*) se obtiene promediando las estimaciones locales calculadas en cada uno de los m nodos de la grilla que cubre cada área de estudio. La biomasa total (B) y de cada sexo por estrato y foco de abundancia, y para el área de exclusión artesanal y el resto del área, todos estos cálculos por separado, se estiman a través del producto entre la densidad media obtenida por kriging (z_{kg}^*) , el área total cubierta por el stock, S, y el recíproco del coeficiente de capturabilidad local promedio, cuya expresión es

$$\hat{B} = \frac{1}{\overline{a}} \hat{S} \cdot z_{kg}^*$$

Se ha evitado aquí introducir una enorme cantidad de subíndices para indicar las distintas particiones de la biomasa solicitadas en las Bases, pero se debe entender que éstos se aplican a todas esas particiones. El área S no puede ser estimada estadísticamente utilizando la teoría intrínseca de la geoestadística pues esta teoría no permite 'efecto de borde', es decir, interacción entre la densidad y el hábitat (Petitgas y Lafont 1997). Sin embargo, es posible estimar S y su varianza de estimación transformando los datos de z(x,y) con la función indicadora para utilizar luego la teoría geoestadística transitiva (Petitgas y Lafont 1997). Este tema se trata más adelante en este capítulo (Sección 3.8.6). El efecto de todas las fuentes de variación en de los estimadores de densidad media se trata en la Sección 3.8.7 de este capítulo. Considerando por ahora sólo la varianza del estimador de la media zonal, cuya forma es:

$$z_{kg}^* = \frac{1}{m} \sum_{j=1}^{m} z^*(x_j, y_j) \approx \frac{1}{S} \int_{S} z(x, y) dx dy$$

La varianza debida sólo al hecho de observar una realización del proceso estocástico que se supone da origen a los datos se calcula utilizando la teoría intrínseca de la geoestadística (Petitgas y Lafont 1997). La varianza de estimación de z_{kg}^* corresponde al varianza del error, de la forma

$$\sigma_{kg}^2 = E\left[\left(z - z_{kg}^*\right)^2\right] = 2\bar{\gamma}_{\{z(\cdot)\}S} - \bar{\gamma}_{SS} - \bar{\gamma}_{\{z(\cdot)\}}$$

donde el operador esperanza se desarrolla en términos del variograma en lugar de la covarianza como se hace usualmente.

El primer término al lado derecho de la ecuación es el variograma promedio para todas las distancias entre cada uno de los puntos observados (elementos del conjunto $\{z(\cdot)\}$) y todos los puntos del área S. El segundo término es el variograma promedio para todas las distancias entre los puntos en el área S (observados o no). El tercer término es el variograma promedio para todas las distancias entre todos los puntos observados (todos los elementos del conjunto $\{z(\cdot)\}$).

Este método de estimación de la varianza de la densidad media por geoestadística intrínseca sólo depende de los datos indirectamente, a través de la estimación del modelo de variograma del Objetivo 1. Entonces, el modelo de variograma para cada sexo, estrato, foco de abundancia y área de exclusión artesanal y el resto del área, será importando desde SURFER 8 y la disposición de las muestras se ingresa en el algoritmo EVA2 de Petitgas y Lafont (1997). Este programa ha sido especialmente diseñado para la varianza de la estimación de biomasa, y sigue la metodología de discretización del área propuesta por Journel y Huijbregts (1978). Una copia del programa fue obsequiada por Pierre Petitgas a uno de los investigadores incluidos en el equipo consultor y puede ser usado libremente.

3.8.2. Método de la Distribución Delta-lognormal

Considerando que la captura por unidad de esfuerzo (CPUE = CPUA) en las faenas de pesca comerciales y científicas orientadas a crustáceos como camarón nailon y langostinos (colorado y amarillo) se distribuye en forma asimétrica lognormal, entonces, para cuantificar la biomasa de este recurso, ignorando criterios espaciales, es posible utilizar un estimador de densidad media derivado del modelo de la Distribución Delta, cuya forma simplemente es

$$B_0(f) = A_{ln}(f) \cdot Area(f)$$

donde $B_0(f)$ es la biomasa (toneladas) en el foco (f), $A_{ln}(f)$ es el estimador Finney-Sichel de la media log-normal (ton/km²) en el foco (f), Area(f) es el área total (km²) de distribución del recurso en el foco (f).

De acuerdo a McConnaughey y Conquest (1993), el estimador Finney-Sichel (FS), equivale al estimador de máxima verosimilitud de los datos log-normales (Aitchison y Brown, 1969), y está dado por la siguiente expresión:

$$FS = \frac{m}{n} \cdot e^{\overline{CPUE_{\ln}}} \cdot \phi_m(\sigma)$$

siendo m el número de lances con captura del recurso objetivo, n el número de lances totales efectuados, $CPUE_{ln}$ la densidad media transformada a logaritmo natural, $\phi_m(\sigma)$ una serie infinita en función de la varianza (s^2) de las CPUE transformadas a logaritmo natural.

La serie $\phi_m(\sigma)$ está definida por la siguiente expresión:

$$\phi_m(\sigma) = 1 + (m-1)\frac{\sigma}{m} + \frac{(m-1)^3 \sigma^2}{2! m^2 (m+1)} + \frac{(m-1)^5 \sigma^3}{3! m^3 (m+1) (m+3)} + \dots$$

donde el parámetro σ , corresponde a la mitad de la varianza de las CPUE transformadas a logaritmo natural (s²/2).

Los límites de confianza del estimado de biomasa media explotable, efectuado con las CPUE transformadas a logaritmo natural, no son simétricos y quedan expresados en función del estadístico tabulado H_{α} (obtenido de las tablas de Land, 1975), que establece valores distintos considerando la asimetría de la distribución analizada, luego el límite superior (*LS*) y el inferior (*LI*) son:

$$LI = B_0 - \left(Area(f) * e^{\left(\overline{CPUE_{\ln}} + \frac{s^2}{2} + H_\alpha * \frac{s}{\sqrt{m-1}}\right)}\right)$$

$$LS = B_0 + \left(Area(f) * e^{\left(\overline{CPUE_{\ln}} + \frac{s^2}{2} + H_{1-\alpha} * \frac{s}{\sqrt{m-1}}\right)}\right)$$

donde H_{α} es un estadístico tabulado en función de α , m-1 y s (Land, 1975).

3.8.3. Estimador de razón

No obstante, este estimador de la densidad poblacional no estaba originalmente comprometido en la Propuesta Técnica presentada por la Universidad Católica del Norte por ser considerado poco robusto, dado que es altamente influenciado por los valores muestreales, se ha optado por considerarlo aquí como un referente de comparación, debido a que es frecuentemente utilizado por otros grupos de investigación nacionales.

El estimador de razón, como estimador de la densidad media, corresponde a la razón entre la captura obtenida en una unidad espacial cualquiera y el esfuerzo de pesca (área barrida, AB) correspondiente a esa unidad, lo anterior se representa como:

$$\overline{CPUA}_k = \frac{\sum_{i=1}^n C_i}{\sum_{i=1}^n AB_i}$$

donde \overline{CPUA}_k es la densidad media (captura por unidad de área, ton/km²) en la k-ésima unidad espacial (foco de abundancia), C_i es la captura (tons) en todos los i lances dentro de la unidad espacial evaluada y AB_i es la unidad de esfuerzo de pesca aplicada.

La varianza del estimador de razón, dado que es no paramétrico, se calculó (para cada una de las unidades espaciales = focos de abundancia) mediante remuestreo aleatorio con reemplazo. Luego, los intervalos de confianza fueron construidos mediante el método del percentil corregido (Efron & Tibshirani, 1986, Manly, 1997).

El estimador de biomasa para el estimador de razón está dado por el producto entre el estimador de densidad media (\overline{CPUA}_k) del foco de abundancia k y su respectiva área (A_k , km²), esto es,

$$B_0^k = A_k \cdot \overline{CPUA}_k$$

Luego, la varianza de la biomasa se estima como la varianza del producto de una variable y una constante mediante la siguiente expresión:

$$Var(B_0^k) = Var(A_k \cdot \overline{CPUA_k})$$

entonces,

$$Var(B_0^k) = A_k^2 \cdot Var(\overline{CPUA_k})$$

3.8.4. Media aritmética

Tal como en el caso del estimador de razón, el estimador de la densidad media calculada como la media aritmética de los lances de pesca al interior de las unidades espaciales, no estaba considerada en la Propuesta Técnica original de nuestro grupo de trabajo, pero fue considerado aquí con fines de contrastación. El estimador de densidad por unidad espacial *j* (foco de abundancia) se calculó como sigue:

$$\overline{CPUA}_{j} = \frac{\sum_{i=1}^{n} CPUA_{i}}{n}$$

El estimador de varianza muestreal se calculó como:

$$s_{CPUA_j}^2 = \frac{1}{n-1} \sum_{i=1}^{n} \left(CPUA_i - \overline{CPUA}_j \right)^2$$

y los estimadores de intervalo de confianza corresponden a:

$$\left\{ \overline{CPUA}_{j} - \frac{Z_{\alpha}s_{CPUA_{j}}}{\sqrt{n}}; \overline{CPUA}_{j} + \frac{Z_{\alpha}s_{CPUA_{j}}}{\sqrt{n}} \right\}$$

En forma equivalente al estimador de razón, el estimador de biomasa calculado a partir de la media aritmética de la densidad local y su varianza están representados por las siguientes expresiones,

$$B_0^k = A_k \cdot \overline{CPUA_j}$$
 $Var(B_0^k) = A_k^2 \cdot s_{CPUA_j}^2$

3.8.5. Microceldas de estimación geoestadística

Este método se propone como una alternativa de estimación de biomasa al interior de los focos de abundancia previamente definidos. Este enfoque se deriva del análisis geoestadístico, particularmente del kriging, y consiste de tres pasos fundamentales:

- 1. Definición de una grilla de interpolación con tamaño de malla regular de dimensiones conocidas de tamaño menor a la distancia promedio entre estaciones de muestreo, por ejemplo $1 \times 1 \text{ km}^2$, al interior de los focos de abundancia. Luego, el nodo de la grilla se asume el punto medio (x_0,y_0) de un polígono regular de tamaño (superficie) también conocido o celda de estimación.
- 2. Aprovechando las propiedades del kriging (y sus parámetros), junto con los parámetros del variograma teórico calculados después de la validación cruzada, se estima la densidad local $(Z(x_0,y_0))$ en los puntos medios de las celdas antes definidas según la expresión:

$$z^*(x_0, y_0) = \sum_{i=1}^n \omega_i z(x_i, y_i)$$

donde ω_i representa las ponderaciones (del algoritmo de kriging) asignadas a cada localidad muestreada.

El algoritmo de estimación de la densidad local por kriging implementado en el módulo Spatial Stat del paquete estadístico S-Plus 2000 permite la estimación del error de estimación del estimador de densidad local en el punto (x_0,y_0) . Luego, si se asume que el error de estimación es equivalente al error estándar del estimador se cuenta así con $n(x_0,y_0)$ valores de densidad media, su error estándar e intervalos de confianza correspondiente.

3. Se calcula la biomasa al interior de cada celda de estimación como el producto entre el área de la celda y su densidad local:

$$B_{(x_0,y_0)} = A_{(x_0,y_0)} \cdot z^*(x_0,y_0)$$

con intervalos de confianza equivalentes a:

$$LI(B_{(x_0,y_0)}) = A_{(x_0,y_0)} \cdot LI(z^*(x_0,y_0))$$

$$LS(B_{(x_0,y_0)}) = A_{(x_0,y_0)} \cdot LS(z^*(x_0,y_0))$$

Por lo tanto, el estimador de bimasa e intervalos de confianza corresponderán a la sumatoria de los $n(x_0,y_0)$ celdas de estimación calculadas para cada foco de abundancia k, esto es:

$$B_{k} = \sum_{i=1}^{n(x_{0}, y_{0})} B_{(x_{0}, y_{0})_{i}}^{k}$$

$$LI(B_{k}) = \sum_{i=1}^{n(x_{0}, y_{0})} LI(B_{(x_{0}, y_{0})_{i}}^{k})$$

$$LS(B_{k}) = \sum_{i=1}^{n(x_{0}, y_{0})} LS(B_{(x_{0}, y_{0})_{i}}^{k})$$

3.8.6. Estimación del área por geoestadística transitiva

Uno de las mayores debilidades del método del área barrida se refiere a la forma de calcular o estimar el área del stock, o de cualquier partición del mismo. Cualquier método de estimación basado en la estadística clásica del muestreo de poblaciones finitas no está permitido pues esa teoría supone que el número total de unidades de muestreo en la población es conocido antes de la estimación. Consecuentemente, cualquier método de remuestreo exhibe la misma deficiencia pues los datos mismos a ser re-muestreados no contienen información independiente acerca del número de datos a ser re-muestreados. Incluso, la teoría intrínseca de la geoestadística no permite una estimación del área porque en esa teoría no está definida la covarianza entre el hábitat y el proceso estocástico.

Todos los métodos que pudieran diseñarse dentro de esas tres teorías son métodos *ad-hoc*, es decir, no están apoyados por la teoría de estimación. Lo máximo que pudiera plantearse bajo cualquiera de las tres teorías mencionadas es un estudio de sensibilidad, haciendo variar el área dado distintos criterios de delimitación, y observando los efectos sobre la estimación de biomasa,

pero ese análisis presenta un problema de circularidad en el argumento, pues dado que la relación entre la densidad promedio y el área es perfectamente lineal en la estimación de biomasa, los resultados del análisis de sensibilidad serán conocidos perfectamente antes de hacer el análisis de sensibilidad. Por ejemplo, al hacer variar el área un 20% hacia abajo o un 20% hacia arriba, la biomasa varía determinísticamente un 20% hacia abajo y un 20% hacia arriba, respectivamente.

Afortunadamente, existe una rama de la geoestadística que permite cubrir este problema desde un punto de vista consistente con la teoría de estimación estadística, la geoestadística transitiva. Esta teoría fue desarrollada por el fundador de la teoría geoestadística, Matheron, pero no ha sido ampliamente usada en pesquerías a pesar del ya consolidado uso de la geoestadística para el análisis de datos espaciales de densidad de recursos pesqueros. Aparte de un trabajo de Petitgas (1993) en una dimensión, la literatura principal pesquera registra sólo dos estudios muy recientes, a saber, Bez y Rivoirard (2001) y Bez (2002). Se propone la introducción de estas técnicas específicamente para la estimación del área de las distintas particiones del stock a ser evaluadas mediante transectas espaciadas regularmente.

Como la estimación de la densidad media ya está cubierta por el uso de la geoestadística intrínseca y por el método Delta-lognormal, sólo interesa estimar el área *S*. Convenientemente, entonces, se realiza la transformación de los datos de densidad con la función indicadora

$$I(x,y) = \begin{cases} 0, & si & z(x,y) = 0 \\ 1 & si & z(x,y) > 0 \end{cases}$$

lo que significa que la grilla regular dentro de cada partición espacial del stock se convierte en una grilla de 1s y 0s. Esta técnica permite que la doble integral sobre la latitud y la longitud, multiplicada por el área de influencia de cada unidad muestral, sea inmediatamente igual al área de la partición espacial del stock que se está considerando. Sea S el área total que cubre la distribución espacial de la función indicadora I(x,y), entonces la cantidad a ser estimada es

$$S = \int_{-\infty}^{+\infty} dx \int_{-\infty}^{+\infty} I(x, y) dy$$

y su estimador geoestadístico transitivo es

$$\hat{S}(x_0, y_0) = S_x S_y \sum_{k_1 = -\infty}^{+\infty} \sum_{k_2 = -\infty}^{+\infty} I(x_0 + k_1 S_x, y_0 + k_2 S_y)$$

donde x_0 , y_0 son los puntos de partida de la grilla, que deben ser elegidos aleatoriamente para garantizar insesgamiento respecto del diseño (que se cumple aquí pues el primer lance se elige al azar dentro de cada estrato), s_x y s_y son las áreas latitudinales y longitudinales cubiertas por cada unidad de muestreo (cada estación de muestreo dentro de cada transecta), iguales para todas las unidades (garantizado por el diseño de espaciamiento regular), y donde las sumas van hacia el infinito porque se permite el efecto de borde y de hecho el borde mismo es estimado.

En esta teoría, la herramienta estructural conveniente no es el variograma de la teoría intrínseca, sino que el covariograma transitivo de la forma

$$g(h) = \int_{-\infty}^{+\infty} dx \int_{-\infty}^{+\infty} I(x, y) I(x + u, y + v) dy$$

donde u y v son los lados de un triángulo tal que el vector de distancia cuadrático $h^2=u^2+v^2$. La varianza de estimación es equivalente a la varianza del estimador ya que este método es diseñobasado y luego la cantidad S no se supone que sea la realización de una variable aleatoria sino que se supone fija,

$$\sigma_S^2 = s_x s_y \sum_{k_1 = -\infty}^{+\infty} \sum_{k_2 = -\infty}^{+\infty} g(k_1 s_x, k_2 s_y) - \int_{-\infty}^{+\infty} g(h) dh$$

Esta metodología es una de las opciones del algoritmo EVA2 de Petitgas y Lafont (1997), y se utiliza en este proyecto.

3.8.7. Varianza total de estimación de biomasa

El estimador de biomasa (*B*), ya sea el geoestadístico o el Delta-Lognormal, presenta cuatro fuentes de incertidumbre que se estiman, a saber:

- la varianza del coeficiente de capturabilidad local, $\hat{\sigma}_a^2$,
- la varianza del APA, $\hat{\sigma}_{APA}^2$,
- la varianza de estimación de la densidad media, $\hat{\sigma}_{kg}^2$ o $\hat{\sigma}_{D-L}^2$ y,
- la varianza del área, $\hat{\sigma}_S^2$.

La combinación de estas cuatro fuentes de incertidumbre depende de la estructura algebraica de la ecuación de estimación de la biomasa. Para el caso del estimador en que la densidad media corresponde a la estimación por geoestadística intrínseca y kriging puntual ordinario, la estructura del estimador de biomasa es

$$\hat{B}_{kg} = \frac{\hat{S}}{\overline{a}} z_{kg}^*$$

Una gran ventaja del enfoque geoestadístico es que la varianza debida al APA ya está incorporada en la varianza del estimador de densidad media z_{kg}^* porque esa varianza fue incluida aditivamente dentro de la estructura del parámetro nugget, al considerar una varianza de error de observación, y luego esta varianza debida al APA se propaga automáticamente hacia la varianza de z_{kg}^* , $\hat{\sigma}_{kg}^2$. En este caso sólo queda considerar la combinación de las varianzas debidas al área, al coeficiente de capturabilidad local, y al promedio de densidad mediante kriging. El método delta (no confundir con la distribución Delta-Lognormal) permite calcular una varianza aproximada de combinaciones algebraicas de fuentes de varianza mediante expansiones de Taylor hasta el segundo orden. Se obtiene primero la varianza del producto $\hat{S} \cdot z_{kg}^2$,

$$Var(\hat{S} \cdot z_{kg}^*) = \hat{S}^2 \cdot Var(z_{kg}^*) + (z_{kg}^*)^2 Var(\hat{S}) + 2(\hat{S} \cdot z_{kg}^*) Cov(\hat{S}, z_{kg}^*)$$

No hay razones físicas para suponer que la covarianza entre el estimador geoestadístico transitivo \hat{S} y el estimador de densidad media de la geoestadística intrínseca z_{kg}^* sean dependientes, especialmente considerando que en la estimación de \hat{S} se utilizó la transformación por la función

indicadora. Por lo tanto, descontando el término de covarianza y reemplazando los términos de varianza por sus respectivos estimadores, se tiene

$$\hat{\sigma}_{\hat{S},z_{kg}^*}^2 = \hat{S}^2 \hat{\sigma}_{kg}^2 + (z_{kg}^*)^2 \hat{\sigma}_{\hat{S}}^2$$

Para obtener la varianza de la biomasa se debe calcular la varianza de la razón entre $\hat{S} \cdot z_{kg}^2$ como el numerador y de \overline{a} como el denominador, que nuevamente por el método delta y descartando los términos de covarianza y reemplazando los términos de varianza por sus respectivos estimadores corresponde a

$$\hat{\sigma}_{B_{kg}}^{2} = \frac{\hat{\sigma}_{\hat{S},z_{kg}^{*}}^{2}}{\overline{a}^{2}} + \frac{\left(\hat{S} \cdot z_{kg}^{*}\right)^{2}}{\overline{a}^{4}} \hat{\sigma}_{\overline{a}}^{2}$$

El error estándar del estimador de varianza del estimador de biomasa geoestadística es la raíz cuadrada de la varianza del mismo estimador, así que un intervalo de confianza asintóticamente válido de $(1-\alpha)$ % corresponde a

$$IC_{(1-lpha)\%} = \left[\hat{B}_{kg} \pm \eta_{(1-lpha)} \sqrt{\hat{\sigma}_{B_{kg}}^2}
ight]$$

El estimador de biomasa por el método Delta-Lognormal es

$$\hat{B}_{kg} = \frac{\hat{S}}{\bar{a}} \hat{z}_{D-L}$$

En este caso la situación es más compleja pues la varianza debida al APA no está incorporada en la estimación de \hat{z}_{D-L} , como si lo estaba en la estimación de z_{kg}^* . La aproximación por el método delta ya no es recomendable pues, aunque se pudiera utilizar la varianza promedio del APA a través de todos los lances las aproximaciones para cancelar covarianzas serían demasiado exigentes. Sin embargo, es posible aplicar el método delta a la razón \hat{S}/\bar{a} que actúa como la expansión del estimador de biomasa Delta-Lognormal, y agregar el error de observación a la varianza de la densidad proveniente de la distribución Delta-Lognormal. Entonces, la varianza del término de proporcionalidad es

$$\hat{\sigma}_{\hat{S}/\bar{a}}^{2} = \frac{\hat{\sigma}_{\hat{s}}^{2}}{\bar{a}^{2}} + \frac{\hat{S}^{2}}{\bar{a}^{4}}\hat{\sigma}_{\bar{a}}^{2}$$

en donde claramente el término de covarianza es cero pues no existe relación entre el coeficiente de capturabilidad local y el área del stock, para cualquier partición del mismo que se esté considerando. Además, tenemos la varianza del estimador Delta-Lognormal, $\hat{\sigma}_{D-L}^2$, de la densidad media y la varianza del APA, $\hat{\sigma}_{APA}^2$. Ya se ha reemplazado todas las varianzas por sus respectivos estimadores. Como toda la varianza de cada observación local de densidad está dada por el APA (la captura en cada lance es calculada sin error), se debe agregar la varianza de observación de la densidad a la varianza de la distribución lognormal, suponiendo independencia entre la varianza debida al APA y la varianza que resulta de la distribución Delta-Lognormal. Esto resulta en

$$\hat{\sigma}_{z_{(D-L)}}^2 = \hat{\sigma}_{D-L}^2 + \hat{\sigma}_{APA}^2$$

Este razonamiento es similar al aplicado para la varianza de la densidad media estimada por el análisis geoestadístico intrínseco, donde el error de observación se agrega aditivamente al parámetro nugget como un término de micro-varianza. El supuesto de independencia, en este caso entre APA y la densidad media lognormal, es fuerte, pero puede producir una sobre-estimación de la varianza de la densidad media Delta-lognormal si la varianza del APA es baja y el término ignorado de covarianza entre APA y densidad Delta-Lognormal es mayor. En este caso el estimador final de varianza de la biomasa por el método Delta-Lognormal es conservador. Este estimador final de varianza del estimador de biomasa tiene la forma

$$\hat{\sigma}_{B_{D-L}}^{2} = \left(\frac{\hat{S}}{\bar{a}}\right)^{2} \hat{\sigma}_{z_{D-L}}^{2} + \hat{z}_{D-L}^{2} \hat{\sigma}_{\hat{S}/\bar{a}}^{2}$$

y un intervalo asintóticamente válido de $(1-\alpha)$ % corresponde a

$$IC_{(1-lpha)\%} = \left[\hat{B}_{D-L} \pm \eta_{(1-lpha)} \sqrt{\hat{\sigma}_{B_{D-L}}^2}\right]$$

En el caso de la estimación de biomasa por sexo, se utiliza ecuaciones similares correspondientes al método Delta utilizando la proporción sexual global, con un estimador de varianza correspondiente a la distribución binomial. Por estar el estimador de proporción cerca de 0,5, los intervalos de confianza se construyen utilizando la aproximación normal. En el caso de la abundancia en número por sexo, se utiliza el peso medio global de toda la muestra biológica para contar con un gran tamaño de muestra e ignorar el efecto de la varianza de estimación del peso medio. En ese caso, el estimador de abundancia en número y su varianza de estimación corresponden a

$$\hat{A} = \frac{\hat{B}}{\overline{w}} \qquad \qquad \hat{\sigma}_A^2 = \left(\frac{1}{\overline{w}}\right)^2 \hat{\sigma}_B^2$$

respectivamente. Al reemplazar los estimadores de biomasa y sus varianzas de estimación por los correspondientes a cada uno de los métodos empleados, el geoestadístico intrínseco y el Delta-Lognormal, se obtienen los correspondientes estimadores de biomasa.

Finalmente, la biomasa a la talla (B_t) y la abundancia en número a la talla (A_t) son

$$\hat{B}_{t} = \hat{B} \frac{\overline{w}_{t}}{\sum_{t=1}^{T} \overline{w}_{t}} \qquad \qquad \hat{A}_{t} = \hat{A} \frac{f_{t}}{\sum_{t=i}^{T} f_{t}}$$

respectivamente, y las varianzas de estos estimadores son

$$\hat{\sigma}_{\hat{B}_t}^2 = \hat{\sigma}_{\hat{B}}^2 \Biggl[rac{\overline{w}_t}{\sum_{t=1}^T \overline{w}_t} \Biggr]^2 \qquad \qquad \hat{\sigma}_{\hat{A}_t}^2 = \hat{\sigma}_{\hat{A}}^2 \Biggl[rac{f_t}{\sum_{t=1}^T f_t} \Biggr]^2$$

respectivamente, donde \hat{B} y \hat{A} , como valores y como subíndice representan a la biomasa y la abundancia total de alguno de los dos métodos a ser aplicados, el geoestadístico intrínseco o el Delta-Lognormal, cualquiera que tenga menor coeficiente de variación; T representa al total de categorías de talla; y f representa a la frecuencia numérica medida a través de toda la muestra biológica. Para terminar se reitera que los cálculos descritos en esta sección se aplicarán por

separado a las distintas particiones espaciales del stock, tales como estratos, focos de abundancia, y área de exclusión artesanal y resto del área.

3.8.8. Relación longitud-peso

Unos de los aspectos básicos registrados en los estudios de la biología o biología pesquera de cualquier especie son la longitud y el peso de los individuos recolectados. Ambas variables permiten caracterizar la población estudiada, como es el caso de la estructura de tamaños (o peso), o determinar la relación longitud-peso particular. En este sentido, resulta muy frecuente observar en la literatura científica alcances respecto de la relación longitud-peso de las especies en estudio.

Algunos de los principales usos de la relación longitud-peso en la investigación pesquera son:

- (i) permitir la conversión de la longitud de un individuo a peso o viceversa;
- (ii) estimar el peso medio de los ejemplares de una clase de longitud dada;
- (iii) convertir la ecuación de crecimiento en longitud en una ecuación de crecimiento en peso;
- (iv) predecir el peso a la edad, por ejemplo, en modelos de rendimiento por recluta;
- (v) comparar morfológicamente entre poblaciones de una misma especie;
- (vi) estimar la biomasa de una población edad o talla-estructurada a partir del número de individuos sobrevivientes (abundancia en número), por nombrar algunos.

La relación longitud-peso en la mayoría de las especies marinas está definida por una ecuación de tipo potencial (medida con error) de la forma:

$$w = aL^b + \varepsilon$$

donde w es el peso, L es la longitud, a y b son constantes, ε es la medida de error.

El método de estimación a utilizar en la estimación de los parámetros de la relación longitud-peso consiste en Mínimos Cuadrados No Lineales (MCNL), que se basa en minimizar la suma de los

errores cuadráticos $(S(\theta))$. Partiendo de la Ecuación General para Modelos No Lineales, de la forma:

$$y = f(\mathbf{X}_u; \Theta) + \varepsilon$$

Sea

$$S(\Theta) = \sum_{u=1}^{n} [y_u - f(X_u; \Theta)]^2$$

La solución a tal ecuación se obtiene por la derivación del término dentro de la sumatoria respecto de cada parámetro que considera el vector de parámetros θ , de la forma siguiente:

$$S(\Theta) = \sum_{u=1}^{n} \left[y_u - f(X_u; \Theta) \left(\frac{\partial f(X_u; \Theta)}{\partial \Theta} \right)_{\theta = \hat{\theta}} \right]$$

En el caso de la ecuación que describe la relación longitud cefalotorácica-peso, $w = aLC^b + \varepsilon$, $S(\theta)$ tendría la siguiente forma:

$$S(a,b) = \sum_{i=1}^{n} \varepsilon^{2}$$

$$S(a,b) = \sum_{u=1}^{n} (w_{u} - aLC^{b})$$

ya que $f(w) = aLC^b$

$$\frac{\partial f}{\partial a} = LC^b \qquad \qquad y \qquad \qquad \frac{\partial f}{\partial b} = abLC^{b-1}$$

si $a = a_j$ y $b = b_j$ en la iteración j, entonces

$$w_{u} - f_{u}^{j} = \left[LC_{u}^{b}\right] \cdot \left[a_{ju} - a_{j}\right] + \left[abLC_{u}^{b-1}\right] \cdot \left[b_{j+1} - b_{j}\right]$$

Como el resultado de esta ecuación no se puede encontrar mediante álgebra tradicional, se debe utilizar un método iterativo para estimar los parámetros *a* y *b*. Los parámetros de la relación tamaño-peso se estiman separadamente tanto para machos y hembras independientemente de la condición reproductiva de los ejemplares estudiados, como para las hembras portadoras de huevos o en condición reproductiva avanzada de acuerdo a los criterios de madurez sexual

definidos en el marco del Obj. Espec. 3. Adicionalmente, se estima la relación tamaño-peso para ambos sexos en conjunto.

3.8.9. Pesos medios por intervalo de talla

Los pesos medios por intervalo de talla y su dispersión estadística, para cada foco de abundancia del recurso objetivo, se obtienen utilizando los estimadores que a continuación se detallan. Los intervalos de tamaño se construyen cada 1 mm de LC. Los estimadores son:

$$\overline{w}_{j} = \frac{\sum_{i=l_{[k)}}^{m_{j,k+1}} w_{ijk}}{n_{jk}}$$

$$y$$

$$s_{w_{j}}^{2} = \frac{\sum_{i=l_{[jk)}}^{m_{j,k+1}} (\overline{w}_{j} - w_{ijk})^{2}}{n_{j} - 1}$$

donde: W_{ijk} : es el peso del *i*-ésimo ejemplar del intervalo de longitud *j* cuyo límite inferior es k;

 $1_{[ik)}$: es el primer elemento del intervalo de longitud *j*.

 $n_{]jk+1[}$: es el número de ejemplares del intervalo de longitud j considerando el último individuo cuya longitud es k+1 mm.

 \overline{W}_i : es el peso promedio del j-ésimo intervalo de longitud, y

 $S_{w_i}^2$: es la varianza del peso en el *j*-ésimo intervalo de longitud.

3.9. Objetivo Específico 3

Determinar la condición reproductiva del langostino amarillo y langostino colorado, en el área y período de estudio.

3.9.1. Muestreo biológico a bordo de la nave

Después de depositar la captura en la cubierta de la embarcación, se procedió a separar la especie objetivo (langostino amarillo o langostino colorado) en bandejas plásticas apilables. En cada

lance se pesará al menos 5 de estas bandejas vacías y con contenido, para determinar el peso neto promedio por bandeja. Luego, se cuenta el número total de bandejas con langostinos para obtener la captura total en peso de cada especie. El muestreo biológico consistió en obtener estrictamente al azar 4 kg de langostino amarillo o langostino colorado. Este procedimiento fue utilizado para las mismas especies por Acuña *et al.* (1995) y Acuña *et al.* (2002). A partir de estos datos y para mantener un nivel de precisión de muestreo adecuado, se estimó que el tamaño muestral para frecuencia de tallas es aproximadamente 400 ejemplares por lance, los que corresponden a 3,7 kg, que es lo que se aproxima a 4 kg por razones operacionales (rapidez a bordo en la toma de muestras y mejor uso del tiempo).

Para efectos prácticos, la unidad básica de muestreo biológico es un balde de 4,5 a 5 litros. Los ejemplares se guardan en bolsas de polietileno grueso, indicándose el número correlativo del lance, su posición, fecha y las horas de calado y virado, al menos, y son mantenidas en hielo en escamas mientras están a bordo. Las muestras se enviaron al laboratorio húmedo del Departamento de Biología Marina de la Universidad Católica del Norte, donde se almacenaron (congeladas) y luego analizaron. En el laboratorio, los ejemplares son sexados, medidos en su longitud cefalotorácica (LC; precisión de 0,1 mm) y pesados (peso total; precisión de 0,01 g).

3.9.2. Determinación del estado de desarrollo embrionario de huevos

Para la determinación del estado de madurez sexual de hembras de langostino amarillo o langostino colorado se utilizó como criterio el estado de desarrollo embrionario o madurez de los huevos portados, basándose principalmente en la coloración de los huevos, apariencia y grado de desarrollo del vitelo, desarrollo y pigmentación de los globos oculares del embrión, tal como ha sido aplicado por Escuela de Ciencias del Mar (1999) y Palma y Arana (1997) (Tabla 4).

3.9.3. Proporción sexual

La proporción sexual corresponde a la fracción de hembras o machos en la población. Por ejemplo, la proporción de hembras se calcula para cada lance como:

$$Ph_i = \frac{Nh_i}{\left(Nh_i + Nm_i\right)}$$

donde: Ph_i es la proporción de hembras en el lance de pesca i; Nh_i es el número de hembras en la muestra del lance i; Nm_i es el número de machos en la muestra del lance i.

Tabla 4. Estados de desarrollo embrionario de langostino amarillo (Escuela de Ciencias del Mar (1999) y langostino colorado (Arana y Palma, 1997).

LANGOSTINO AMARILLO		
Estado	Descipción	
1	La masa ovífera es de color naranja pálido y brillante. El huevo es de forma esférica; el	
	vitelo es homogéneo, carece de estructuras y células diferenciadas; ocupa completamente	
	el volumen del huevo. El huevo tiene un diámetro medio de $0,611 \pm 0,013$ mm.	
2	La masa ovífera es de color naranja oscuro y opaco. El huevo es ovoide; el vitelo es	
	oscuro y de apariencia granulosa. En un polo del vitelo se observa el desarrollo del	
	primordio embrionario que indica el inicio de la diferenciación celular. El huevo tiene un	
	diámetro medio de 0.685 ± 0.025 mm.	
3	La masa ovífera es de color naranja oscuro o café claro. Se observa el desarrollo del	
	embrión donde se destaca el esbozo de los glóbulos oculares, que son alargados y en su	
	extremo distal presentan una línea curva oscura que corresponde al comienzo de la	
	pigmentación ocular. El huevo tiene un diámetro medio de 0.767 ± 0.003 mm.	
4	La masa ovífera es de color café oscuro. El embrión está totalmente formado; los globos	
	oculares son grandes y ligeramente ovalados, y poseen una intensa pigmentación negra.	
	En la región dorsal del abdomen se observa algunos cromatóforos de color rojo. En este	
	estado el huevo se encuentra pronto a eclosionar y liberar la larva al medio ambiente. El	
	huevo tiene un diámetro medio de 0.852 ± 0.041 mm.	

LANGOSTINO COLORADO		
Estado	Descipción	
1	La masa ovífera es de color naranja pálido y brillante. El huevo es de forma esférica; el	
	vitelo es homogéneo, carece de estructuras y células diferenciadas; ocupa completamente	
	el volumen del huevo. El huevo tiene un diámetro medio de $0,611 \pm 0,013$ mm.	
2	Huevos de color naranja brillante. El vitelo es oscuro y de apariencia granulosa; ocupa la mayor parte del volumen interior del huevo. En este estado se inicia la diferenciación	
	celular y se visualiza el primordio embrionario. El diámetro medio de $0,590 \pm 0,042$ mm.	
3	Huevos de color naranja oscuro y opaco. El embrión tiene los glóbulos oculares desarrollados y de forma alargada; en su extremo distal presentan una línea curva oscura que corresponde al comienzo de la pigmentación ocular. El diámetro medio es de $0,620\pm0,039$ mm.	
4	Huevos de color café oscuro. El embrión está totalmente formado; los globos oculares son grandes, ligeramente alargados y tienen una intensa pigmentación negra. Se observan algunos cromatóforos rojizos en la región dorsal del abdomen. El diámetro medio es de $0,687 \pm 0,066$ mm.	

Luego, la proporción total de hembras para el área y época de estudio se estima por:

$$\overline{Ph} = \sum_{i=1}^{m} Ph_i \cdot w_i$$

donde: \overline{Ph} es la proporción total promedio de hembras; Ph_i proviene de la Ec. anterior; m es el número total de lances de pesca; w_i es la proporción en peso de la captura obtenida en el lance de pesca i, la cual se calcula como:

$$w_i = \frac{C_i}{\sum_{i=1}^m C_i}$$

donde: C_i es la captura en peso del recurso objetivo en el lance de pesca i.

3.9.4. Talla promedio de madurez sexual

Para la estimación de la talla promedio de madurez sexual de hembras se utiliza la información de proporción de hembras ovíferas a la talla. Esta información se ajusta al siguiente modelo logístico:

$$P_l = \frac{1}{1 + e^{a+bl}}$$

donde: P_l es la proporción de hembras ovíferas en el intervalo de talla l; l es la longitud cefalotorácica en milímetros; a y b son los parámetros de intercepto y pendiente de la ojiva de madurez, respectivamente.

La estimación de los parámetros de madurez se realiza minimizando el negativo del logaritmo de la función de verosimilitud (Roa *et al.*, 1999), que corresponde a la siguiente distribución binomial:

$$-\ell(a,b) = -C\sum_{l} [(h)\ln(P_{l}) + (1+h)\ln(1-P_{l})]$$

donde: P_l se calcula de la Ec. anterior; a y b son los parámetros de la ojiva de madurez anteriomente definidos; h es una variable dicotómica (h = 1 es maduro, h = 0 es inmaduro); C es una constante que no afecta la estimación de los parámetros.

Dada la naturaleza no lineal de la función logística de madurez, el mínimo de la función de verosimilitud se encuentra por un algoritmo de iteración (Quasi-Newton). Los parámetros estimados por la función de verosimilitud son los estimados de máxima verosimilitud (MLE = maximum likelihood estimates). Se determina, además, la matriz de covarianza que representa la incerteza asociada a los MLE.

El cálculo de la talla a cualquier proporción de madurez ($l_{P\%}$) está definido por:

$$l_{p\%} = \frac{1}{b} \ln \left(\frac{1}{P_{LT}} - 1 \right) - \frac{a}{b}$$

Para el cálculo de la talla de de madurez sexual se utiliza el criterio del 50% ($l_{50\%}$). De esta forma si se reemplaza P_l por 0,5 en la expresión anterior, se tiene que $l_{50\%}$ queda definido por -(a/b). Luego, se utiliza remuestreo Monte Carlo (con el algoritmo MATSIM) de los estimadores de los parámetros de madurez junto con su distribución de probabilidad asintótica y matriz de covarianza, para generar la distribución de probabilidad del estadístico derivado $l_{50\%}$ (Roa *et al.*, 1999). A partir de la distribución de probabilidad de $l_{50\%}$, su intervalo de confianza se obtiene por el método percentil. Los límites del intervalo de confianza están definidos por los valores en las posiciones $N_{MC}(\alpha/2)$ y $N_{MC}(1-(\alpha/2))$, donde N_{MC} es el número de ensayos Monte Carlo. El número de ensayos Monte Carlo realizados para determinar el intervalo de confianza de $l_{50\%}$ es 5000. Además, se determina el intervalo de confianza para las tallas donde se obtenga los porcentajes de madurez del 10, 20, 30, 40, 60, 70, 80 y 90%.

3.9.5. Análisis de fecundidad

Se analiza la fecundidad de las hembras de langostino amarillo o langostino coloradoexpresada como el número de huevos portados a la talla para toda el área de prospección y para cada foco

de abundancia. Se recolectó 1.200 hembras maduras con huevos en estado 1 o 2 (debido a que en este estado es mas fácil el recuento), que no presenten deterioro físico de la masa ovífera, tal como ha sido recomendado por Acuña *et al.* (1997).

Para la estimación del número total de huevos portados por cada hembra se utiliza el método gravimétrico, de acuerdo a Acuña *et al.* (1997), considerando las siguientes etapas:

- a) Se descongela los ejemplares hembra, se los mide individualmente (0,01 mm) y pesa completos (0,0001 g).
- b) Se extrae los huevos en forma manual, comenzando desde los pleópodos posteriores hacia los anteriores.
- c) Se extrae el exceso de humedad de la masa ovígera utilizando papel absorbente.
- d) Se pesa su masa ovígera total (0,0001g).
- e) Se selecciona y pesa 3 submuestras de huevos y se realiza un recuento exhaustivo utilizando lupa estereoscópica.
- f) Se extrapola el número promedio de huevos por submuestra al peso total de la masa ovígera.

Una vez obtenido los datos de fecundidad se ajusta dos modelos de fecundidad, a saber: un modelo potencial del tipo:

$$NH = a \cdot LC^b$$

y un modelo exponencial del tipo:

$$NH = a \cdot e^{bLC}$$

donde: *NH* es el número de huevos; *LC* es la longitud cefalotorácica; *a* y *b* son los parámetros, los que serán estimados mediante regresión no-lineal por mínimos cuadrados utilizando el módulo NONLIN del programa estadístico SYSTAT (Wilkinson, 1988).

3.9.6. Determinación del potencial reproductivo

El potencial reproductivo de las hembras se estima siguiendo a Roa y Bahamonde (1993) y Roa *et al.* (1997a) para el caso de langostino colorado, y por Roa *et al.* (1998) para el caso del langostino amarillo. Se utiliza el modelo descrito por Restrepo y Watson (1991), indexado por posición espacial según la siguiente expresión:

$$E_{(x,y)} = Z_{h(x,y)} P_{(x,y)} G_{(x,y)}$$

donde: E es el número de huevos por unidad de área; Z_h es la densidad numérica de hembras; P es la fracción de hembras que portan huevos; es el número de huevos por hembra. A su vez, la densidad en número de hembras se calcula como:

$$Z_n(x,y) = \frac{Z_w(x,y)}{\overline{W_h}(x,y)}$$

donde: Z_w es la densidad en peso (ton/km²) de las hembras; \overline{W}_h es el peso medio de las hembras en la localidad (x,y). La densidad en peso de las hembras en cada localidad se estima utilizando la siguiente ecuación:

$$Z_{w}(x,y) = Z_{tot}(x,y) \left[\frac{\overline{W}_{h} \cdot N_{h}}{\overline{W}_{h} \cdot N_{h} + \overline{W}_{m} \cdot N_{m}} \right]$$

donde: $Z_{tot}(x,y)$ es la densidad total (*i.e.* machos y hembras); \overline{W}_h y \overline{W}_m son los pesos medios de hembras y machos, respectivamente; N_h y N_m son el número de hembras y machos en la muestra de la localidad (x,y), respectivamente.

Una vez obtenidas las estimaciones locales, se utiliza la metodología geoestadística detallada en el objetivo específico 1 para mapear la distribución espacial del potencial reproductivo, estimar la abundancia y desarrollo de huevos en cada foco de abundancia.

3.10. Objetivo Específico 4

Determinar la composición e importancia relativa de las especies que constituyen fauna acompañante de estos dos recursos durante los cruceros de evaluacion.

3.10.1. Generación de la información

La información básica obtenida corresponde a la captura (peso) por lance de cada especie de la fauna acompañante. A bordo, la captura por lance es tratada de la siguiente manera:

- a) Se separó la especie objetivo (langostino amarillo o langostino colorado) de la fauna acompañante.
- b) Se llenó bandejas con fauna acompañante extraída al azar. Cuando la captura estuvo estratificada en el copo (*i.e.* diferentes especies en distintos sectores del copo), se tomó 3 submuestras consistentes en una de la parte posterior, una del centro y una de la parte anterior del copo. Cuando la captura estuvo distribuida uniformemente en el copo, se extrajo solamente 2 submuestras de cualquier lugar del copo, una vez que la captura fue depositada en la cubierta de la nave.
- c) Debido a que el peso de las submuestras varió, de acuerdo a la especie predominante en el copo, las submuestras fueron tratadas en forma independiente, separándose todos los ejemplares por especie, contándolos y pesándolos.
- d) En el caso de especies representadas por ejemplares grandes con baja frecuencia de aparición, como congrio dorado (*Genypterus blacodes*) y raya volantín (*Dipturus chilensis*), fueron separados del resto de la fauna acompañante, depositados en cajas, contados y pesados en conjunto.
- e) En el caso de las especies con ejemplares pequeños con bajo aporte en el peso total de la captura, fueron separados todos los individuos de cada submuestra, contándolos y pesándolos.

- f) Simultáneamente, el resto de la captura de la fauna acompañante fue depositada en bandejas plásticas, las que fueron contadas al momento de vaciar su contenido al mar.
- g) En cada lance, la captura en peso de cada especie de la fauna acompañante fue obtenida del producto entre el peso promedio de cada especie en las submuestras y el número total de bandejas contabilizadas.
- h) El aporte relativo (porcentual) de cada especie de la fauna acompañante consiste simplemente en la fracción en peso respecto de la captura total de las especies que conforman la fauna acompañante.

3.10.2. Descripción de la abundancia de la fauna acompañante

Se trabajó con aquellas especies que componen la fauna acompañante y cuyo aporte relativo, en peso, fue superior al 5%. Con esta información se describe la estructura de abundancia de las principales especies de la fauna acompañante por estratos de profundidad y por estratos latitudinales. Los estratos batimétricos fueron de 100 m de profundidad. Con esto se logró que en cada estrato hubiese un número adecuado de lances para representar en forma confiable el sector. Por otro lado se evitó que desniveles mayores a 100 m enmascarar diferencias en la distribución batimétrica de las especies analizadas.

La descripción latitudinal se efectúa para cada región desde la II hasta la VIII Regiones. Debido a que loa división administrativa por Regiones no necesariamente tiene relación con la estratificación propia de los recursos pesqueros y su fauna acompañante, se efectuó una segunda estratificación de acuerdo con los grupos específicos identificados en el punto siguiente. Para cada estrato, batimétrico y latitudinal, se genera un listado que contenga a cada especie de la fauna acompañante, con su respectiva frecuencia de ocurrencia (en función del total de lances), abundancia relativa (CPUE) e importancia relativa, tanto respecto a la captura total de la fauna acompañante (IIRFA, índice de importancia relativa respecto a la fauna acompañante), como la de los recursos objetivo (IIRRO, índice de importancia relativa respecto a los recursos objetivo.

3.10.3. Identificación y caracterización espacial de las asociaciones específicas

El análisis de la fauna acompañante presente en la pesquería del langostino amarillo (*Cervimunida johni*) y langostino colorado (*Pleuroncondes monodon*) resulta de gran interés toda vez que las capturas, estandarizadas por el esfuerzo, son un reflejo de la abundancia de las especies en el medio. Esta información, analizada con métodos numéricos, permite distinguir asociaciones específicas cuya importancia radica en que son reflejo de la estructura de la comunidad a la que se asocia la especie principal.

En Chile se ha utilizado a la fauna acompañante de las capturas de langostino colorado (Roa *et al.*, 1997), camarón nailon (Acuña y Arancibia, 1996; Acuña *et al.*, 1997) y langostino amarillo (Acuña *et al.*, 1995) para efectuar una caracterización de las comunidades a las que se asocian estos recursos. Este análisis ha consistido básicamente en identificar asociaciones específicas con métodos multivariados, análisis de clasificación y ordenación.

Otra alternativa para probar la hipótesis nula de ausencia de diferencias entre comunidades es el método de permutación no paramétrica ANOSIM. Esta prueba ha sido ampliamente utilizada para contrastar la estructura de comunidades de peces (Fennessy *et al.*, 1994), macroinfauna (Carrasco *et al.*, 1999), meiofauna (Warwick *et al.*, 1997) y macroepifauna (Chapman & Underwood, 1999; Kraufvelin, 1999). Su ventaja es que entrega un coeficiente de similitud global y, además, para cada par de comparaciones con su respectivo valor de significancia. Por lo tanto, en el presente estudio las comunidades identificadas se comparan tanto por medio de las curvas *ABC* como por medio del Análisis de Similitud, con el propósito de indagar en diferencias en las asociaciones específicas en la escala espacial.

3.10.4. Identificación de asociaciones específicas

Se identificó en la escala espacial las asociaciones específicas por medio del Método de Clasificación (Análisis de Cluster) y ordenación (MDS) (Clifford & Stephenson, 1975), utilizando el software PRIMER (Plymouth Marine Laboratory; Clarke & Warwick, 1994). Para efectuar ambos análisis se debió construir una matriz de similitud (Fig. 2), para lo cual se

comparó de pares todos los lances de pesca, en función de la cpua de cada especie, utilizando el Indice de Similitud de Bray-Curtis (*IBC*, Bray & Curtis, 1957), cuya expresión es la siguiente:

$$IBC = \frac{\sum_{i=1}^{p} \left| \boldsymbol{\chi}_{ij} - \boldsymbol{\chi}_{ik} \right|}{\sum_{i=1}^{p} \left(\boldsymbol{\chi}_{ij} + \boldsymbol{\chi}_{ik} \right)}$$

donde, p = número de puntos de muestreo; x_{ij} = es la cpue de la especie i en el punto de muestreo j, x_{ik} = es la cpua de la especie i en el punto de muestreo k.

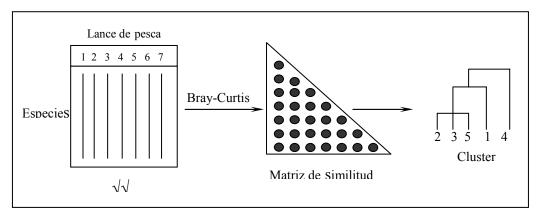


Fig. 2. Esquema de pasos en un análisis multivariado basado en Indice de Similitud para identificar asociaciones específicas (Clarke & Warwick, 1994).

Para balancear los valores atípicos (especies raras) con los valores comunes (especies comunes), se transformó los datos originales de abundancia relativa (CPUA) aplicando raíz cuarta ($\sqrt{\sqrt{}}$), según el criterio propuesto por Clarke & Warwick (1994).

3.10.5. Diferencias entre asociaciones mediante Análisis de Similitud (ANOSIM)

3.10.5.1. Análisis de Similitud (ANOSIM)

Luego de identificar las asociaciones específicas con el Análisis de Clasificación, éstas fueron comparadas entre si para detectar diferencias en su estructura mediante la aplicación de un método análogo a MANOVA, denominado ANOSIM (*Analysis of Similarities*) (Clarke & Green, 1988). El análisis ANOSIM se encuentra implementado en el software PRIMER y consisten en

una permutación no paramétrica aplicada a una matriz de rangos de similitud construida a partir de la matriz de similitud en la que se basó la ordenación y clasificación de las muestras. Este método entrega el coeficiente *R* y su respectivo nivel de significancia, y se encuentra definido por la siguiente ecuación:

$$R = \frac{\left(\bar{r}_B - \bar{r}_W\right)}{n(n-1)/4}$$

donde, r_B es el promedio de los rangos de similitud de todos los pares de réplicas en los diferentes sitios; r_W es el promedio de todos los rangos de similitud entre réplicas dentro de cada sitio.

El valor *R* se encuentra ente -1 y +1. Sin embargo, valores menores a 0 son poco probables, ya que correspondería a zonas de pesca distintas con valores de similitud mayores a los valores de similitud de puntos geográficos dentro de estas zonas de pesca. Un valor igual o aproximado a cero señala que la similitud entre y dentro de las zonas geográficas es aproximadamente el promedio, es decir, las asociaciones específicas no muestran diferencias en la estructura de sus valores de CPUA. Un valor igual a 1 ocurre cuando todas las réplicas de una zona de pesca son iguales entre sí y distintas a las réplicas de cualquier otra zona de pesca en la comparación, es decir, las asociaciones específicas muestran diferencias en la estructura de sus valores de CPUA.

3.10.5.2. Curvas k-dominancia (Curvas ABC)

Las asociaciones identificadas fueron comparadas, además, por medio del método de *Comparación Abundancia/Biomasa* (*ABC*) (Warwick, 1986), para esto se construyo una *curva k-dominancia* (Lambsead *et al.*, 1983). Esta consiste en clasificar en orden de importancia decreciente, en términos de abundancia y biomasa, las especies o taxa mayores presentes en las muestras y graficarlas, en escala logarítmica, versus la abundancia y biomasa, en términos de porcentaje, en una escala acumulativa. Dependiendo de la estructura de cada asociación de especies, la forma de la curva de abundancia y biomasa será distinta a la forma que presenten dichas curvas en una asociación de especies diferente, lo que puede estar dado por alguna condición propia del lugar donde éstas se encuentran. Por ejemplo, en comunidades sin perturbación y, por tanto, más diversas, la curva de biomasa se halla sobre la curva de abundancia

(Fig. 3a). Una situación intermedia está representada en la Fig. 3b, donde ambas curvas son muy similares; el caso extremo de perturbación es el que presenta la curva de abundancia sobre la curva de biomasa (Fig. 3c). La ventaja de utilizar este método es que permite comparar la distribución de abundancia y la distribución de biomasa, en los mismos términos, aun cuando poseen unidades distintas, lo que no se podría hacer con un índice de diversidad, por ejemplo.

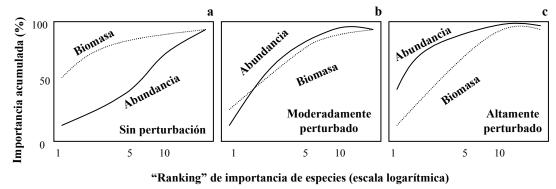


Fig. 3. Curva k-dominancia hipotética para abundancia y biomasa, mostrando distintos grados de perturbación.

3.10.6. Importancia relativa de merluza común como by-catch

3.10.6.1. Importancia relativa

La determinación de la importancia de la merluza común en las capturas se efectúa aplicando dos índices distintos. El primero se basa en Índice de Importancia Relativa (IIR) de Pinkas *et al.* (1971), usado para evaluar la importancia de las presas en la dieta de sus predadores y corresponde a:

$$IIR = (CN + CG) \cdot FO$$

Para efectos del presente estudio, FO es la frecuencia de ocurrencia (= número de lances donde se presenta el recurso merluza común respecto del total de lances); CN es la composición numérica (= número de ejemplares de merluza común presentes en los lances respecto del número total de ejemplares de todas las especies en todos los lances); CG es la composición gravimétrica (= peso del total de ejemplares de merluza común presentes en los lances respecto del peso total de ejemplares de todas las especies en todos los lances).

El objetivo de este índice es dar la importancia justa al recurso, ya que si sólo se usa el número de ejemplares como medida de importancia se corre el riesgo de sobreestimarla cuando existen muchos ejemplares, pero pequeños; a la vez que se subestima a aquellos ejemplares de mayor tamaño, pero poco recurrentes. Una situación análoga ocurre si sólo se usa la frecuencia de ocurrencia o el peso del recurso analizado.

El segundo método para determinar la importancia específica es cuantificar la producción (p) de la especie recurso de interés. Para el efecto se utiliza el valor descriptivo de p propuesto por Warwick & Clarke (1993), de acuerdo a la siguiente expresión:

$$p = A \cdot \left(\frac{B}{A}\right)^{0.73}$$

donde B es la biomasa de la especie de interés (que se reemplaza por CPUA, en peso); A es la abundancia en número de la misma especie (que se reemplaza por CPUA en número).

La relación de Warwick & Clarke (1993) ha sido utilizada para la descripción de la producción en ensambles de peces en Costa Rica y Colombia (Wolff, 1996; Velasco & Wolff, 1999).

3.10.6.2. Distribución espacial de la producción de merluza común

Los puntos de muestreo se distribuyeron en una franja de aproximadamente 1.500 km y en gran parte de esta longitud los puntos de muestreo se dispusieron en una sola línea. Sólo en un par de zonas, el ancho del área de muestreo varió entre 10 y 15 km. Esto impide la búsqueda de continuidad espacial (autocorrelación) en el sentido este-oeste, por lo que el análisis de continuidad espacial fue realizado construyendo un variograma experimental unidireccional, en el sentido del eje mayor del diseño de muestreo, 12° noreste aproximadamente. Alternativamente, se efectuó el análisis usando la latitud como eje Y y la profundidad como eje X, lo que permite describir el proceso de acuerdo a la batimetría.

Se calculó el variograma experimental para cada distancia de separación entre pares de puntos (lag), por medio del estimador:

$$\bar{\gamma}(h) = \frac{1}{2 \cdot N(h)} \sum_{i=1}^{N(h)} [Z(x_i) - (Zx_i + h)]^2$$

donde N(h) es el número de pares $[Z(x_i) - (Zx_i + h)]$, que corresponden al valor de la variable en el punto x_i y el punto $x_i + h$, con h como distancia lag.

Luego de haber construido el variograma empírico, en cada caso, se efectuó la modelación, obteniendo los parámetros por medio del estimador de mínimos cuadrados ponderados de Cressie (1991). Este estimador es:

$$\sum_{i=1}^{H} N(h_i) \left[\frac{\gamma * (h_i)}{\gamma (h_i)} \right]^2$$

donde $\gamma^*(h_i)$ es la varianza espacial empírica (variograma empírico) y $\gamma(h_i)$ es la variancia espacial de acuerdo a la parametrización y $N(h_i)$ es el número de pares de observaciones separados por el vector h.

Con el modelo de variograma se efectuó la interpolación con kriging puntual ordinario, el que asume la media constante $(m_{(s)})$, pero desconocida. El kriging ordinario, "filtra" la media del predictor general de kriging.

$$Z * (s) = \sum_{i=1}^{N} \lambda_i Z(x_i) + \left[1 - \sum_{i=1}^{N} \lambda_i \right] \cdot m(s)$$

imponiendo la restricción que las ponderaciones λ_i sumen uno.

Para evaluara la calidad del ajuste se realizó una validación cruzada, la que consiste en remover de una en una las observaciones de la variable en estudio y cada vez estimarla con el modelo ajustado. Con esto se obtuvo una base de datos compuesta por valores observados y valores estimados, con lo que se pudo obtener los errores (residuos). Estos errores fueron evaluados en su supuesto de normalidad, aleatoriedad e independencia. Una vez realizada la validación se hizo un mapeo con los valores de interpolación obtenidos

3.11. Objetivo Específico 5

Analizar la situación actual de los recursos en la zona de estudio, considerando los antecedentes de la pesqueria y los resultados del proyecto.

El Instituto de Fomento Pesquero, ha analizado la situación de langostino amarillo y colorado básicamente a través del modelo talla-estructurado de Sullivan *et al.* (1990) (ver Canales *et al.*, 2000). Este modelo, si bien introduce una función estocástica para el crecimiento a través de la distribución Gamma, los parámetros no son estimables y la constante β es difícil de justificar y en la mayoría de las aplicaciones se ha utilizado el mismo valor (Quinn y Deriso, 1999). Entonces, como una alternativa para la administración de estos recursos, y para los fines de este proyecto, se propone analizar la situación actual de los recursos langostino amarillo y colorado en términos de los cambios en abundancia y biomasa de los stocks de en el área de estudio a través de tres modelos de evaluación alternativos, a saber:

- a) **Modelo 1**, que corresponde básicamente a la aplicación del programa de evaluación de stock generalizado conocido como COLERAINE (Hilborn *et al.*, 2000);
- b) **Modelo 2**, que corresponde a un modelo talla-estructurado descrito por primera vez por Quinn *et al.* (1998) para invertebrados; y,
- c) Modelo 3, que corresponde al modelo talla-estructurado de Sullivan *et al.* (1990).

Estos modelos serán implementados en un lenguaje computacional C++ utilizando AD Model Builder (Otter Research 1999, otter@island.net). Las entradas pueden ser fácilmente actualizadas y el programa puede ser utilizado operacionalmente para cualquier usuario.

3.11.1. Modelo 1. COLERAINE Versión 3.0

El modelo de dinámica poblacional básico considera las ecuaciones del modelo general edadestructurado llamado COLERAINE (Hilborn *et al.*, 2000), con una función de ajuste por maxima verosimilitud para datos de composición por tamaños que se utiliza en MULTIFAN (Fournier *et al.*, 1990; 1998). El modelo proyecta la población hacia adelante a partir del reclutamiento y removiendo la abundancia de las clases anuales en el tiempo por capturas y mortalidad natural en contraposición a la proyección hacia atrás que se utiliza en el Análisis Secuencial de Poblaciones y sus variantes. Los datos disponibles para la evaluación dicen relación con:

- a) captura total anual en peso, disponibles para los años 1990 2003;
- b) índices de abundancia relativa dependiente de la pesquería ó captura por unidad de esfuerzo;
- c) índices de biomasa explotables independiente de la pesquería, correspondientes a las evaluaciones directas de biomasa por el método de área barrida;
- d) datos de distribución de frecuencia de tallas que reflejan la estructura de la biomasa evaluada por el método de área barrida; y,
- e) datos de composición por tallas en las capturas anuales realizadas por la flota.

En la descripción de la dinámica, se utiliza los sub-índices *a*, *t*, y *l* para la edad, tiempo (años), y longitud, mientras que el super-índice *s* y *g* denotan sexo y arte de pesca, ya sea para el arte de pesca utilizado en los cruceros de evaluación como para la pesquería.

3.11.1.1. Dinámica de la abundancia

La abundancia a la edad a y sexo s es dada por:

$$N_{a,t}^{s} = \begin{cases} R_{a,t}^{s} & a=1 \\ N_{a-1,t-1}^{s} \exp(-M_{a-1}^{s})(1-u_{a-1,t-1}^{s}) & a=2,...,A-1 \\ N_{a-1,t-1}^{s} \exp(-M_{a-1}^{s})(1-u_{a-1,t-1}^{s}) + N_{a,t-1}^{s} \exp(-M_{a}^{s})(1-u_{a,t-1}^{s}) & a=A \end{cases}$$

donde $N_{a,t}^s$ es la abundancia a la edad a en el año t para el sexo s, $R_{a,t}^s$ es el reclutamiento, M_a^s es la tasa instantánea de mortalidad natural, A es el grupo "plus" (la abundancia que sobrevive a la edad A-1 se acumula en la edad A), mientras que $u_{a,t}^s$ representa la tasa de explotación total, que representa el producto entre la selectividad edad específica, $s_{a,t}^{s,g}$, y la tasa de explotación de los ejemplares completamente vulnerados en un año dado, i.e.

$$u_{a,t}^{s,g} = S_{a,t}^{s,g} u_t^g$$

La formulación es idéntica si el arte *g* se refiere a una pesquería o crucero, excepto que en los cruceros la mortalidad generada se asume despreciable respecto de la pesquería y puede por lo tanto ser ignorada. Modelos específicos para la función de selectividad son descritos más adelante.

Bajo el supuesto que la captura en peso realizada por el arte g, Y_t^g , es conocida sin error y que la pesca ocurre instantáneamente a mitad de año, la tasa anual de explotación para la clase de edad completamente vulnerada es dada por

$$u_{t}^{g} = \frac{Y_{t}^{g}}{\sum_{s} \exp(-0.5M^{s}) \sum_{a} s_{a}^{s,g} N_{a,t}^{s} w_{a}^{s}}$$

donde w_a^s es el peso promedio a la edad a. La expresión es equivalente a la razón de captura total a la biomasa explotable a mediados de año.

3.11.1.2. Reclutamiento

Podría ocurrir que los datos disponibles no contengan la información suficiente para estimar exactamente una relación stock-recluta y otros parámetros derivados de los parámetros de dicha relación (Hilborn and Liermann 1988). COLERAINE utiliza el modelo de Beverton y Holt reparametrizado en términos del "escarpamiento" de la relación stock-recluta (steepness, Francis 1992). De esta manera, si un conjunto de datos no es informativo acerca de la relación stock-recluta, es factible fijar el escarpamiento en la unidad y permitir que el reclutamiento sea estimado independientemente de la biomasa desovante.

Dicho lo anterior, se describirá la forma de estimar el reclutamiento y el uso del modelo stockrecluta de Beverton y Holt con una estructura de error lognormal, i.e.

$$R_{t} = \frac{S_{t-r}}{\alpha + \beta S_{t-r}} \exp(\varepsilon_{t} - \sigma_{R}^{2} / 2)$$

donde R representa el reclutamiento a la edad 1, S es la biomasa desovante t-r años atrás, ε_t representa las desviaciones del reclutamiento predicho por el stock desovante, y σ_R^2 es la varianza para las desviaciones del reclutamiento log transformado. Los parámetros del modelo se estiman mediante las siguientes expresiones:

$$\alpha = \frac{1 - h}{4hR_0} S_0$$

y

$$\beta = \frac{5h - 1}{4hR_0}$$

donde h es el escarpamiento (steepness) de la curva desovadores-reclutas, S_{θ} es la biomasa desovante virginal en ausencia de explotación pesquera, y R_{θ} es el reclutamiento promedio producido por la biomasa desovante no explotada. El término steepness fue definido por Mace y Doonan (1988) y representa la fracción del reclutamiento R_{θ} que ocurre cuando la biomasa desovante ha sido reducida a un nivel del 20% del nivel virginal (S_{θ}).

3.11.1.3. Condiciones iniciales

Idealmente, las condiciones iniciales se deben establecer para algún año anterior al desarrollo de la pesquería con el objeto de representar condiciones de equilibrio sin explotación pesquera. Aunque esta asunción simplifica la estructura del modelo, es factible relajar tal supuesto si el año inicial para la evaluación representa un periodo en que ya han existido remociones por captura en años anteriores.

La abundancia a la edad en el primer año, se asume representa condiciones de equilibrio, por lo tanto:

$$N_{a,1}^{s} = \begin{cases} 0.5R_{0} & a=1\\ N_{a-1,1}^{s} \exp(-M_{a-1}^{s}) & a=2,...,A-1\\ N_{a-1,1}^{s} \exp(-M_{a-1}^{s})/(1 - \exp(-M_{a}^{s})) & a=A \end{cases}$$

donde la constante 0,5 representa la proporción sexual a la edad de reclutamiento, que también podría adoptar valores diferentes si a la edad de reclutamiento uno de los sexos recluta con mayor abundancia.

La biomasa desovante virginal se estima por

$$S_0 = \sum_{a=1}^{A} w_a m_a N_{a,0}^f$$

donde el w_a es el peso promedio a la edad a, m_a es la ojiva de madurez sexual, el super-índice f denota hembras, mientras que el subíndice t=0 para la abundancia es equivalente para la estimación de la abundancia del primer año (t=1), dado por la ecuación previa y, en consecuencia, S_0 es función de R_0 , M, peso promedio y ojiva de madurez.

3.11.1.4. Selectividad

La función de selectividad implementada en COLERAINE es generalizada utilizando una función doble compuesta de un modelo mitad-Gaussiano (o normal) para modelar la función ascendente y descendente antes y después de la edad completamente vulnerada o edad de máxima selección ($S_{full}^{s,g}$). La selectividad, por lo tanto es función de tres parámetros:

$$a \le S_{full}^{s,g}$$

$$a \ge S_{full}^{s,g} = \begin{cases} \exp\left(\frac{-(a - S_{full}^{s,g})^{2}}{v_{L}^{s,g}}\right) \\ \exp\left(\frac{-(a - S_{full}^{s,g})^{2}}{v_{R}^{s,g}}\right) \end{cases}$$

donde $v_L^{s,g}$ y $v_R^{s,g}$ son parámetros de forma (varianzas) que deben ser estimados. Variabilidad interanual en la selectividad edad-específica es factible de ser estimada introduciendo variaciones aleatoria log-normal para los parámetros de forma, particularmente útil para el arte de pesca comercial.

3.11.1.5. Crecimiento

Se asume que el crecimiento puede ser descrito a través del modelo de von Bertalanffy, que predice la longitud media a la edad, i.e.

$$l_a^s = L_\infty^s (1 - \exp(-k^s (a - t_0^s)))$$

donde L_{∞} , k y t_0 son parámetros del modelo de von Bertalanffy. Para utilizar datos estructurados por longitud a partir de un modelo con estructura de edad, se requiere convertir la edad a longitud. Para ello, se asume que la variabilidad de la longitud a la edad se distribuye normal (Fournier *et al.*, 1990). Por lo tanto, la proporción o probabilidad de que tiene un individuo de edad a de pertenecer al intervalo de longitud l ($p_{a,l}$) es función de la longitud media a la edad (predicha por el modelo de von Bertalanffy) y la varianza de la longitud a la edad, i.e.

$$p_{a,l}^{s}(l_{a}\sigma_{a}) = \frac{\delta}{\sqrt{2\pi}\sigma_{a}} \exp\left(\frac{-(x_{l}-l_{a})^{2}}{2(\sigma_{a})^{2}}\right)$$

donde δ es el tamaño del intervalo de longitud, y x_l representa la marca de clase. En esta formulación se ha preferido omitir el super-índice relativo al sexo para la varianza y longitud a la edad. La matriz generada a través de la modelo anterior puede ser multiplicada por la abundancia por edad, o captura por edad, para obtener abundancia por talla o captura por talla. Para los efectos de esta presentación del modelo, las proporciones de la longitud a la edad se denotan por f_{la}^a .

3.11.1.6. Predicción de datos observados

La CPUE (I_t^g) se asume proporcional a la biomasa vulnerable o explotable en la mitad del año, i.e.

$$I_t^g = q^g \sum_{s} \exp(-0.5M^s) \sum_{a} s_{a,t}^{s,g} N_{a,t}^s w_a^s$$

donde q^g es el coeficiente de capturabilidad arte-específico, que se puede asumir constante o con cambios interanuales introduciendo un componente de variación asociado a un proceso de caminata aleatoria (random walk).

Los datos de composición por tallas o distribuciones de frecuencia de tallas (proporciones) en la captura o en el crucero de evaluación, son función de la composición por edad de la población, ojiva de selectividad edad-específica, y las proporciones de longitud a la edad. Los datos observados de composición por talla del crucero ($P_{l,t}^{s,g}$) pueden ser predichas desde el modelo por:

$$P_{l,t}^{s,g} = \frac{\sum_{a} S_{a,t}^{s,g} f_{l|a}^{s} N_{a,t}^{s}}{\sum_{s} \sum_{a} S_{a,t}^{s,g} \sum_{l} f_{l|a}^{s} N_{a,t}^{s}}$$

3.11.1.7. Funciones de log-verosimilitud

Cuando se consideran funciones de verosimilitud para modelar la estructura de error o variabilidad observada en los diferentes tipos de datos, la estimación por máxima verosimilitud es equivalente cuando se minimiza la log-verosimilitud negativa. Para los datos de CPUE, se considera tanto las funciones de log-verosimilitud log-normal y gamma.

Para los errores distribuidos gamma, la función de log-verosimilitud negativa para la CPUE (L_{CPUE}^g) es la suma de la verosimilitud individual (ignorando las constantes), i.e.

$$L_{CPUE}^{g} = \sum_{i=1}^{nobs} (\log(\widetilde{I}_{t}^{g} / I_{t}^{g}) - (\widetilde{I}_{t}^{g} / I_{t}^{g})) / \phi^{g}$$

donde ϕ^g es la varianza de la CPUE log-transformada y asumida constante para todos los índices dentro de una misma serie, y \mathcal{T}_t^g es la CPUE observada para el año t.

Para errores log-normal, la función de log-verosimilitud es:

$$L_{CPUE}^{g} = \sum_{i=1}^{nobs} \log \phi^{g} + 0.5 \log 2\pi + \left(-\frac{\log(\widetilde{I}_{t}^{g} / I_{t}^{g})^{2}}{2\phi^{g}} \right)$$

Un modelo similar puede ser deducido para las estimaciones de biomasa de los cruceros de evaluación.

En el caso de los datos de composición por tallas, Fournier *et al.* (1990) presentaron una distribución normal robusta para datos de proporción por talla. La función de log-verosimilitud negativa viene dada por:

$$L_{TALLA}^{s,g} = -0.5 \sum_{t=1}^{nobs} \sum_{l=1}^{A_l} \log(2\pi(\xi_{l,t}^{s,g} + 0.1/A_l)) - \sum_{t=1}^{nobs} A_l \log(\tau) + \sum_{t=1}^{nobs} \sum_{l=1}^{A_l} \log\left[\exp\left\{-\frac{(\tilde{P}_{l,t}^{s,g} - P_{l,t}^{s,g})^2}{2(\xi_{l,t}^{s,g} + 0.1/A_l)\tau}\right\} + 0.01\right]$$

donde A_l es el número de clases de talla, $\widetilde{P}_{l,t}^{s,g}$ es la proporción observada de peces en la muestra de longitud l, y τ es el inverso del número de peces en la muestra. Fournier *et al.* (1990) basaron la varianza $\xi_{l,t}^{s,g}$ en las proporciones observadas, i.e.

$$\xi_{l,t}^{s,g} = P_{l,t}^{s,g} (1 - P_{l,t}^{s,g})$$

La función de log-verosimilitud total es la suma de las funciones particulares, a las cuales se deben agregar las penalizaciones que han sido descritas previamente para incluir la estocasticidad en el reclutamiento, capturabilidad y selectividad, además de información previa (priors) sobre algunos parámetros de interés. Por lo tanto, la función de log-verosimilitud total puede ser representada por:

$$f = -\log L + \text{penalties} + prior$$

En COLERAINE, la información previa de los principales parámetros del modelo (reclutamiento, steepness, mortalidad natural, capturabilidad, etc) puede incorporarse usando tres tipos de funciones de densidad: uniforme, normal y log-normal.

3.11.1.8. Evaluación de políticas de explotación

COLERAINE permite realizar un análisis de decisión para evaluar políticas de explotación alternjativas bajo incertidumbre relativa a la estructura de cada modelo implementado y datos observados. Una aproximación Bayesiana se utiliza para simular futuras trayectorias del stock utilizando el algoritmo Monte Carlo Markov Chain (MCMC) que permite generar muestras a partir de la distribución de probabilidad conjunta posterior, y la distribución marginal de cualquier parámetro puede ser deducida de estas muestras. Se destaca que COLERAINE está implementado en AD Model Builder (Otter Research Ltd. 1999), y la técnica MCMC se basa en el algoritmo Hasting-Metropolis (Gelman *et al.*, 1995). Dos tipos de políticas pueden ser evaluadas: captura constante y tasas de explotación constante.

3.11.2. Modelo 2. Quinn *et al.* (1998)

Como una alternativa se pretende aplicar el modelo desarrollado por Quinn *et al.* (1998), quien propuso extender el modelo de Deriso y Parma (1988) para determinar distribuciones de probabilidad de abundancia y captura en función de la talla de los individuos de la población. La extensión del modelo "discretiza" la distribución de longitud, permitiendo representaciones más flexibles para la selectividad y la mortalidad natural, como también una generalización para poblaciones con características sexuales diferentes.

El model basado en longitudes determina las frecuencias de longitud y la correspondiente función de densidad de probabilidad (PDF) de la captura y la población para cada cohorte presente.

Comenzando con la PDF y la abundancia total del reclutamiento para una cohorte, se desarrollan ecuaciones recursivas para obtener la PDF y la abundancia total de la cohorte en cada edad subsecuente. Siguiendo a Deriso y Parma (1988), se asume que la mortalidad ocurre primero y después el crecimiento.

Suponga que el reclutamiento de N_r individuos ocurre a la edad r, donde la edad puede tener cualquier unidad de tiempo (e.g. diaria, mensual, anual). La longitud x de cada individuo se considera una variable discreta. Asuma que la distribución de las longitudes x para la edad r es normal discreta (N_D) con media μ_r y varianza σ_r^2 ; la función de densidad de probabilidad (PDF) puede ser escrita por

$$f_r(x) \approx N_D(\mu_r, \sigma_r^2) = \frac{\exp(-(x - \mu_r)^2 / 2\sigma_r^2)}{\xi_r}$$
 (*)

donde

$$\xi_r = \sum_{x} \exp(-(x - \mu_r)^2 / 2\sigma_r^2)$$

Esta última es una constante que permite que la suma sobre x de la ecuación (*) sea igual a la unidad. La abundancia de la edad de r individuos en cada longitud (x) es entonces:

$$N_r(x) = N_r f_r(x)$$
.

Para obtener la abundancia a la edad a+1, $N_{a+1}(x)$, a partir de la edad a y comenzando de la edad r, los procesos de mortalidad y crecimiento deben ser considerados. La mortalidad natural y la selectividad se asumen dependientes de la longitud. Sea

x, L = Subíndice para la longitud

 M_x = Mortalidad natural

 S_x = Selectividad del arte

 F_a = Mortalidad por pesca en $S_x = 1$.

 $F_{a,x}$ = Mortalidad por pesca en longitudes parcialmente vulneradas.

La mortalidad por pesca se asume separable, i.e.

$$F_{a,x} = S_x F_a$$

La mortalidad total es la suma de la mortalidad natural y por pesca:

$$Z_{a,x} = M_x + F_{a,x}$$

Se puede lograr parsimonia si algunas formas funcionales pueden ser establecidas para algunos parámetros. Por ejemplo, la mortalidad natural puede ser parametrizada como una función lineal, i.e.

$$M_{\rm r} = M_1 + M_2 x$$

ó exponencial,

$$M_r = M_1 \exp(-M_2 x)$$

También puede ser simulada a través de una caminata aleatoria siguiendo desviaciones aleatorias distribuidas log-normal (Fu *et al.*, 1999)

Por otra parte, la selectividad puede ser parametrizada mediante una función logística, i.e.

$$S_x = [1 + \exp(-\gamma (x - L_{50\%}))]^{-1}$$

donde $L_{50\%}$ es la longitud donde el 50% de los peces son vulnerables e γ es un parámetro que da forma a la función logística.

Hasta el momento, las ecuaciones son escritas en función de la edad, pero son equivalentes a las funciones de tiempo. Ya que se asume que primero ocurre la mortalidad y después el crecimiento, a continuación se describe la forma en que dichos procesos se modelan.

3.11.2.1. Mortalidad

Para una PDF dada, $f_a(x)$, al comienzo de la edad a, la distribución relativa de longitudes en la población después que la mortalidad ocurre (al término de la edad a) es

$$p_{aZ}(x) = f_a(x) \exp(-(M_x + S_x F_a)) = f_a(x) \exp(-Z_{aX}).$$

El número absoluto de individuos a la longitud x después que ocurre mortalidad es dado por

$$N_{a,Z}(x) = N_a p_{a,Z}(x),$$

y la PDF para las longitudes después de la mortalidad es

$$f_{a,Z}(x) = p_{a,Z}(x) / \sum_{x} p_{a,Z}(x)$$

Deriso y Parma (1988) señalan que la distribución relativa de longitudes en la captura puede seguir la ecuación de captura de Baranov, y es dada por

$$p_{a,C}(x) = f_a(x) \frac{F_{a,x}}{Z_{a,x}} (1 - \exp(-Z_{a,x})).$$

La captura absoluta a la edad a y su PDF siguen de las Ecuaciones de $N_{a,Z}(x)$ y $p_{a,C}(x)$, i.e.

$$C_a(x) = N_a p_{a,C}(x)$$

y

$$f_{a,C}(x) = p_{a,C}(x) / \sum_{x} p_{a,c}(x).$$

La captura total a la edad a, se obtiene de $C_a(x)$, i.e. $C_a = \sum_x C_a(x)$.

3.11.2.2. Abundancia explotable

Para los langostinos se cuenta con datos de cruceros con un arte de pesca similar a la de la pesquería, entonces la distribución de tallas resultante estará influenciada por la selectividad del arte. En esencia este es un estimado de la población explotable y, aunque si un crucero no es conducido, la población explotable es una cantidad de interés. La definición matemática para la población explotable para la longitud x a la edad a, es

$$N_a^*(x) = S_x \frac{1 - \exp(-Z_{a,x})}{Z_{a,x}} N_a(x) \approx S_x N_a(x).$$

La aproximación es válida para pequeños valores de Z. Así, la distribución relativa de longitudes en la población explotable para la edad a (después que la mortalidad ocurre) es dada por

$$p_{a,S}(x) = S_x p_{a,Z}(x)$$

La abundancia explotable a la edad a y su PDF sigue desde las Ecuaciones de $N_{a,Z}(x)$ y $p_{a,C}(x)$, i.e.

$$N_a^*(x) = N_a p_{a,S}(x)$$

y

$$f_{a,S}(x) = p_{a,S}(x) / \sum_{x} p_{a,S}(x)$$

La abundancia explotable, por lo tanto es la suma de $N_a^*(x)$, i.e. $N_a^*\sum_{i=1}^n x_i^2(x)$.

3.11.2.3. Crecimiento

Se asume que un individuo de longitud x crecerá a la longitud L en un paso de tiempo de acuerdo con un modelo de crecimiento estocástico. Un modelo útil es la función de crecimiento de von Bertalanffy en longitud (LVB) con un error estocástico, el cual fue desarrollado por Cohen y Fishman (1980) y utilizado por Deriso y Parma (1988). El modelo LVB se expresa como

$$L_a = L_{\infty} (1 - \exp(-K(a - a_0))),$$

donde L_{∞} es la longitud asintótica, K es la constante de crecimiento, y a_0 es la edad cuando L=0. Una formulación equivalente para la edad L_{a+1} a la edad a+1 como función del tamaño a la edad previa, L_a , con la inclusión de un término estocástico es

$$L_{a+1} = L_{\infty}(1-\rho) + \rho L_a + \varepsilon_a,$$

donde el coeficiente de Brody ρ es exp(-K) y ε_a es una variable aleatoria distribuida normal e independientemente con media cero y varianza constante, σ^2 . De acuerdo con Cohen y Fishman (1980), la longitud esperada y varianza a la edad a+1 para un individuo de longitud x a la edad a, considerando que fue reclutado a la edad r, son

$$\mu_{a+1}(x) = L_{\infty}(1-\rho) + px$$

y

$$\sigma_{a+1}^2 = \sigma^2 \frac{1 - \rho^{2(a+1-r)}}{1 - \rho^2} + \rho^{2(a+1-r)} \sigma_r^2.$$

Existen modelos alternativos que incluyen la distribución gamma para la varianza (Sullivan *et al.*, 1990), y modelos más generales para el crecimiento (e.g. Gompertz, Schnute), y dejando σ_{a+1}^2 como función de la longitud *x* como de la edad.

La PDF para la distribución de longitudes después de un incremento en longitud de un individuo que originalmente era de tamaño *x* es dada por

$$f_{a+1,G}(L \mid x) \approx N_D(\mu_{a+1}(x), \sigma_{a+1}^2) = \frac{\exp(-(L - \mu_{a+1}(x))^2 / 2\sigma_{a+1}^2)}{\xi_{a+1,x}}$$

donde

$$\xi_{a+1,x} = \sum_{L} \exp(-(L - \mu_{a+1}(x)))^2 / 2\sigma_{a+1}^2$$
.

La distribución relativa de longitudes al comienzo de la edad a+1 es entonces obtenida a partir de la distribución relativa de longitudes después de la ecuación de mortalidad $p_{a,Z}(x)$, y la PDF para el crecimiento $f_{a+1,G}(L \mid x) \approx N_D(\mu_{a+1}(x), \sigma_{a+1}^2)$, lo que resulta en

$$p_{a+1}(L) = \sum_{x} f_{a+1,G}(L \mid x) p_{a,Z}(x)$$

= $\sum_{x} f_{a}(x) \exp(-Z_{a,x}) \exp[-(L - \mu_{a+1}(x))^{2} / 2\sigma_{a+1}^{2}] / \xi_{a+1,x}$

El número absoluto a la longitud y edad a+1 y correspondiente PDF son por lo tanto

$$N_{a+1}(L) = N_a p_{a+1}(L)$$

y

$$f_{a+1}(L) = p_{a+1}(L) / \sum_{L} p_{a+1}(L)$$

La conversión de número a biomasa se puede realizar con la relación longitud-peso.

3.11.3. Modelo 3, de Sullivan *et al.* (1990)

El Modelo de Sullivan et al. (1990), considerará los siguientes componentes:

3.11.3.1. Dinámica básica

La abundancia en número es representada por:

$$N_{l,t}^{s} = X_{l,l}^{s} N_{l,t-1}^{s} \exp(-Z_{l,t-1}^{s}) + P_{l} R_{t}^{s}$$

donde $N_{l,t}^s$ es la abundancia de animales del sexo s, en la clase de longitud l, en el año t; $X_{l,l'}^s$ es la matriz de transición del crecimiento para los animales del sexo s, entre la talla l y l'; $Z_{l,t-1}^s$ es la

tasa de mortalidad total para los animales del sexo s, en la clase de longitud l; P_l es un vector de distribución de probabilidad del reclutamiento anual, R_t^s , de los animales del sexo s en el año t.

La matriz de transición del crecimiento se determina utilizando los parámetros de crecimiento de von Bertalanffy para estimar el incremento promedio de la longitud, i.e.

$$\Delta L_l^s = (L_{\infty}^a - L_l^s)(1 - \exp(-K^s))$$
 para $L_l^s < L_{\infty}^s$

y

$$\Delta L_l^s = 0 \text{ para } L_l^s \ge L_\infty^s$$

La longitud esperada, E(x), de un animal de longitud L_l^s de sexo s una unidad de tiempo después viene dada por:

$$E(x) = L_l^s + \Delta L_l^s$$

La probabilidad alrededor del incremento promedio se incorpora para un animal de longitud L_l^s , asumiendo que su longitud, x, una unidad de tiempo más tarde puede ser modelada por la función de densidad de probabilidad gamma, la cual se puede expresar, según Quinn y Deriso (1999), por:

$$g(x \mid \alpha_l, \beta) = \frac{x^{\alpha_l - 1} \exp(-x/\beta)}{\beta^{\alpha_l} \Gamma(\alpha_l)}$$

De acuerdo con este modelo se tiene longitud esperada, E(x), y en la cual α_l es el parámetro de escalamiento para la clase de longitud l, y β es el parámetro de forma común para todas las clases de talla. La media y varianza de la distribución gamma vienen dadas por las siguientes expresiones:

$$E(x) = \alpha_1 \beta$$

$$Var(x) = \alpha_l \beta^2 = \beta E(x)$$

El parámetro α_l de la distribución gamma puede estimarse por:

$$\hat{\alpha}_{l} = (L_{l}^{s} + \Delta L_{l}^{s})/\beta$$

y por lo tanto es función de los parámetros de crecimiento y de la longitud media. A su vez, la varianza de la longitud una unidad de tiempo después es proporcional a la longitud esperada. La probabilidad del incremento en longitud entre el límite inferior y superior de una clase de talla, se calcula según la siguiente expresión:

$$X_{l,l'}^s = \int_{l_l}^{l_2} g(x \mid \alpha_l, \beta) dx$$

3.11.3.2. Reclutamiento

El reclutamiento anual de los animales del sexo *s*, se determinará asumiendo una proporción sexual de 1:1 y considerando la relación stock-recluta de Beverton y Holt, i.e.

$$R_t^s = 0.5R_t$$

y

$$R_{t} = \frac{S_{t-r}}{\alpha + \beta S_{t-r}} \exp(\varepsilon_{t})$$

donde S_{t-r} representa la biomasa desovante observada en el año t-r, donde r es la edad de reclutamiento. ε_t representa las desviaciones del reclutamiento predicho por el stock desovante, y σ_R^2 es la varianza para las desviaciones del reclutamiento log transformado. Los parámetros del modelo se estiman mediante las siguientes expresiones:

$$\alpha = \frac{1 - h}{4hR_0} S_0$$

y

$$\beta = \frac{5h - 1}{4hR_0}$$

donde h es el escarpamiento (steepness) de la curva desovadores-reclutas, S_{θ} es la biomasa desovante virginal en ausencia de explotación pesquera, y R_{θ} es el reclutamiento promedio producido por la biomasa desovante no explotada. El término steepness representa la fracción del reclutamiento R_{θ} que ocurre cuando la biomasa desovante ha sido reducida a un nivel del 20% del nivel virginal (S_{θ}).

Para la distribución del reclutamiento por clases de talla se utilizará una distribución normal, dada por:

$$P_{l} = \frac{1}{\sqrt{2\pi\sigma_{L_{r}}^{s}}} \exp\left(-\frac{(L_{l}^{s} - L_{r}^{s})^{2}}{2(\sigma_{L_{r}}^{s})^{2}}\right)$$

donde L_r^s y $\sigma_{L_r}^s$ representa la longitud promedio y desviación estándar de la distribución del reclutamiento por clases de talla.

3.11.3.3. Mortalidad por pesca y Selectividad

La mortalidad por pesca de los animales de sexo s por clases de talla l, $F_{l,t}^s$, se estimará según el siguiente modelo:

$$F_{l,t}^s = v_l^s F_t^s$$

donde F_t^s es la mortalidad por pesca anual para los animales de sexo s, en tanto v_l^s representa la selectividad de los animales de sexo s en la clase de longitud l, asumiéndose una ecuación logística, i.e.

$$v_l^s = \left[1 + \exp\left(-\ln(19)\frac{L_l^s - L_{50}^s}{D^s}\right)\right]^{-1}$$

donde L_l^s representa la longitud media de los animales de sexo s en la clase de longitud l, L_{50}^s es la longitud al nivel del 50% de selección, y D^s es la diferencia entre la longitud al nivel del 95% y

de 50% de selección. Una ecuación logística idéntica se utilizará para modelar la selectividad de los cruceros de evaluación.

La tasa de mortalidad total, viene dada por:

$$Z_{l,t}^s = F_{l,t}^s + M$$

donde M es la tasa de mortalidad natural, asumida constante entre clases de talla y años.

3.11.3.4. Predicciones y funciones de verosimilitud

A partir de la dinámica de la abundancia, se obtienen estimaciones de capturas anuales en peso, biomasa explotable, y captura por unidad de esfuerzo las que se contrastan con los datos observados maximizando la función de verosimilitud. Para este tipo de datos se utiliza una función log-normal. A su vez, la composición por tallas observada en las capturas comerciales y en los cruceros de evaluación se contrastará con las estimaciones provenientes del modelo utilizando una función de verosimilitud multinomial.

3.11.3.5. Proceso de Estimación

Se utilizan funciones de log-verosimilitud negativa para modelar la estructura de error de los datos observados, y se agrega las penalizaciones necesarias. Por lo general, funciones de distribución log-normal se utilizan para los índices de abundancia, y la distribución multinomial para los datos de composición por tamaños, ya sea de las capturas o de los cruceros de evaluación.

El modelo de evaluación aquí descrito es básico y algunas variantes pueden ser deducidas dependiendo de la información disponible. El algoritmo de estimación no lineal se implementa en AD Model Builder, el nuevo software para modelar complejos modelos de minimización no-lineal y estadística (Otter Research 1999, otter@island.net). AD Model Builder permite una estimación eficiente y rápida, otorgando gran flexibilidad al usuario para modificar el modelo y analizar variantes. AD Model Builder utiliza derivativas exactas respecto de los parámetros del

modelo (diferenciación automática). Además, es muy útil para modelos con una gran cantidad de parámetros, provee estimaciones rápidas y precisas de la matriz Hessiana en el máximo (o mínimo), lo que permite contar con la matriz de covarianza, correlación, y por lo tanto con límites de confianza para todos los parámetros de interés a través del método Delta (Seber y Wild, 1989). A su vez, AD Model Builder permite evaluar políticas de explotación alternativas a través del algoritmo MCMC (Gelman *et al.*, 1995).

3.12. Objetivo Específico 6 (Adicional)

Estimar coeficientes de mortalidad natural (M) y mortalidad por predación (M2) para los stocks de langostino amarillo y colorado, y simular tendencias de su biomasa por cambios en la mortalidad por pesca (F) y por predación (M2).

3.12.1. Introducción

Los stocks de langostino amarillo y colorado explotados entre la II y la VIII Regiones se distribuyen en focos localizados en zonas costeras. Estos stocks presentan un comportamiento que dependería directa y fuertemente del nivel de las capturas y, secundariamente, de los reclutamientos (Canales, 2002). De acuerdo con análisis realizados a los stocks de langostino amarillo y colorado, en los últimos años se registra una significativa reducción de los stocks totales determinada por los siguientes factores: i) sobrepesca entre 1995 y 1999; ii) disminución de la fracción desovante; iii) bajos reclutamientos entre los años 1997 y 2000; y, iv) deterioro sostenido de la calidad somática (Canales, 2002).

Actualmente, existe incertidumbre acerca de los niveles de biomasa de estos recursos y el posible impacto de abrir su pesquería entre la V y la VIII Regiones, que se encuentra en veda por 3 años desde el 2001. Por lo tanto, junto con evaluar su biomasa actual, es necesario realizar proyecciones de la biomasa de estos recursos ante distintos niveles de explotación. Se ha indicado que la mortalidad por predación es causa importante de mortalidad en los ecosistemas marinos, incluso en los recursos fuertemente explotados (Bax, 1991; 1998). Para el ecosistema marino de

Chile central (V a IX regiones), Arancibia *et al.* (2003) informan que la mortalidad por predación es la principal causa de mortalidad en langostino colorado (*Pleuroncodes mondon*) y langostino amarillo (*Cervimunida johni*). Esto, sumado a los bajos niveles de biomasa que presentan estos recursos entre la V y la VIII Regiones, hace necesario evaluar también el efecto de la predación en la dinámica de su biomasa.

3.12.2. Metodología

Se utilizó un modelo multiespecífico del ecosistema marino de Chile central (V a IX regiones) que incluye información biológica y pesquera de 31 grupos funcionales del ecosistema marino de Chile central construido por Arancibia *et al.* (2003) para los años 1992, 1998 y 2000, y por Arancibia & Neira (2003) para el año 2002, para estimar, mediante el software Ecopath con Ecosim, EwE (Christensen & Pauly, 1992; Walters *et al.*, 1997), los coeficientes de mortalidad natural (M) y por depredación (M2) para los recursos pesqueros langostino amarillo y langostino colorado. Además, se simuló la tendencia de la biomasa de estos recursos ante cambios en la presión por pesca (F) y por predación (M2).

3.12.2.1. Estimación de la mortalidad natural (M) y por predación (M2)

El coeficiente de mortalidad total (Z) puede ser dividido en sus componentes de la siguiente forma:

$$Z = F + M$$

donde F es el coeficiente de mortalidad por pesca y M es el coeficiente de mortalidad natural. A su vez, M puede separarse en sus componentes, a saber:

$$M = M2 + M0$$

donde M2 es el coeficiente de mortalidad por predación y M0 corresponde a la mortalidad residual que no es explicada por predación ni capturas (*e.g.* enfermedades, longevidad, etc.).

F se calcula como:

$$F = \frac{Y}{B}$$

donde *Y* es el desembarque (tons) obtendido desde los registros oficiales del Servicio Nacional de Pesca (SERNAPesca) y *B* es la biomasa (ton) del grupo *i*, obtenida por métodos directos y/o indirectos.

El coeficiente de mortalidad por predación (M2) se calcula de la siguiente forma:

$$M2 = \sum_{j=1}^{n} Q_{ij} \cdot DC_{ji}$$

donde la sumatoria es sobre todos los n predadores que se alimentan de la presa i, Q_j es la tasa de consumo total de la presa i por el predador j, DC_{ji} es la fracción con que la presa i contribuye a la dieta del predador j.

 Q_{ij} y DC_{ji} se obtienen a partir de los modelos tróficos multiespecíficos construídos por Arancibia *et al.* (2003) y Arancibia &Neira (2003), los que integran información biológica y pesquera de los principales componentes tróficos del ecosistema marino de Chile central (V a IX Regiones). A la vez, M0 se calcula como:

$$M0 = P_i (1 - EE_i)$$

donde P_i es la producción del grupo i, EE_i es la denominada "eficiencia ecotrófica" de i, y representa la proporción de la producción de i que se utiliza dentro del sistema. P_i y EE_i se obtienen a partir del balance del modelo trófico multiespecífico elaborado por Arancibia $et\ al$. (2003) y Arancibia & Neira (2003).

3.12.2.2. Cambios en F y M2 y su efecto sobre la biomasa

Se simula la tendencia de la biomasa de langostino amarillo y colorado ante cambios en *F* y *M*2, mediante un modelo trófico previamente construido (Arancibia *et al.*, 2003), aplicando el software EwE (Walters *et al.*, 1997). La ecuación principal de EwE es la siguiente:

$$\frac{dB_i}{dt} = f(B) - M0 \cdot B_i - F_i \cdot B_i - \sum_{i=1}^n c_{ij}(B_i, B_j)$$

donde f(B) es una función de Bi; Bi es la biomasa del grupo i; cij(Bi,Bj) es la función que predice el consumo de la presa i por el predador j.

Al ingresar valores de f(B) y cij(Bi,Bj), el sistema de ecuaciones puede ser integrado en el tiempo con tasas de mortalidad por pesca (F) variables, entregando entonces predicciones dinámicas de biomasa para todo i, las que son un resultado directo de cambios en la captura, la predación y la disponibilidad de alimento para cada grupo i y un reflejo indirecto de cambios en la pesca y la depredación sobre grupos con los cuales interactúa el grupo i.

Las biomasas dinámicas proyectadas por EwE a partir del modelo multiespecífico que representa el ecosistema marino de Chile central en el año 1992 (Arancibia *et al.*, 2003) fueron forzadas utilizando valores de F de los grupos langostino colorado, langostino amarillo y de merluza común, que es de su principal predador. Posteriormente, se ajustó las proyecciones dinámicas de biomasa predichas por EwE utilizando series de tiempo de biomasa observada para ambos recursos de langostinos (Canales & Espejo, 2002).

Se utilizó una rutina Monte Carlo implementada en EwE de remuestreo de los parámetros de entrada a Ecopath, i.e. B, P/B, EE, etc., para disminuir la suma de cuadrados totales (SCT) entre las biomasas calculadas por EwE (Bc) para los recursos pesqueros y la biomasa observada (Bo) obtenidas a partir de evaluaciones directas o indirectas de los mismos grupos, desde SCT=238 a SCT=224. Posteriormente, se utilizó una rutina con la que se estima el parámetro vulnerabilidad (v) para cada grupo, con lo que se obtuvo SCT=79. Las simulaciones de F y M2 se llevaron a cabo utilizando los resultados del modelo que presentó el mejor ajuste.

Una vez ajustado el modelo, se simuló la tendencia de la biomasa de langostino amarillo y langostino colorado ante los siguientes niveles de mortalidad por pesca a partir del año 2003: (a) F = 0; (b) F = 0.05; (c) F = 0.10; (d) F = 0.15; y (e) F = 0.20, manteniendo constante F en los demás recursos pesqueros incluidos en el modelo multiespecífico.

Cada uno de estos escenarios de pesca fue evaluado considerando los siguientes cambios en M2 de langostino amarillo y langostino colorado en el año 2002, a saber: (a) aumento en 5%, (b) aumento en 10%, (c) aumento en 20%, (d) aumento en 30%, y (e) aumento en 50%. Lo anterior se simula variando el valor del parámetro vulnerabilidad (v) de cada uno de estos recursos a la predación.

En ECOSIM la biomasa de cada grupo presa B_i tiene un componente vulnerable para cada predador j (V_{ij}) en cualquier momento del tiempo. Esta biomasa V_{ij} puede intercambiarse con la biomasa no disponible $(B_i\text{-}V_{ij})$ a una velocidad que está determinada por el parámetro vulnerabilidad (v). Si v es alto, entonces el reemplazo desde la biomasa invulnerable a la vulnerable será rápido. Por lo tanto, un valor alto de v (v >> 1) implica un control por predadores. Contrariamente, si v es bajo $(v \sim 1)$, entonces el reemplazo de la biomasa desde la fracción $B_i\text{-}V_{ij}$ a la V_{ij} será lento, y la cantidad consumida por el predador estará determinada principalmente por el valor de v más que por el valor de la biomasa del predador. Por lo tanto, un valor bajo de v implica control por presas.

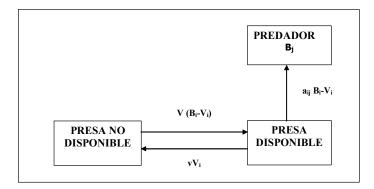


Fig. 4. Representación de los flujos entre la fracción vulnerable (V_i) e invulnerable ($B_i - V_i$) de la biomasa de la presa en **EwE**. El parámetro a_{ij} es la tasa de búsqueda de la presa i por el predador j, v es la tasa de intercambio entre el estado vulnerable y el invulnerable. El balance instantáneo entre ambos estados de la biomasa de la presa implica que $V_i = vB_i/(2v + aB_i)$. Modificado de Walters *et al.* (1997).

Entonces, las simulaciones tuvieron como base los valores de ν para langostino colorado y langostino amarillo resultantes del ajuste del modelo, los que fueron incrementados en pasos de: (a) aumento en 5%, (b) aumento en 10%, (c) aumento en 20%, (d) aumento en 30%, y (e) aumento en 50%.

Las simulaciones tuvieron una duración de 10 años, tomando como inicio el año 2003, al cabo de los cuales se comparó la tendencia de la biomasa de langostino amarillo y langostino colorado ante cada escenario con un punto de referencia biológico límite (PRL), que para este análisis se consideró PRL=50% de la biomasa inicial (en el año 2003).

3.13. Objetivo Específico 7 (Adicional)

Analizar la variabilidad y diferenciación genética dentro y entre los morfos de langostino colorado presentes en Chile, a fin de determinar si las distintas formas encontradas en las actividades pesqueras corresponden a una única especie polimórfica y/o stocks.

3.13.1. Introducción

La existencia de especies crípticas, es decir, especies que poseen altos niveles de diferenciación genética, que indica aislamiento reproductivo, pero que no poseen diferenciación morfológica, pueden afectar seriamente las estimaciones de los recursos pesqueros al confundirse las formas adultas de la especie de menor tamaño con los juveniles de la otra. De este modo, la disponibilidad de biomasa de la especie de mayor tamaño a futuro es sobre estimada. En esta perspectiva, es vital disponer de una adecuada identificación taxonómica de las especies afectadas por la actividad pesquera.

La diferenciación de especies se ha basado tradicionalmente en el análisis de los caracteres morfológicos y su comparación con las características de formas similares (concepto de especie morfológica). Este enfoque tiene la ventaja que una vez establecida la condición específica de un organismo, es relativamente fácil identificar a sus congéneres y asignarlos a dicha categoría taxonómica a partir de caracteres morfológicos diagnósticos. Sin embargo, depende del valor que

el descriptor asigna a los caracteres utilizados para la descripción e identificación de la especie, lo que suele depender de la experiencia de éste (subjetividad), y no suele ser eficiente para la distinción de especies morfológicamente crípticas. En contraposición, el uso de características genéticas de las especies ha sido de enorme utilidad para discriminar entre especies morfológicamente crípticas en diferentes grupos de organismos (Morrow *et al.*, 1992; Oliverio 1994; Parsons & Ward 1994; Zaslavkaya 1995; Sanjuan *et al.*, 1997; Véliz *et al.*, 2001, 2003, entre otros). Esto se debe a que los caracteres usados en estos casos son poco o nada influidos en su expresión por factores ambientales, y a que esta aproximación permite discriminar grupos de organismos que se encuentran aislados reproductivamente entre sí (concepto biológico de especie).

En la ciencia pesquera, "stock" se refiere a cualquier grupo de una especie que está disponible para la explotación en un área determinada (Begg & Waldman, 1999). De acuerdo a Waldman (1999) el término "stock" generalmente es consistente con el concepto de "población" incluyendo alguna noción de integridad genética. Booke (1999) indica que la premisa básica detrás de una moderna definición de stock es la existencia de un marcador genético o fenotípico que permanecerá sin mucha variación en el tiempo para todas las aplicaciones de identificación. No obstante, en el concepto de stock también se considera el aspecto práctico de Unidad de Producción o Manejo (Begg & Waldman, 1999).

Los stocks son de particular importancia en el manejo y administración de pesquerías porque en la población los efectos del reclutamiento y de la mortalidad operan independientemente sobre stocks individuales más que sobre la especie en sí como un todo. De tal forma que la identificación de stocks, la discriminación entre ellos y la determinación de la composición de stocks mezclados son elementos integrales del manejo pesquero (Waldman, 1999). Otro aspecto importante a considerar es que si un stock se considera un conjunto de individuos apareándose al azar y reproductivamente aislado, con integridad espacial y temporal, entonces puede exhibir diferencias en uno o más parámetros de su ciclo de vida comparado con otro stock de la misma especie. Al respecto Begg *et al.* (1999) ocuparon una serie de parámetros poblacionales, tales como el crecimiento, supervivencia, reclutamiento, reproducción, distribución y abundancia para separar stocks de peces. Este tipo de aproximación holística para la identificación de stock, es

decir, envolviendo un amplio espectro de técnicas complementarias; puede proveer una mejor comprensión de la estructura de stock de una especie (Begg & Waldman, 1999).

En Chile, el langostino colorado *P. monodon*, forma parte de una importante pesquería de arrastre y actualmente su pesca está establecida como dos Unidades de Pesquería, encontrándose en Régimen de Plena Explotación, modalidad establecida en la Ley de Pesca y Acuicultura. Las dos áreas de pesquería para *P. monodon* corresponden a la UnidadI a IV regiones y la Unidad V-VIII regiones (Subsecretaría de Pesca, 2002), sin embargo aún no ha sido determinado si estas zonas poseen stocks independientes. En la primera Unidad de Pesquería, Baez (2001, 2002) ha identificado una forma diferente que él llamó *Pleuroncodes* sp., abundante en la I y II Región, el que ha recibido el nombre común de Langostino enano, y que incluso ha sido ya objeto de regulación pesquera, al establecerse que puede ser capturado como fauna acompañante (3% en peso, por viaje de pesca) de la anchoveta *Engraulis ringens*, capturada con red de cerco en esas regiones (D.E. 158 de 5 de febrero de 2003).

Estudios pesqueros y genéticos poblacionales sugieren que si bien esta especie presenta núcleos de reproducción concentrados en determinadas áreas en el rango sur de su distribución, no manifestaría la existencia de subunidades poblacionales diferenciadas (Roa *et al.*, 1997). Sin embargo dicho estudio genético sólo consideró una mínima proporción (333 Km) del rango total de distribución de la especie, cercano a los 2.000 km en la costa chilena. Los resultados de estudios pesqueros en la zona norte de la costa Chilena, han mostrado la coexistencia de dos morfos distintos en esta especie, caracterizado principalmente por distintos rangos de talla y talla de madurez sexual en las hembras (Baéz, 2001). Esta variación pueden ser atribuida a la existencia de polimorfismo intraespecífico o a la mezcla de especies congenéricas levemente distintas.

3.13.2. Metodología

Se investiga la utilidad de técnicas genéticas de precisión, para determinar la estructura y diferenciación genética de *P. monodon* en las costas de Chile.

Las poblaciones chilenas de *P. monodon* se estudian para poner a prueba las hipótesis que en Chile existe más de una especie y/o stock de *Pleuroncodes*. Análisis de datos de moleculares en y entre poblaciones de *Pleuroncodes* de Chile proporcionan la información de diferenciación genética entre las poblaciones. Para tal efecto se investiga la utilidad de técnicas genéticas de precisiónpara determinar la estructura y diferenciación genética.

La Universidad Católica del Norte cuenta con la información histórica de los caladeros de langostino colorado, principalmente entre las regiones II y la VIII. A pesar que existe una dinámica espacio-temporal hay que definir una estructuración de acuerdo a las principales áreas de distribución (criterio espacial de stock). Así se genera una hipótesis de conexión entre los distintos caladeros. La Universidad acaba de realizar el proyecto FIP 2003-03 del Fondo de Investigación Pesquera de Evaluación directa de langostino colorado entre Taltal (II Región) y Lengua de Vaca en la IV Región durante el año 2003, lo que permite disponer de material biológico de la zona más importante para aclarar el problema planteado en este objetivo, ya que se ha encontrado ambas "formas" en ese espacio geográfico. Por otra parte, la ejecución de este proyecto asegura el disponer de muestras de la especie en la zona sur de su distribución (V – VIII Regiones).

Se obtuvieron individuos de diversos sitios de muestreo de la I, II, III, IV, VII y VIII regiones. Las muestras se congelaron o se preservaron en alcohol de 95 grados para mantener el ADN. El tejido muscular de los apéndices locomotores, se disectó y utilizó para la extracción de ADN el que luego se purificó y utilizó para realizar la reacción en cadena de la polimerasa, o PCR (Polymerase Chain Reaction) (Saiki *et al.*, 1988) para genes los genes mitocondriales 16S y COI. La PCR se utiliza para generar millones de copias de un determinado segmento del genoma. Los resultados de la PCR se visualizan en un gel de agarosa donde las muestras post-PCR se han sometido a electroforesis (movimiento de las moléculas en un gel como al estar en un campo eléctrico).

Luego de verificar el éxito del PCR a través de electroforesis en agarosa, se purificó el producto de PCR usando columnas de purificación de ácidos nucleicos y fue enviado al servicio de secuenciación de ADN de la P. Universidad Católica de Chile. Luego se alinearon las secuencias usando Sequence Navigator y se realizaron análisis filogenéticos usando el método de Máxima Parsimonia (Camin and Sokal, 1965) utilizando el programa computacional PAUP (Swofford, 2000). Las secuencias nucleotídicas obtenidas fueron utilizadas para establecer las relaciones de parentesco entre los individuos.

3.14. Taller Metodológico

Realizar una revisión y discusión metodológica sobre la aplicación del método de área barrida a la evaluación de crustáceos demersales.

De acuerdo a lo solicitado en los TBR, se realizó un Taller Metodológico sobre Aplicación del Método de Area Barrida a la Evaluación de Crustáceos Demersales. Para este objeto se diseñó un Programa tentativo del evento, ya que contenido del mismo debe ser consensuado con la Subsecretaría de Pesca y el FIP. El Taller considera al menos los siguientes tópicos:

- Tema I. Presentación de resultados del Proyecto FIP Nº 2004-11.
- Tema II. Experiencia internacional en la evaluación de crustáceos demersales a través del método de Area Barrida.
- Tema III. Experiencia nacional en la evaluación de crustáceos demersales a través del método de Area Barrida.
- Tema IV. El Muestreo en la evaluación directa de crustáceos demersales a través del método de Area Barrida.
- Tema V. Metodología de determinación de la Abertura de Punta de Alas: Una visión crítica.
- Tema VI. Métodos de Análisis en la evaluación de crustáceos demersales a través del método de Area Barrida: Una visión crítica.

Mesa Redonda Final

4. **RESULTADOS**

4.1. Aspectos operacionales de los cruceros

En la Tabla 5 se resumen las actividades de muestreo que se ejecutaron mediante la programación de las dos embarcaciones arrastreras participantes en el presente estudio, mientras que en la Tabla 6 se entregan los detalles de los lances propuestos y efectivamente efectuados dentro de los caladeros históricos de las dos especies de langostino.

Tabla 5. Variables operativas del estudio de evaluación directa de langostino amarillo y langostino colorado entre la II y VIII Regiones.

VARIABLE OPERATIVA	VALOR	(%)	TOTAL
Período	11/04/04 - 17/07/04		-
Rango de Latitud	24° 11,86' S - 36° 57,37' S		-
Rango de Profundidad (m)	80 - 580		-
Lances propuestos	771		-
Lances investigación	657	75,00	
Lances complementarios	59	6,74	876
Lances comerciales	76	8,68	
Lances con problemas operativos	84	9,59	
Lances con pesca	595	67,92	876
Lances sin pesca	281	32,08	8/0
Lances con captura de Langostino Amarillo	397	45,32	876
Lances sin captura de Langostino Amarillo	479	54,68	8/0
Lances con captura de Langostino Colorado	266	30,37	876
Lances sin captura de Langostino Colorado	610	69,63	
Lances con captura de las dos especies	68		
Lances con medición de APA	252	28,8	876
Lances sin medición de APA	624	71,2	0,0
Tiempo total de arrastre (horas)	219,250	100	100
Tiempo de arrastre con captura de L. Amarillo	105,700	48,21	96.21
Tiempo de arrastre con captura de L. Colorado	83,533	38,10	86,31
Medicion APA en foco LA	196	77,8	-
Medicion APA en foco LC	82	32,5	-

Tabla 6. Número de lances propuestos y efectuados totales en los caladeros históricos de langostino amarillo y langostino colorado, por Región.

	LAN	CES	LANCES POSITIVOS					
REGIÓN	PROPUESTOS	EFECTUADOS	L. AMARILLO	% LA	L. COLORADO	% LC		
II	62	50	2	4,00	16	32,00		
III	188	178	67	37,64	54	30,34		
IV	170	231	158	68,40	86	37,23		
V	117	139	105	75,54	0	0,00		
VI	65	65	37	56,92	0	0,00		
VII	15	32	8	25,00	10	31,25		
VIII	154	181	20	11,05	100	55,25		
Total	771	876	397		266			

En la Tabla 7, se detallan los lances donde se capturó efectivamente las especies objetivo, observando que los mayores porcentajes de lances positivos correspondieron a la IV y III Regiones, para langostino amarillo y langostino colorado, respectivamente.

Tabla 7. Lances con captura de langostino amarillo y langostino colorado, por Región, porcentaje con respecto al total de lances efectuados.

REGIÓN	L. AMARILLO	%	L. COLORADO	%
II	2	0,50	16	6,02
III	67	16,88	54	20,30
IV	158	39,80	86	32,33
V	105	26,45	0	0,00
VI	37	9,32	0	0,00
VII	8	2,02	10	3,76
VIII	20	5,04	100	37,59
Total	397	100	266	100

Registros de posición, distancia lineal recorrida (Km), captura de especies objetivo (Kg), abertura de punta de alas (m), área barrida (Km²) y cpua (ton/Km²), son presentados en el Anexo 3.

4.2. Características técnicas de las naves y redes utilizadas

Las características técnicas de las naves y de las redes utilizadas se entregan en el Anexo 1.

4.3. Estimación directa de la abertura entre punta de alas (APA)

La estimación de abertura de punta de alas (APA) se realizó con la información recogida por el sistema NETMIND de NorthStar Technical de ondas acústicas, cuyos sensores (2) se fijaron en las puntas de ala de la red (Anexo 2). Este sistema mide posición y apertura en forma casi continua con intervalos de unos 1 a 2 segundos, obteniéndose un APA promedio por lance.

4.3.1. Cálculo del error en la medición de la APA

Con el objeto de estimar el nivel de precisión del equipo NETMIND, se realizó una experiencia *in situ* empleando un cabo restrictor de la abertura punta de alas, de 9 m de longitud. Se realizaron lances de prueba en la Bahía de Coquimbo tanto con el PAM "Foche" como con la lancha artesanal "Isabel S", empleando las mismas redes que se utilizaron durante los cruceros.

Se registraron 887 valores de APA para el PAM "FOCHE" (Fig. 5) y 312 valores para la lancha "ISABEL S" (Fig. 6). En el caso del PAM "FOCHE", el error de estimación de la APA considerando el cabo restrictor sin elongación alcanzó a 4,7% en comparación al 5,1% encontrado en la L/M "ISABEL S" (Tabla 8).

Tabla 8. Resumen de la estimación de error de medición de la APA en las embarcaciones PAM "FOCHE" y L/M "ISABEL S", participantes del crucero de evaluación directa entre la II y IV regiones. N= número de mediciones.

_	PAM	FOCHE	L/M ISABEL S			
Item	Cabo restrictor corregido		Cabo restrictor corregido Cabo restrictor con			ctor corregido
	No	Por elongación	No	Por elongación		
Var.	1,980	1,032	0,825	0,363		
N	887	887	312	312		
Error	0,047	0,034	0,051	0,034		
Error %	4,7	4,7 3,4		3,4		

4.3.2. Modelo funcional de la APA

Se construyó un modelo funcional de la APA en función de las variables profundidad de calado (*Prof*, m), longitud cable de cala (*LCC*, m) y velocidad de operación (*Vel*, nudos) del tipo lineal, siendo éste el mejor modelo encontrado luego de establecer distintos tipos de relaciones. El procedimiento de estimación del modelo fue del tipo "paso a paso" en el paquete estadístico S-Plus 2000. La relación entre la APA y la razón LCC/Prof. fue poco significativa en comparación al modelo elegido para cada embarcación, no obstante la relación que existe entre ambas variables. Luego, en aquellos lances de pesca que no se contó con mediciones directas de la APA, ésta se calculó a través de la relación funcional calculada para cada embarcación (Tabla 9). El modelo funcional de la APA quedó representado por la expresión:

$$APA = a \cdot Prof + b \cdot LCC + c \cdot Vel + d$$

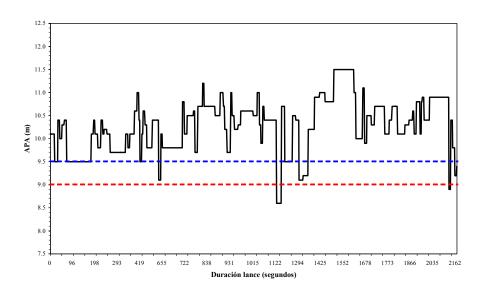


Fig. 5. Evolución temporal de la APA del PAM "FOCHE" en la experiencia con cabo restrictor. La línea roja representa el cabo restrictor sin supuesto de elongación y la línea roja la longitud del cabo restrictor asumiendo 5% de elongación.

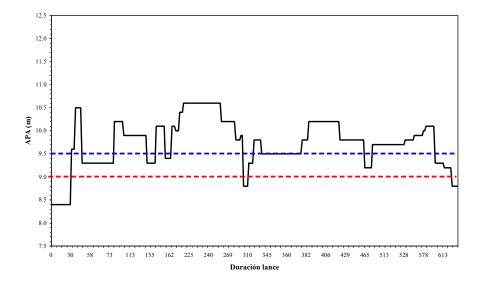


Fig. 6. Evolución temporal de la APA de la L/M "ISABEL S" en la experiencia con cabo restrictor. La línea roja representa el cabo restrictor sin supuesto de elongación y la línea roja la longitud del cabo restrictor asumiendo 5% de elongación.

Tabla 9. Parámetros de la relación funcional entre la APA (variable dependiente) y las variables independientes LCC, Prof y Vel en las embarcaciones PAM "FOCHE" y L/M "ISABEL S", participantes del crucero de evaluación directa entre la II y VIII regiones. r^2 = coeficiente de determinación de la correlación multiple.

Variable	PAM Foche	L/M Isabel S
LCC	0,0093	0,0071
Prof	-0,0045	-0,0017
Vel	0,1413	-2,1403
Constante	11,2829	14,4377
r ²	0,6940	0,6876

Luego, con estos parámetros, conocidos las variables independientes, se calculó la APA en aquellos lances de pesca en que no se contó con registro directo mediante el equipo NETMIND.

4.4. Capturas y densidad local (CPUA) por lance de pesca

Las capturas por lance de pesca fluctuaron entre cero (ausencia de pesca) y 2.538 kg para el caso del langostino amarillo y entre cero y 990 kg en el caso del langostino colorado. La densidad local (por lance de pesca) fluctuó entre cero (cuando no se encontró captura) y 127,7 tons/km² para el langostino amarillo y entre cero y 87,3 tons/km² en el caso del langostino colorado. Cabe hacer notar que se descartó del análisis todos aquellos lances en que las dificultades de operación

(profundidad no apta, fondo no rastreable, otras) o climáticas, impidieron su buen desempeño o término. En el Anexo 3, se entrega los registros respecto de los lances de pesca ejecutados, por especie.

4.5. Aspectos biológicos

4.5.1. Capturas y muestreo biológico

En la Tabla 10 se entregan los antecedentes de las capturas obtenidas durante el período de estudio por las dos embarcaciones participantes en sus respectivas áreas de trabajo.

Tabla 10. Capturas obtenidas entre la II y IV Regiones, por embarcación. LA = langostino amarillo, LC = langostino colorado y CA = camarón nailon.

EMBARCACIÓN									
DATOS	FOCHE	ISABEL-S	TOTAL						
Kg LA	51.069	19.082	70.150						
Kg LC	50.095	28.255	78.350						
Kg CA	9.263	786	10.049						
TOTAL	110.427	48.123	158.550						

Durante el período de estudio entre la II y VIII Regiones, se midió un total de 44.455 ejemplares de langostino amarillo para construir las distribuciones de frecuencia de tallas, de los cuales además fueron pesados 20.430, para estimar la relación longitud-peso. En la Tabla 11 se entrega la información del esfuerzo total de muestreo de frecuencia (ejemplares medidos) y biológicos-específicos (ejemplares pesados) provenientes de cada una de las tres regiones muestreadas. Para el caso de langostino colorado, se midió un total de 46.779 ejemplares para construir las distribuciones de frecuencia de tallas, de los cuales se pesaron 21.323, para estimar la relación longitud-peso (Tabla 12).

Tabla 11. Esfuerzo total de muestreo de frecuencia (medidos) y biológico específicos (pesados) de la captura de langostino amarillo entre la II y VIII Regiones. s/h = hembras sin huevos, c/h = hembras con huevos.

			REGIÓN						
SEXO	DATOS	II	III	IV	V	VI	VII	VIII	TOTAL
Machos	Medidos	62	3.026	11.689	5.995	2.666	350	1.197	24.985
Machos	Pesados		1.270	4.838	3.063	1.192	350	972	11.685
Hembras s/h	Medidos	95	2.680	7.712	3.931	298	91	101	14.908
Hembras s/II	Pesados		887	2.099	1.078	143	91	83	4.381
Hembras c/h	Medidos		5	1.416	1.516	888	154	583	4.562
nembras c/n	Pesados		5	1.384	1.487	888	154	446	4.364
Total medidos		157	5.711	20.817	11.442	3.852	595	1.881	44.455
Total pesados		0	2.162	8.321	5.628	2.223	595	1.501	20.430

Tabla 12. Esfuerzo total de muestreo de frecuencia (medidos) y biológico específicos (pesados) de la captura de langostino colorado entre la II y IV Regiones. s/h = hembras sin huevos, c/h = hembras con huevos.

			REGIÓN						
SEXO	DATOS	II	III	IV	V	VI	VII	VIII	TOTAL
Machos	Medidos	893	2.779	4.437			1.270	16.388	25.767
Machos	Pesados	238	1.157	1.927			1.002	5.729	10.053
Hembras s/h	Medidos	1.937	3.155	1.021			327	3.673	10.113
Hembras s/II	Pesados	426	1.075	411			222	1.712	3.846
Hembras c/h	Medidos		7	3.455			970	6.467	10.899
Hembras C/II	Pesados		7	3.380			970	3.067	7.424
Total medidos		2.830	5.941	8.913	0	0	2.567	26.528	46.779
Total pesados		664	2.239	5.718	0	0	2.194	10.508	21.323

4.5.2. Composición de tamaños

El análisis de la composición de tamaños considera tanto la estructura de tallas como en forma complementaria el cálculo del porcentaje de ejemplares sobre una talla límite correspondiente a los 27 mm LC, definida como "talla comercial", lo que permite visualizar en forma preliminar la proporción de ejemplares que se pueden considerar como aptos para ser procesados industrialmente.

4.5.2.1. Langostino amarillo

Con respecto a la composición de tamaños de los machos de langostino amarillo por foco (caladero), en aquellos focos ubicados al norte de los 28° S (1 a 10) no se puede observar un patrón general, probablemente ya que la mayoría de ellos considera un número relativamente reducido de lances. Se destacan los focos 4 y 9 donde aparecen distribuciones unimodales, mientras en todos los otros se observan distribuciones con más de una moda (Fig. 7). Desde el punto de vista de las tallas en los focos 1, 4, 5 y 9 hay un predominio de ejemplares menores a 27 mm LC, mientras en el resto la mayor parte de los ejemplares están sobre esa talla establecida como límite de ejemplares procesables industrialmente (Fig. 7).

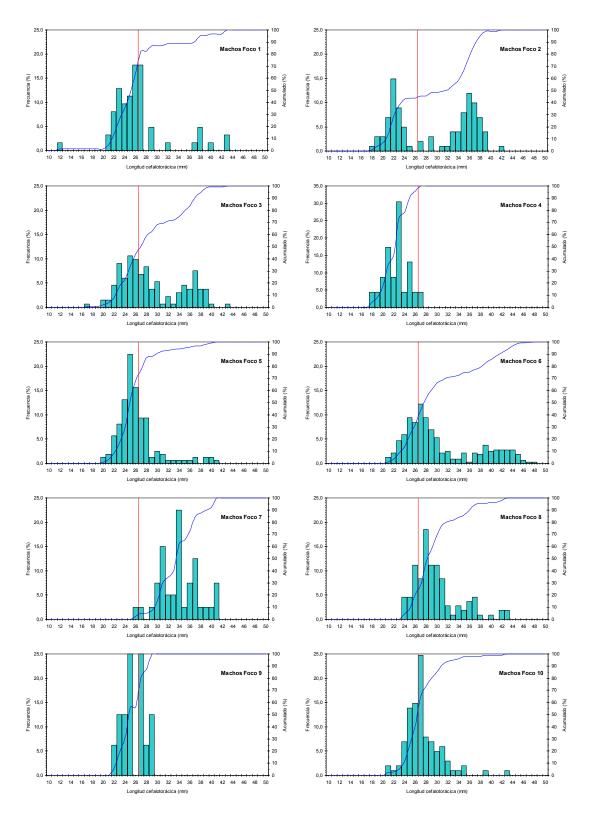


Fig. 7. Distribución de frecuencias de tamaño y porcentaje acumulado de machos de langostino amarillo (*C. johni*). Focos 1 a 10.

A diferencia de lo observado en los focos de la zona norte, en aquellos ubicados al sur de los 28° S (11 a 18), el rango de la distribución de tamaños es bastante más amplio y presenta varias modas (Fig. 8). En estos focos el mayor porcentaje de ejemplares de encuentra sobre la talla de 27 mm LC, tendencia creciente de norte a sur; con la excepción del foco 12 donde predominan las tallas menores (Fig. 8).

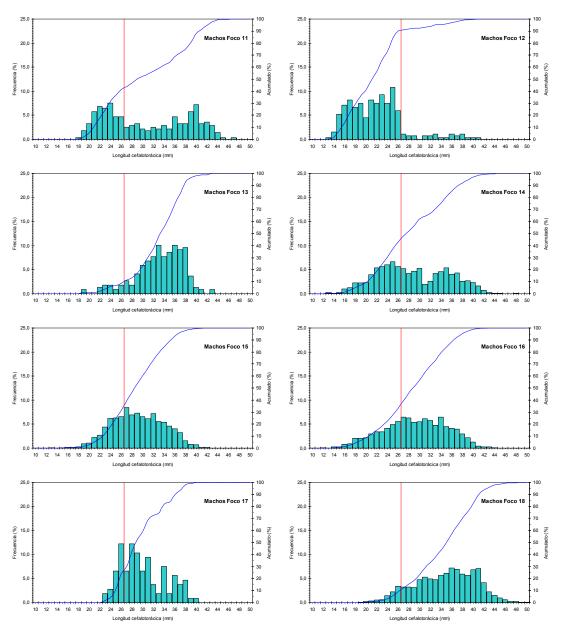


Fig. 8. Distribución de frecuencias de tamaño y porcentaje acumulado de machos de langostino amarillo (*C. johni*). Focos 11 a 18.

En algunos de los focos delimitados en la zona de la V región al sur, como el 23, 25 y 27 se cuenta con escasos ejemplares de unas pocas tallas, por lo cual no se presenta la distribución de tallas correspondiente de ellos. En los focos 19 al 30, el rango de la distribución de tamaños es también bastante amplio y presenta varias modas con un predominio de las tallas mayores (Fig. 9). En estos focos el mayor porcentaje de ejemplares se encuentra sobre la talla de 30 mm LC, tendencia creciente de norte a sur; con la excepción del foco 24 donde predominan las tallas menores (Fig. 9).

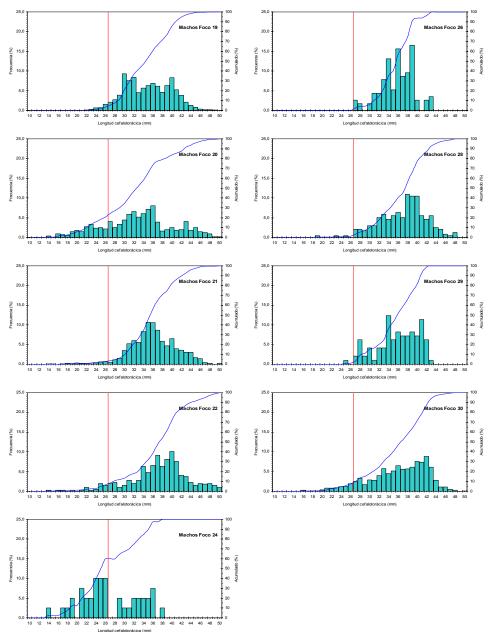


Fig. 9. Distribución de frecuencia de tallas y porcentaje acumulado de machos de langostino amarillo (*C. johni*), Focos 19 a 30.

En el caso de las hembras de langostino amarillo, en aquellos focos ubicados al norte de los 28° S (1 a 10) si se puede observar un patrón general, con las distribuciones de tamaños prácticamente unimodales y de rango más estrecho que en los machos. En todo caso, cabe destacar los focos 6 y 10 donde aparecen distribuciones más amplias (Fig. 10). Desde el punto de vista de las tallas en la mayoría de los focos hay un predominio de ejemplares menores a 27 mm LC, con la excepción de los focos 7 y 10 (Fig. 10).

Al igual de lo observado en las hembras de langostino amarillo de los focos de la zona norte, en aquellos ubicados al sur de los 28° S (11 a 18), las distribuciones de tamaños también son prácticamente unimodales y de rango más amplio (Fig. 11). En estos focos el mayor porcentaje de ejemplares de encuentra sobre la talla de 27 mm LC, aunque sin una tendencia clara de norte a sur como en los machos y con la excepción de los focos 12, 14 y 17, donde predominan las tallas menores (Fig. 11).

Al igual que en los machos, en algunos de los focos delimitados en la zona de la V región al sur, como el 23, 25, 26 y 27 se cuenta con escasos ejemplares hembras de unas pocas tallas, por lo cual no se presenta la distribución de tallas correspondiente de ellos. En los focos 19 al 30, el rango de la distribución de tamaños de las hembras es también bastante amplio y presenta varias modas con un predominio de las tallas mayores, aunque menores que las observadas en los machos (Fig. 12). En estos focos el mayor porcentaje de ejemplares se encuentra sobre la talla de 30 mm LC, tendencia creciente de norte a sur; con la excepción del foco 20 donde hay una proporción importante (30%) de ejemplares menores de 27 mm LC y el foco 24 donde predominan las tallas menores (Fig. 12).

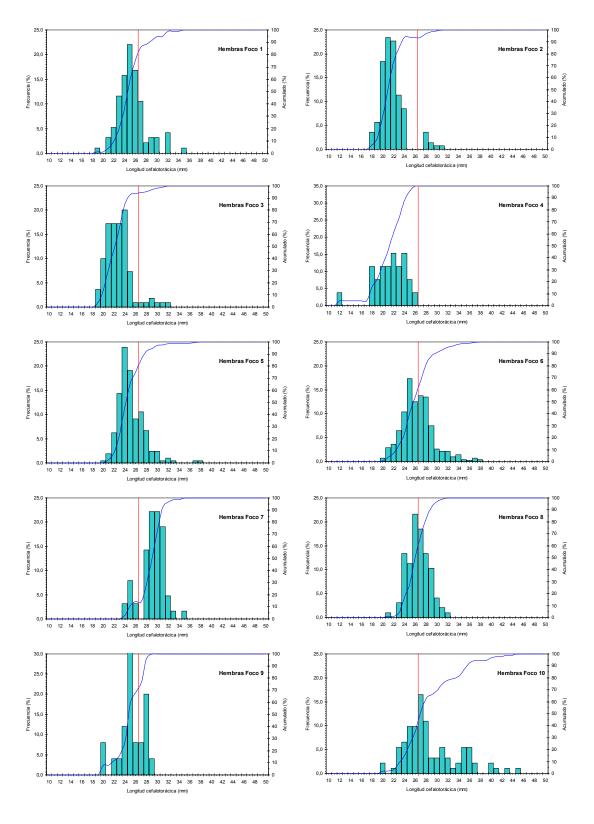


Fig. 10. Distribución de frecuencias de tamaño y porcentaje acumulado de hembras de langostino amarillo (*C. johni*). Focos 1 a 10.

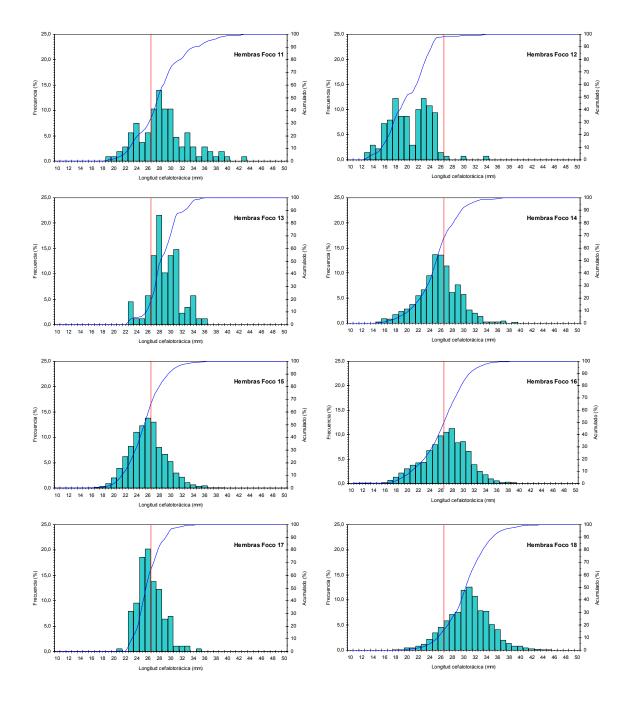


Fig. 11. Distribución de frecuencias de tamaño y porcentaje acumulado de hembras de langostino amarillo (*C. johni*). Focos 11 a 18.

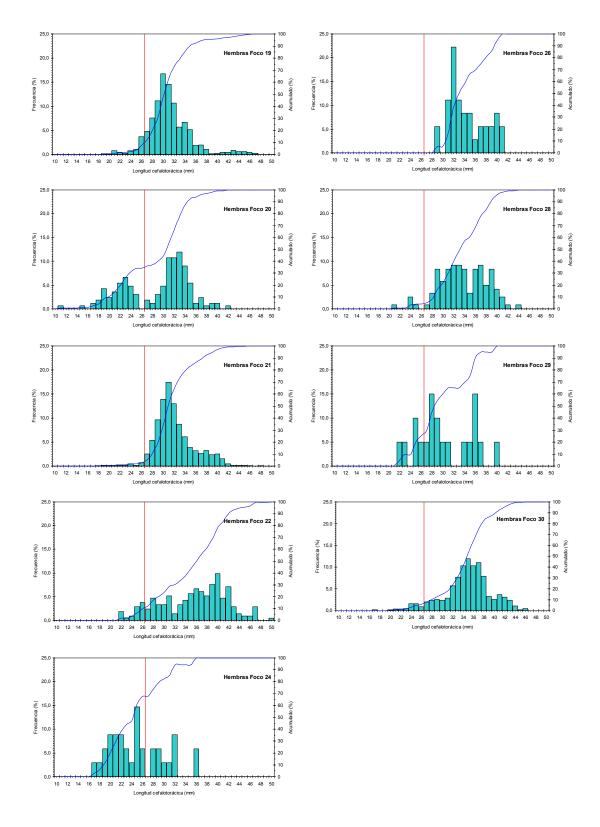


Fig. 12. Distribución de frecuencia de tallas y porcentaje acumulado de hembras de langostino amarillo (*C. johni*), Focos 19 a 30.

El rango de tallas global de langostino amarillo con sexos combinados, detectado en toda el área de estudio correspondió a 11 - 50 mm LC, mientras los rangos observados en las tres regiones del norte muestreadas corresponden a 12 - 43 mm LC en la II Región, 12 - 48 mm LC en la III Región y 11 - 50 mm LC en la IV Región. Las frecuencias de tallas de las tres regiones en porcentaje acumulado, muestran que la mayor proporción de ejemplares de tallas sobre los 27 mm LC se encuentra en la IV región y la menor en la II Región (Fig. 13).

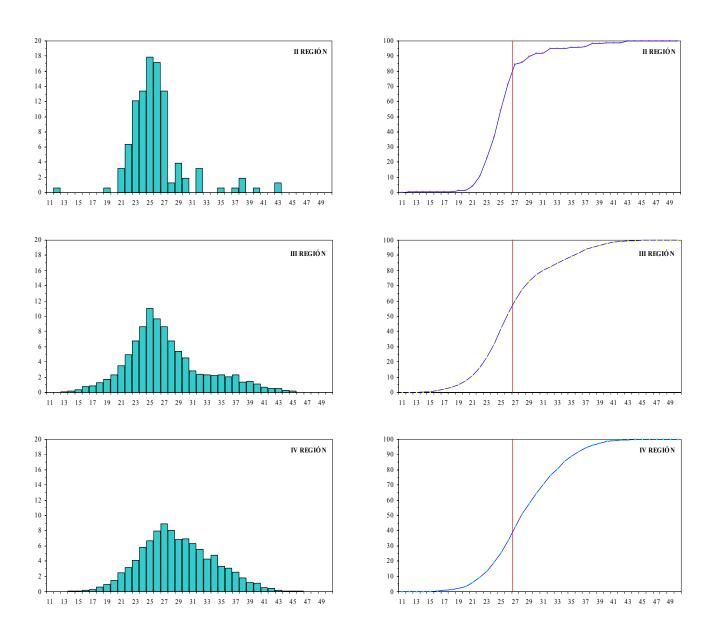


Fig. 13. Distribución de frecuencias de tamaño de langostino amarillo (*C. johni*), sexos combinados (% y porcentaje acumulado), por Región.

Los rangos de talla para sexos combinados, observados en las cuatro regiones del sur del área de estudio corresponden a 20 - 46 mm LC en la V Región, 18 - 45 mm LC en la VI Región, 14 - 50 mm LC en la VII Región y 16 - 48 mm LC en la VIII Región. Las frecuencias de tallas de las cuatro regiones en porcentaje acumulado, muestran que la mayor proporción de ejemplares de tallas sobre los 27 mm LC se encuentra en la VIII región y la menor en la VII Región (Fig. 14).

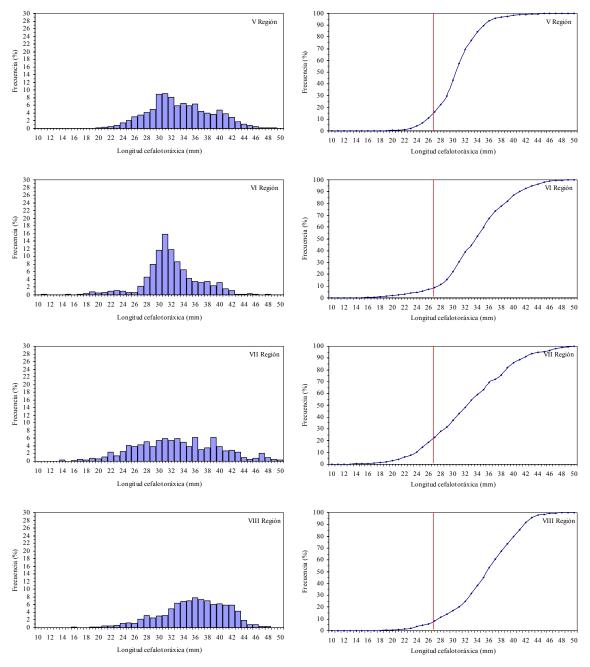


Fig. 14. Distribuciones de frecuencia de tamaño de langostino amarillo (*C. johni*), sexos combinados (% y porcentaje acumulado), regiones V a VIII.

En la Segunda Región, la composición de tamaños de los machos se presentó unimodal con moda de 26,5 mm LC; en la Tercera Región, ésta fue bimodal, con una moda principal en los 25,5 mm LC y una moda secundaria en los 37,5 mm LC y en la Cuarta Región, los machos también muestran una distribución bimodal con una moda principal en los 27,5 mm LC y una secundaria en 31,5 mm LC (Fig. 19). Al igual que en los datos globales, las frecuencias de tallas de los machos de las tres regiones en porcentaje acumulado, muestran que la mayor proporción de ejemplares sobre los 27 mm LC se encuentra en la IV región y la menor en la II Región (Fig. 15).

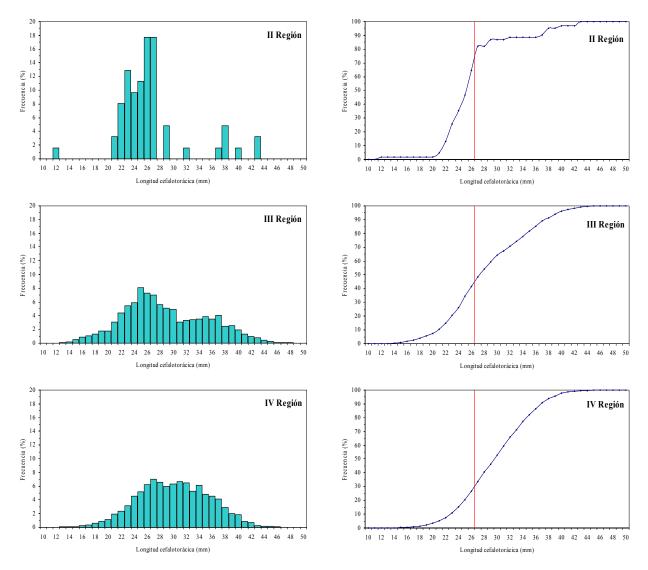


Fig. 15. Distribución de frecuencias de tamaño de machos de langostino amarillo (*C. johni*) (% y porcentaje acumulado), por Región.

Los rangos de talla de los machos observados en las cuatro regiones del sur del área de estudio corresponden a 20 - 49 mm LC en la V Región, 11 - 48 mm LC en la VI Región, 14 - 50 mm LC

en la VII Región y 16 - 48 mm LC en la VIII Región. Las frecuencias de tallas de las cuatro regiones en porcentaje acumulado, muestran que la mayor proporción de ejemplares de tallas sobre los 27 mm LC se encuentra en la VIII región y la menor en la VII Región, aunque en todos los casos la proporción supera el 80 % (Fig. 16).

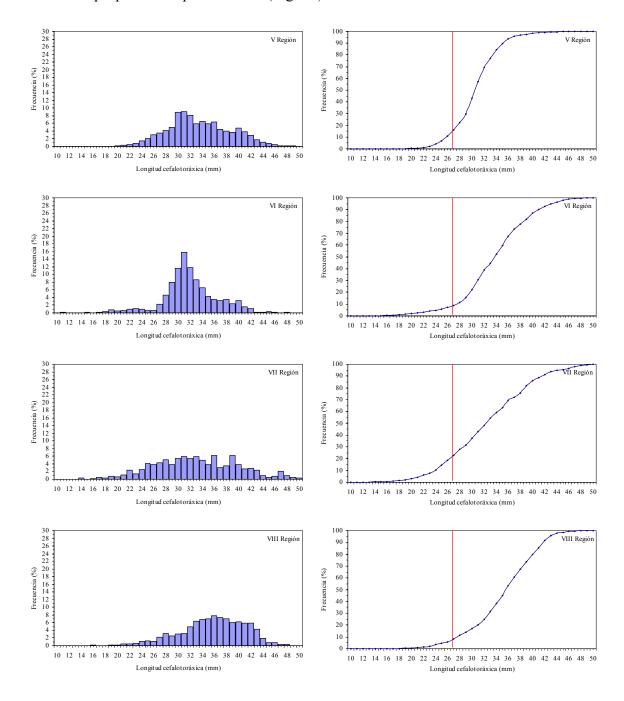


Fig. 16. Distribuciones de frecuencia de tamaño de langostino amarillo (*C. johni*), sexos combinados (% y porcentaje acumulado), regiones V a VIII.

En las hembras, en la Segunda y Tercera Región, la composición de tamaños fue unimodal, con moda en los 25,5 mm LC, en cambio en la Cuarta Región, la composición de tamaños se presentó unimodal, con moda alrededor de los 27,5 mm LC (Fig. 17). Al igual que en los datos globales y en los machos, las frecuencias de tallas de las hembras de las tres regiones en porcentaje acumulado, muestran que la mayor proporción de ejemplares sobre los 27 mm LC se encuentra en la IV región y la menor en la II Región (Fig. 17).

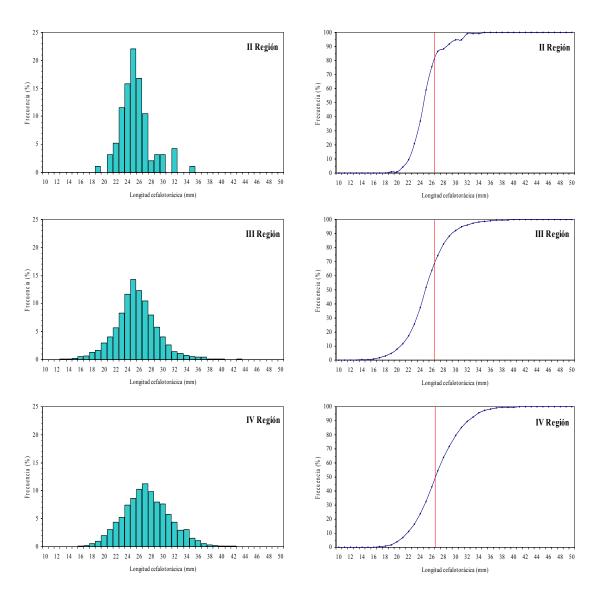


Fig. 17. Distribución de frecuencias de tamaño de hembras de langostino amarillo (*C. johni*), (% y porcentaje acumulado), por Región.

Los rangos de talla de las hembras observados en las cuatro regiones del sur muestreadas corresponden a 20 - 45 mm LC en la V Región, 18 - 45 mm LC en la VI Región, 17 - 50 mm LC en la VII Región y 17 - 46 mm LC en la VIII Región. Las frecuencias de tallas de las cuatro regiones en porcentaje acumulado, muestran que la mayor proporción de ejemplares de tallas sobre los 27 mm LC se encuentra en la VIII región y la menor en la VII Región, aunque en todos los casos la proporción supera el 80 % al igual que en los machos (Fig. 18).

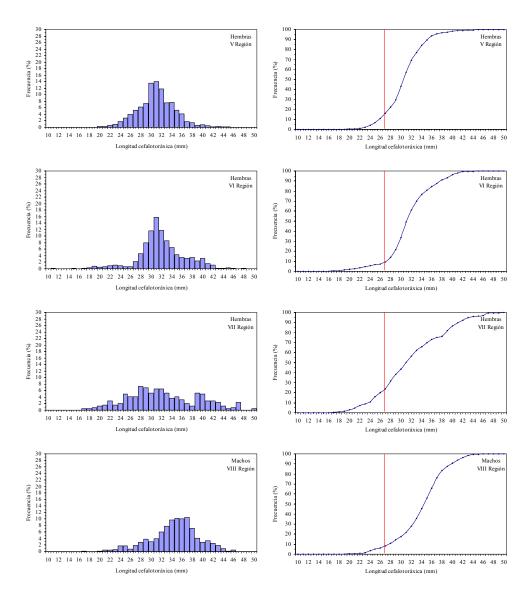


Fig. 18. Distribuciones de frecuencia de tamaño de langostino amarillo (*C. johni*), hembras (% y porcentaje acumulado), regiones V a VIII.

4.5.2.2. Langostino colorado

Con respecto a la composición de tamaños de los machos de langostino colorado por foco (caladero), en aquellos ubicados al norte de los 28° S (1 a 6), se puede observar un patrón general, que incluye los focos 2 al 6 en los cuales existe unimodalidad, con modas entre los 26 y 29 mm LC. La excepción corresponde al foco 1, ubicado en la II Región, donde la distribución incluye tamaños más pequeños con moda en los 21 mm LC (Fig. 19). Desde el punto de vista de las tallas en el foco 1, el 100% de los ejemplares se encuentra bajo la talla límite de 27 mm LC, mientras en los otros cinco se observa cerca de un 40% de ejemplares sobre los 27 mm LC en el 3 y 4; y porcentajes superiores al 60% sobre dicha talla en los focos 2, 5 y 6 (Fig. 19).

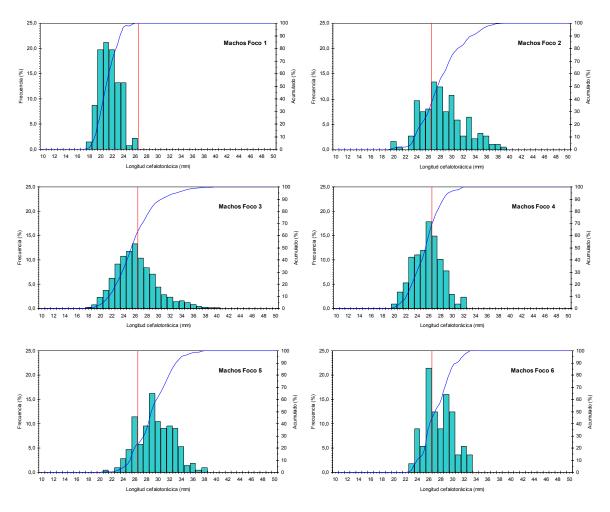


Fig. 19. Distribución de frecuencias de tamaño y porcentaje acumulado de machos de langostino colorado (*P. monodon*). Focos 1 a 6.

Más al sur, en la zona central del estudio de esta especie que abarca parte de la III Región y el primer foco de la IV Región (Focos 7 al 9), aparecen distribuciones prácticamente unimodales, similares al foco 1 con modas entre los 19 y 23 mm LC, y además con un 100%, 88,1% y 67,7% de ejemplares bajo los 27 mm LC en el foco 7, 8 y 9, respectivamente (Fig. 20). A diferencia de lo observado en los focos de la zona norte y centro, en aquellos ubicados al sur de los 29°20' S (10 a 12), en general el rango de la distribución de tamaños es bastante más amplio y presenta varias modas centradas entre los 32 y 36 mm LC, con la excepción del foco 11 donde aparece un segundo grupo modal con una moda en 19 mm LC, que en ese lugar es predominante (Fig. 20). Por otra parte, en los focos 10 y 12 el porcentaje de ejemplares sobre la talla de 27 mm LC alcanza al 93% y 100%, respectivamente; en tanto en el foco 11 sólo alcanza a un 31,3% (Fig. 20).

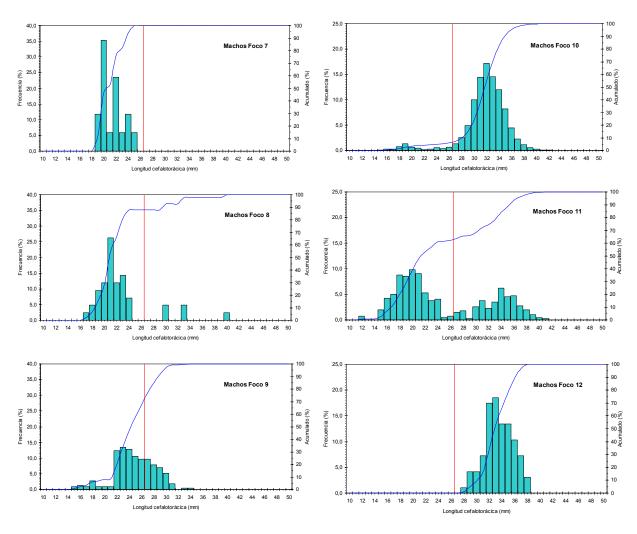


Fig. 20. Distribución de frecuencias de tamaño y porcentaje acumulado de machos de langostino colorado (*P. monodon*). Focos 7 a 12.

En el último foco ubicado al sur de la IV Región (13) se cuenta con muy pocos ejemplares, con un 27,7% sobre los 27 mm LC. Desde la V Región al sur (focos 14 a 18), en general el rango de la distribución de tamaños de los machos presenta al menos una bimodalidad en la mayoría de los focos con una moda en los 18 mm LC y otra entre los 26 a 28 mm LC, con la excepción del foco 16 donde la moda menor se encuentra en los 15 mm LC. La otra excepción la constituye el foco 17 que tiene una sola moda predominante en los 30 mm LC (Fig. 21). Por otra parte, el porcentaje de ejemplares bajo la talla límite de 27 mm LC es mayor al 50% en el foco 15 y 16, predominando las tallas mayores en el foco 17, y en menor medida en los focos 14 y 18 (Fig. 21).

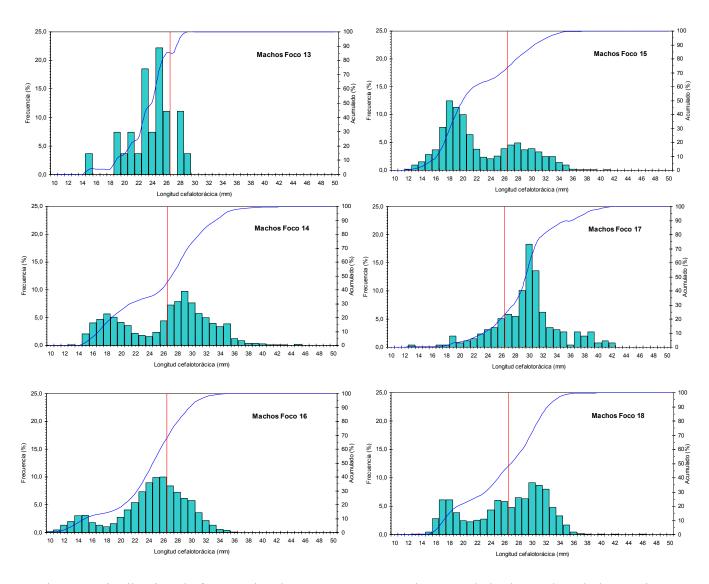


Fig. 21. Distribución de frecuencias de tamaño y porcentaje acumulado de machos de langostino colorado (*P. monodon*). Focos 13 a 18.

En el caso de las hembras de langostino colorado, en aquellos focos ubicados al norte de los 28° S que incluye los focos 2 al 6 se puede observar un patrón general, con las distribuciones de tamaños prácticamente uni o bimodales y de rango similar al de los machos, con modas entre los 23 y 34 mm LC. La excepción en este caso también corresponde al foco 1, ubicado en la II Región, donde la distribución incluye tamaños más pequeños con moda en los 21 mm LC (Fig. 22). Desde el punto de vista de las tallas en el foco 1, el 100% de los ejemplares se encuentra bajo la talla límite de 27 mm LC, en los focos 3 y 4 se observa un 32,6% y 35% de ejemplares sobre esa talla, respectivamente. En los últimos tres focos 2, 5 y 6 se encontró un 53%, 73% y 77% de ejemplares sobre los 27 mm LC, respectivamente (Fig. 22).

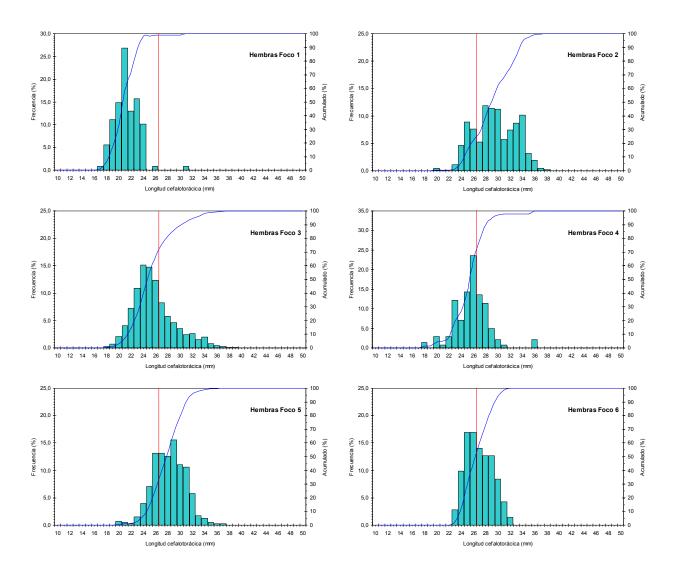


Fig. 22. Distribución de frecuencias de tamaño y porcentaje acumulado de hembras de langostino colorado (*P. monodon*). Focos 1 a 6.

Al igual de lo observado en los machos de langostino colorado de los focos de la zona central del estudio de esta especie, que abarca parte de la III Región y el primer foco de la IV Región (Focos 7 al 9), aparecen distribuciones prácticamente unimodales, similares al foco 1 con modas entre los 21 y 24 mm LC, y además con un 100% de ejemplares bajo los 27 mm LC en el foco 7 y 8, y un 13,2% en el foco 9 (Fig. 23). Los resultados obtenidos para las hembras de los focos 10 al 12 son similares a aquellos ya presentados para los machos. En estos focos ubicados al sur de los 29°20' S, en general el rango de la distribución de tamaños es bastante más amplio y presenta varias modas centradas entre los 26 y 34 mm LC, con la excepción del foco 11 donde aparece un segundo grupo modal con moda en los 20 mm LC, que en ese lugar es predominante. Por otra parte, en los focos 10 y 12 el porcentaje de ejemplares sobre la talla de 27 mm LC alcanza al 88,2% y 98,6%, respectivamente; en tanto en el foco 11 sólo alcanza a un 24% (Fig. 23).

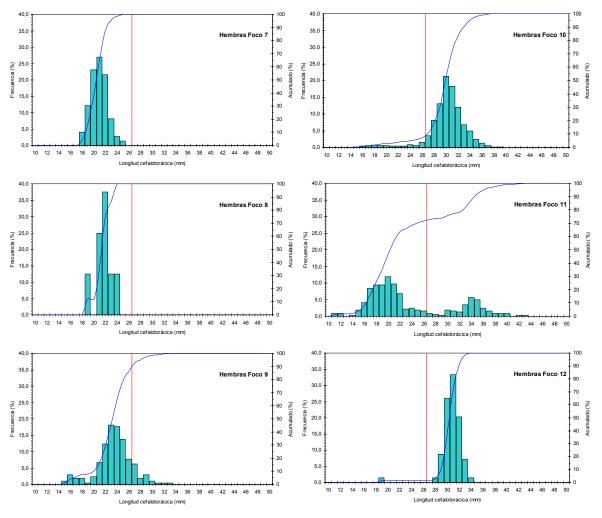


Fig. 23. Distribución de frecuencias de tamaño y porcentaje acumulado de hembras de langostino colorado (*P. monodon*). Focos 7 a 12.

Al igual que lo observado en los machos, en el último foco ubicado al sur de la IV Región (13) se cuenta con muy pocos ejemplares, con un 20,4% sobre los 27 mm LC. En los focos ubicados desde la V Región al sur (14 a 18), en general el rango de la distribución de tamaños de las hembras presenta al menos una bimodalidad en la mayoría de los focos con una moda en los 18 mm LC y otra entre los 26 a 28 mm LC, con la excepción del foco 16 donde la moda menor se encuentra en los 14 mm LC. La otra excepción la constituye el foco 17 que tiene prácticamente una sola moda predominante en los 30 mm LC (Fig. 24). El porcentaje de ejemplares bajo la talla límite de 27 mm LC es mayor al 50% en el foco 15, 16 y 18 y predominan las tallas mayores en el foco 17 (Fig. 24).

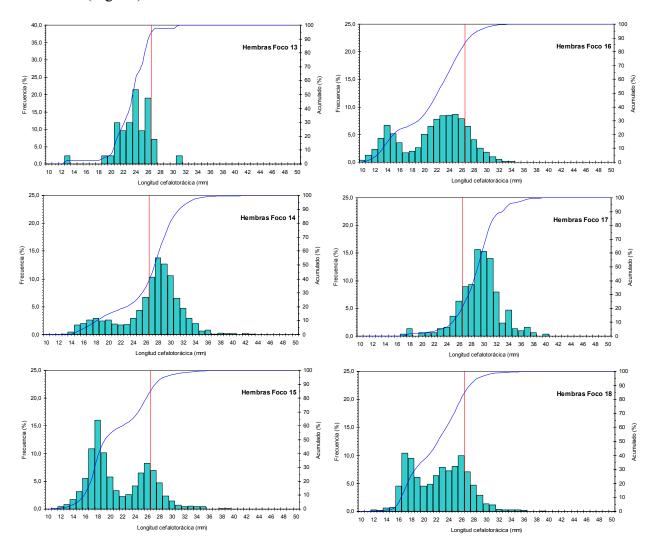


Fig. 24. Distribución de frecuencias de tamaño y porcentaje acumulado de hembras de langostino colorado (*P. monodon*). Focos 13 a 18.

El rango de tallas global de langostino colorado con sexos combinados, detectado en toda el área de estudio correspondió a 12 - 45 mm LC, mientras los rangos observados en las tres regiones muestreadas corresponden a 18 - 43 mm LC en la II Región, 12 - 45 mm LC en la III Región y 12 - 43 mm LC en la IV Región. Las frecuencias de tallas de las tres regiones en porcentaje acumulado, muestran que la mayor proporción de ejemplares de tallas sobre los 27 mm LC se encuentra en la IV región y la menor en la II Región (Fig. 25).

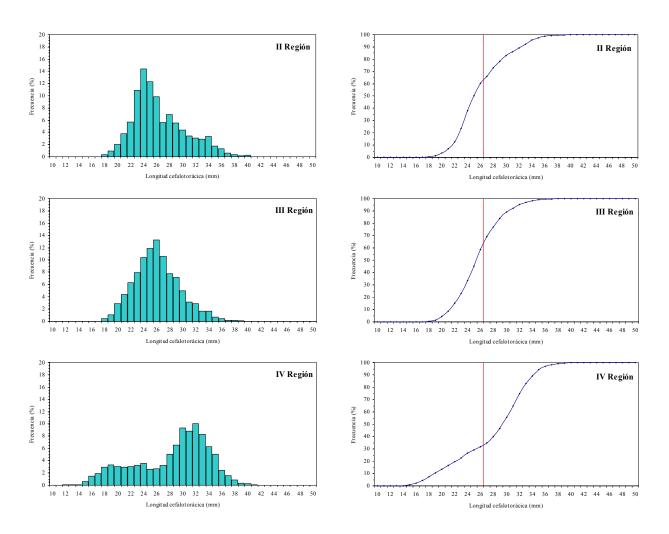


Fig. 25. Distribución de frecuencias de tamaño de langostino colorado (*P. monodon*), sexos combinados (% y porcentaje acumulado), por Región.

Los rangos de talla para sexos combinados, observados en dos de las cuatro regiones del sur del área de estudio corresponden a 14 - 42 mm LC en la VII Región y 10 - 37 mm LC en la VIII Región, con distribuciones bimodales en ambos casos. Las frecuencias de tallas de las dos regiones en porcentaje acumulado, muestran que la mayor proporción de ejemplares de tallas sobre los 27 mm LC se encuentra en la VII región y la menor en la VIII Región (Fig. 26).

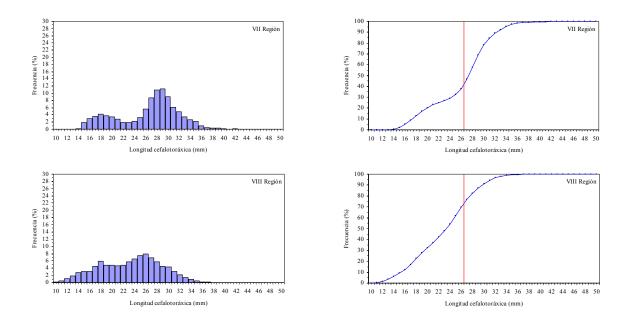


Fig. 26. Distribuciones de frecuencia de tamaño de langostino colorado (*P. monodon*), sexos combinados, (% y porcentaje acumulado), regiones V a VIII.

Por sexo, en la Segunda Región, la composición de tamaños de los machos se presentó unimodal con moda de 24 mm LC; en la Tercera Región, la composición de tamaños fue unimodal, con una moda en los 26 mm LC y en la Cuarta Región, los machos también muestran una distribución bimodal con una moda principal en los 32 mm LC y dos secundarias en 24 y 16 mm LC. Los rangos de talla de los machos observados en la VII Región y VIII Región corresponden a 13 - 45 mm LC y 10 - 39 mm LC, respectivamente (Fig. 27). Al igual que en los datos globales, las frecuencias de tallas de los machos de las cinco regiones en porcentaje acumulado, muestran que la mayor proporción de ejemplares sobre los 27 mm LC se encuentra en la IV región y las menores en la II y VIII Región (Fig. 27).

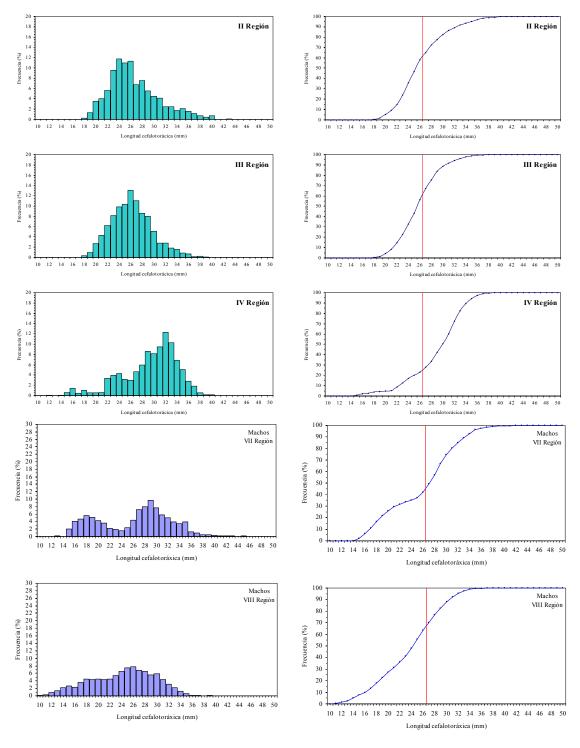


Fig. 27. Distribución de frecuencias de tamaño de machos de langostino colorado (*P. monodon*) (% y porcentaje acumulado), por Región.

En las hembras, en la III Región, la composición de tamaños fue unimodal, con moda en los 26 mm LC; en la VII y VIII Región fue bimodal, con modas en los 18 y 28 mm LC y 18 y 26 mm LC, respectivamente. En la II y IV Región, la composición de tamaños se presentó trimodal, con

moda principal en los 24 y 30 mm LC, y dos secundarias en los 24 y 28 mm LC y 16 y 24 mm LC, respectivamente (Fig. 28). Al igual que en los datos globales y en los machos, las frecuencias de tallas de las hembras de las tres regiones en porcentaje acumulado, muestran que la mayor proporción de ejemplares sobre los 27 mm LC se encuentra en la IV región y la menor en la II y VIII Región (Fig. 28).

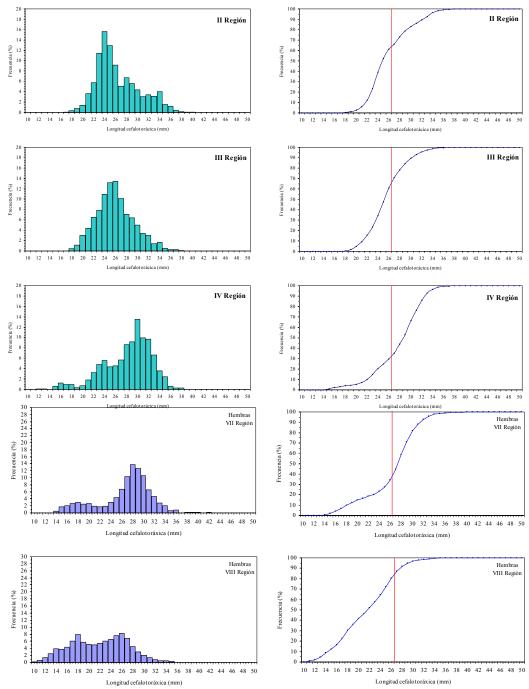


Fig. 28. Distribución de frecuencias de tamaño de hembras de langostino colorado (*P. monodon*), (% y porcentaje acumulado), por Región.

4.5.3. Relación longitud-peso

La relación talla-peso de langostino amarillo y langostino colorado se estimó, para cada foco, mediante Mínimos Cuadrados No Lineales, por lo tanto, la medida de bondad de ajuste se expresa como la suma de cuadrados residuales (SCR). Los detalles de la definición de los focos de ambas especies se presentan más adelante en este documento. Los parámetros de la relación talla-peso para ambos sexos en conjunto por foco se entregan en la Tabla 13 para langostino amarillo y Tabla 14 en el caso de langostino colorado, respectivamente.

Tabla 13. Parámetros de la relación talla-peso de langostino amarillo (*C. johni*, ambos sexos) por foco y total. SCR = suma de cuadrados residuales.

Eaga	Parámetro					
Foco	a	b	SCR	N		
1	5,910 x 10 ⁻⁴	3,005	874,4	150		
2	- 4	- ,	,			
3	3,198 x 10 ⁻⁴	3,187	559,6	164		
4		,	,			
5	2,807 x 10 ⁻⁴	3,157	998,3	279		
6	3,534 x 10 ⁻⁴	3,053	1476,6	317		
7	2,238 x 10 ⁻⁵	3,807	648,0	140		
8		·	Í			
9	2,238 x 10 ⁻⁵	3,807	648,0	140		
10	8,022 x 10 ⁻⁵	3,483	154,0	62		
11	1,348 x 10 ⁻⁴	3,308	605,3	157		
12	6,368 x 10 ⁻⁴	2,987	315,7	118		
13	4,568 x 10 ⁻⁴	3,115	1027,5	100		
14	5,523 x 10 ⁻⁴	3,055	3205,7	475		
15	3,537 x 10 ⁻⁴	3,196	33436,4	2.854		
16	3,619 x 10 ⁻⁴	3,215	12246,2	1.699		
17	5,099 x 10 ⁻⁴	3,094	465,2	100		
18	1,041 x 10 ⁻³	2,908	107449,2	8.651		
19	1,653 x 10 ⁻³	2,784	9822,1	774		
20	5,078 x 10 ⁻⁴	3,114	3655,6	323		
21	1.374 x 10 ⁻³	2,834	18239,3	1.542		
22						
23	1.510 10-3	2.750				
24	1,519 x 10 ⁻³	2,758	10666,8	626		
25						
26						
27						
28	4,113 x 10 ⁻⁴	3,095	20208,0	1.655		
29	,	3,093	20200,0	1.033		
30						

En la estimación de los parámetros de la relación talla peso, en el caso de algunos focos de abundancia, la insuficiencia de observaciones biológicas por bajo número de registros o estrecho rango de tamaños llevó a que se juntaran focos de abundancia contiguos y se estimara un conjunto de parámetros comunes a todos los focos agrupados.

Tabla 14. Parámetros de la relación talla-peso de langostino colorado (P. monodon, ambos sexos) por foco y total. SCR = suma de cuadrados residuales.

Foco	Parámetro						
F000	a	b	SCR	N			
1	2,138 x 10 ⁻³	2,375	265,6	191			
2	4						
3	7,779 x 10 ⁻⁴	2,749	7175,9	2.334			
4							
5	1,589 x 10 ⁻⁴	3,164	579,5	328			
6							
7							
8	1 1 5 0 10-3	2.705	100067	1.065			
9	1,158 x 10 ⁻³	2,795	10236,7	1.965			
10							
11	2 024 10-4	2.226	21.40.2	601			
12	$2,034 \times 10^{-4}$	3,326	3140,2	601			
13							
14	4,036 x 10 ⁻⁴	3,047	5622,1	2.193			
15	1,438 x 10 ⁻⁴	3,336	2035,9	2.349			
16	2,111 x 10 ⁻⁴	3,254	19302,7	7.050			
17	6,835 x 10 ⁻⁴	2,915	1440,1	557			
18	3,861 x 10 ⁻⁴	3,055	907,4	550			

4.5.4. Proporción sexual

4.5.4.1. Langostino amarillo

4.5.4.1.1. Proporción sexual por Región

En la Tabla 15 se muestra la proporción sexual de los ejemplares medidos por región y sexo, donde se observa que los machos predominan en todas las regiones, salvo en la II región donde las hembras superan el 60%. El porcentaje de machos es máximo en la VI región con un 69,2 %, siendo de un 56,3% al considerar toda el área de estudio en conjunto.

Tabla 15. Proporción sexual (%) de los ejemplares de langostino amarillo medidos en el muestreo de frecuencia de tallas por región.

		REGIONES						
SEXO	II	III	IV	V	VI	VII	VIII	TOTAL
Machos	39,49	52,99	56,28	52,39	69,21	58,82	63,64	56,26
Hembras	60,51	47,01	43,72	47,61	30,79	41,18	36,36	43,74
TOTAL	100	100	100	100	100	100	100	100

4.5.4.1.2. Proporción sexual a la talla

La proporción sexual a la talla del langostino amarillo en la II Región muestra una alternancia entre machos y hembras siendo éstas más abundantes a tallas entre 20-30 mm LC (Tabla 16).

Tabla 16. Proporción sexual a la talla en langostino amarillo, en la II Región.

	II REGION							
LC	MACHOS	HEMBRAS	TOTAL					
10								
11								
12	100		100					
13								
14								
15								
16								
17								
18								
19		100	100					
20								
21	40,0	60,0	100					
22	50,0	50,0	100					
23	42,1	57,9	100					
24	28,6	71,4	100					
25	25,0	75,0	100					
26	40,7	59,3	100					
27	52,4	47,6	100					
28		100	100					
29	50,0	50,0	100					
30		100	100					
31								
32	20,0	80,0	100					
33								
34								
35		100	100					
36								
37	100		100					
38	100		100					
39	100		100					
40	100		100					
41								
42	100		100					
43 44	100		100					
45 46								
47 48								
48								
50								
50								

La proporción sexual a la talla del langostino amarillo en la III Región muestra una alternancia entre machos y hembras al igual que en la II Región, los machos presentan una mayor abundancia a tallas pequeñas y grandes, y las hembras a tallas medias entre 20 y 29 mm LC (Tabla 17).

Tabla 17. Proporción sexual a la talla en langostino amarillo, en la III Región.

III REGION						
LC	MACHOS	HEMBRAS	TOTAL			
10						
11						
12		100	100			
13	60,0	40,0	100			
14	50,0	50,0	100			
15	76,2	23,8	100			
16	62,8	37,2	100			
17	66,0	34,0	100			
18	52,0	48,0	100			
19	54,6	44,3	99			
20	40,3	59,7	100			
21	46,8	53,2	100			
22	46,5	53,5	100			
23	42,5	57,5	100			
24	36,0	63,8	100			
25	38,9	61,1	100			
26	39,8	60,2	100			
27	43,1	56,9	100			
28	44,1	55,2	99			
29	49,8	50,2	100			
30	57,8	42,2	100			
31	56,4	43,6	100			
32	73,0	27,0	100			
33	78,8	21,2	100			
34	84,3	15,7	100			
35	88,6	11,4	100			
36	89,9	10,1	100			
37	91,7	8,3	100			
38	94,9	5,1	100			
39	96,3	3,7	100			
40	95,2	4,8	100			
41	97,5	2,5	100			
42	100		100			
43	92,6	7,4	100			
44	100		100			
45	88,9	11,1	100			
46	100		100			
47	100		100			
48	100		100			
49						
50						

La proporción sexual a la talla del langostino amarillo en la IV Región, al igual que en las otras Regiones, muestra una alternancia entre machos y hembras, los machos presentan una mayor abundancia a tallas pequeñas y grandes, y las hembras a tallas medias entre 20 y 29 mm LC (Tabla 18).

Tabla 18. Proporción sexual a la talla en langostino amarillo, en la IV Región.

	IV REGION					
RANGO	MACHOS	HEMBRAS	TOTAL			
10		100,00	100			
11	33,33	66,67	100			
12	60,00	40,00	100			
13	83,33	16,67	100			
14	88,89	11,11	100			
15	90,91	9,09	100			
16	76,92	23,08	100			
17	63,46	36,54	100			
18	61,61	38,39	100			
19	53,25	46,75	100			
20	43,07	56,93	100			
21	45,98	54,02	100			
22	40,42	59,58	100			
23	42,94	57,06	100			
24	44,06	55,94	100			
25	43,89	56,11	100			
26	43,71	56,29	100			
27	44,68	55,32	100			
28	44,88	55,12	100			
29	46,56	53,44	100			
30	47,11	52,89	100			
31	53,77	46,23	100			
32	58,79	41,21	100			
33	61,30	38,70	100			
34	66,70	33,30	100			
35	72,83	27,17	100			
36	78,70	21,30	100			
37	85,87	14,13	100			
38	88,89	11,11	100			
39	88,08	11,92	100			
40	92,80	7,20	100			
41	96,34	3,66	100			
42	90,64	9,36	100			
43	89,66	10,34	100			
44	92,16	7,84	100			
45	96,67	3,33	100			
46	96,00	4,00	100			
47	92,31	7,69	100			
48	100,00	,	100			
49	100,00		100			
50	100,00		100			

La proporción sexual a la talla del langostino amarillo en la V Región, al igual que en las otras Regiones, muestra una alternancia entre machos y hembras, los machos presentan una mayor abundancia a tallas pequeñas y grandes, y las hembras a tallas medias entre 20 y 34 mm LC (Tabla 19).

Tabla 19. Proporción sexual a la talla en langostino amarillo, en la V Región.

	V REGION						
LC	MACHOS	HEMBRAS	TOTAL				
10							
11							
12							
13							
14	100,00		100				
15							
16	100,00		100				
17	50,00	50,00	100				
18	66,67	33,33	100				
19	75,00	25,00	100				
20	28,57	71,43	100				
21	36,36	63,64	100				
22	46,55	53,45	100				
23	45,05	54,95	100				
24	41,76	58,24	100				
25	35,80	64,20	100				
26	35,57	64,43	100				
27	29,18	70,82	100				
28	26,87	73,13	100				
29	28,60	71,40	100				
30	27,33	72,67	100				
31	26,28	73,72	100				
32	31,91	68,09	100				
33	39,05	60,95	100				
34	43,67	56,33	100				
35	58,48	41,52	100				
36	68,68	31,32	100				
37	81,25	18,75	100				
38	82,85	17,15	100				
39	92,60	7,40	100				
40	91,44	8,56	100				
41	94,46	5,54	100				
42	96,02	3,98	100				
43	91,71	8,29	100				
44	93,94	6,06	100				
45	89,41	10,59	100				
46	92,16	7,84	100				
47	84,21	15,79	100				
48	85,71	14,29	100				
49	91,67	8,33	100				
50	100,00		100				

La proporción sexual a la talla del langostino amarillo en la VI Región, al igual que en las otras Regiones, muestra una alternancia entre machos y hembras, los machos presentan una mayor abundancia a tallas pequeñas y grandes, y las hembras a tallas medias entre 28 y 31 mm LC (Tabla 20).

Tabla 20. Proporción sexual a la talla en langostino amarillo, en la VI Región.

VI REGION					
LC	MACHOS	HEMBRAS	TOTAL		
10					
11		100,00	100		
12					
13					
14	100,00		100		
15	50,00	50,00	100		
16	100,00		100		
17	75,00	25,00	100		
18	63,64	36,36	100		
19	55,00	45,00	100		
20	72,73	27,27	100		
21	60,00	40,00	100		
22	58,62	41,38	100		
23	58,82	41,18	100		
24	64,71	35,29	100		
25	79,49	20,51	100		
26	80,95	19,05	100		
27	60,29	39,71	100		
28	48,08	51,92	100		
29	37,91	62,09	100		
30	45,67	54,33	100		
31	44,67	55,33	100		
32	53,33	46,67	100		
33	56,54	43,46	100		
34	72,44	27,56	100		
35	82,25	17,75	100		
36	85,76	14,24	100		
37	84,30	15,70	100		
38	76,30	23,70	100		
39	80,67	19,33	100		
40	81,12	18,88	100		
41	84,03	15,97	100		
42	86,32	13,68	100		
43	97,70	2,30	100		
44	97,18	2,82	100		
45	94,23	5,77	100		
46	97,44	2,56	100		
47	100,00		100		
48	92,31	7,69	100		
49	100,00		100		
50	100,00		100		

La proporción sexual a la talla del langostino amarillo en la VII Región, al igual que en las otras Regiones, muestra una alternancia entre machos y hembras, los machos presentan una mayor abundancia a tallas pequeñas y grandes, y las hembras a tallas medias entre 20-21 y 28-29 mm LC (Tabla 21).

Tabla 21. Proporción sexual a la talla en langostino amarillo, en la VII Región.

VII REGION					
LC	MACHOS	HEMBRAS	TOTAL		
10					
11					
12					
13					
14	100,00		100		
15					
16	100,00		100		
17	66,67	33,33	100		
18	50,00	50,00	100		
19	60,00	40,00	100		
20	25,00	75,00	100		
21	42,86	57,14	100		
22	50,00	50,00	100		
23	55,56	44,44	100		
24	66,67	33,33	100		
25	52,00	48,00	100		
26	56,52	43,48	100		
27	61,54	38,46	100		
28	40,00	60,00	100		
29	26,09	73,91	100		
30	59,38	40,63	100		
31	54,29	45,71	100		
32	50,00	50,00	100		
33	62,86	37,14	100		
34	68,97	31,03	100		
35	56,52	43,48	100		
36	78,38	21,62	100		
37	72,22	27,78	100		
38	85,71	14,29	100		
39	64,86	35,14	100		
40	47,83	52,17	100		
41	56,25	43,75	100		
42	58,82	41,18	100		
43	57,14	42,86	100		
44	50,00	50,00	100		
45	66,67	33,33	100		
46	60,00	40,00	100		
47	50,00	50,00	100		
48	100,00		100		
49	100,00	50.00	100		
50	50,00	50,00	100		

La proporción sexual a la talla del langostino amarillo en la VIII Región, al igual que en las otras Regiones, muestra una alternancia entre machos y hembras, los machos presentan una mayor abundancia a tallas pequeñas y grandes, y las hembras a tallas medias entre 24-25, 29, 34-35 y 37 mm LC (Tabla 22).

Tabla 22. Proporción sexual a la talla en langostino amarillo, en la VIII Región.

VIII REGION						
LC	MACHOS	HEMBRAS	TOTAL			
10						
11						
12						
13						
14						
15						
16	100,00		100			
17		100,00	100			
18	100,00		100			
19	100,00		100			
20	75,00	25,00	100			
21	70,00	30,00	100			
22	70,00	30,00	100			
23	69,23	30,77	100			
24	45,45	54,55	100			
25	52,00	48,00	100			
26	72,73	27,27	100			
27	69,05	30,95	100			
28	66,67	33,33	100			
29	44,68	55,32	100			
30	63,16	36,84	100			
31	54,24	45,76	100			
32	54,35	45,65	100			
33	56,20	43,80	100			
34	48,06	51,94	100			
35	47,37	52,63	100			
36	53,38	46,62	100			
37	48,20	51,80	100			
38	62,60	37,40	100			
39	75,44	24,56	100			
40	82,91	17,09	100			
41	79,28	20,72	100			
42	83,78	16,22	100			
43	83,75	16,25	100			
44	81,08	18,92	100			
45	93,33	6,67	100			
46	78,57	21,43	100			
47	100,00		100			
48	100,00		100			
49	100.00		100			
50	100,00		100			

4.5.4.1.3. Proporción sexual a la talla por foco de abundancia.

En la Tabla 23 se muestra la proporción sexual de langostino amarillo estimada por foco de abundancia. Se aprecia un claro predominio de las hembras en los focos de la III Región, salvo en los focos 3 y 8. Desde el foco 10 (III Región) hacia el sur hasta la VIII región, los machos son más abundantes en las capturas, con la excepción del foco 17 (IV Región) presentando una leve tendencia latitudinal al aumento de los porcentajes de éstos (Fig. 29).

Tabla 23. Proporción sexual en langostino amarillo, por foco de abundancia.

	MACHOS			HEMBRAS		
FOCO	N	P(i)	VAR	N	P(i)	VAR
1	62	0,395	0,003854	95	0,605	0,002515
2	101	0,417	0,002408	141	0,583	0,001725
3	132	0,545	0,001878	110	0,455	0,002254
4	23	0,469	0,010829	26	0,531	0,009579
5	160	0,434	0,001535	209	0,566	0,001175
6	318	0,434	0,000772	415	0,566	0,000592
7	40	0,388	0,005938	63	0,612	0,003770
8	108	0,527	0,002308	97	0,473	0,002570
9	16	0,390	0,014872	25	0,610	0,009518
10	101	0,526	0,002469	91	0,474	0,002740
11	277	0,721	0,000726	107	0,279	0,001879
12	269	0,659	0,000835	139	0,341	0,001616
13	219	0,713	0,000934	88	0,287	0,002324
14	811	0,558	0,000304	642	0,442	0,000384
15	4666	0,548	0,000053	3843	0,452	0,000064
16	2550	0,574	0,000096	1890	0,426	0,000129
17	106	0,361	0,002175	188	0,639	0,001226
18	9879	0,538	0,000025	8471	0,462	0,000029
19	1000	0,608	0,000238	644	0,392	0,000370
20	546	0,766	0,000329	167	0,234	0,001074
21	1713	0,652	0,000133	916	0,348	0,000248
22	395	0,651	0,000575	212	0,349	0,001072
23	3	1,000	0,000000	0	0,000	0,000000
24	40	0,541	0,006209	34	0,459	0,007305
25	0	0,000	0,000000	0	0,000	0,000000
26	115	0,762	0,001579	36	0,238	0,005044
27	2	0,667	0,111111	1	0,333	0,222222
28	238	0,665	0,000936	120	0,335	0,001857
29	97	0,829	0,001461	20	0,171	0,007086
30	862	0,613	0,000275	544	0,387	0,000436

Fig. 29. Proporción sexual en langostino amarillo, por foco de abundancia.

4.5.4.2. Langostino colorado

4.5.4.2.1. Proporción sexual por Región

En la Tabla 24 se muestra la proporción sexual de los ejemplares medidos por región y sexo, donde se observa el predominio de las hembras en tres de las cinco Regiones donde se encontró la especie, siendo mayor esto en la II Región donde el porcentaje de hembras supera el 68 %. En tanto, los machos predominan en la IV y VIII regiones, en tanto los machos fueron más abundantes en la VIII Región, también con más del 60%.

Tabla 24. Proporción sexual (%) de los ejemplares de langostino colorado medidos en el muestreo de frecuencia de tallas por región.

		REGIONES						
SEXO	II	III	IV	V	VI	VII	VIII	TOTAL
Machos	31,55	46,78	50,06	0,00	0,00	49,49	61,78	55,15
Hembras	68,45	53,22	49,94	0,00	0,00	50,51	38,22	44,85
TOTAL	100	100	100	0	0	100	100	100

4.5.4.2.2. Proporción sexual a la talla

En la II Región, no se obervaron machos en las tallas más pequeñas, por lo que la proporción sexual a la talla del langostino colorado muestra un predominio de las hembras desde los 18 a los 36 mm LC, con la excepción de los tamaños de 20 mm LC, siendo los machos más abundantes desde los 37 mm LC en adelante (Tabla 25).

La proporción sexual a la talla del langostino colorado en la III Región muestra una alternancia entre machos y hembras al igual que en la II Región, aunque en esta región los machos presentan una mayor abundancia a tallas pequeñas además de las grandes, y las hembras a tallas medias entre 18 y 27 mm LC en forma continua y en algunas tallas puntuales de allí en adelante (Tabla 26).

La proporción sexual a la talla del langostino colorado en la IV Región, al igual que en las otras Regiones, muestra una alternancia entre machos y hembras, los machos presentan una mayor abundancia a tallas pequeñas y grandes, y las hembras a tallas medias entre 21 y 31 mm LC (Tabla 27).

La proporción sexual a la talla del langostino colorado en la VII Región, al igual que en las otras Regiones, muestra una alternancia entre machos y hembras, los machos presentan una mayor abundancia a tallas pequeñas y grandes, y las hembras a tallas medias entre 23 y 31 mm LC (Tabla 28).

La proporción sexual a la talla del langostino colorado en la VIII Región, al igual que en las otras Regiones, muestra una alternancia entre machos y hembras, las hembras presentan una mayor abundancia a tallas pequeñas, y los machos a tallas mayores de 19 mm LC (Tabla 29).

Tabla 25. Proporción sexual a la talla en langostino colorado, en la II Región.

II REGION					
LC MACHOS HEMBRAS TOT					
11					
12					
13					
14					
15					
16					
17		100	100		
18	22,22	77,78	100		
19	44,44	55,56	100		
20	53,45	46,55	100		
21	33,64	66,36	100		
22	30,86	69,14	100		
23	27,69	72,31	100		
24	25,74	74,26	100		
25	28,16	71,84	100		
26	36,20	63,80	100		
27	37,97	62,03	100		
28	34,01	65,99	100		
29	31,21	68,79	100		
30	32,26	67,74	100		
31	38,54	61,46	100		
32	25,00	75,00	100		
33	26,51	73,49	100		
34	17,02	82,98	100		
35	38,78	61,22	100		
36	37,84	62,16	100		
37	55,56	44,44	100		
38	66,67	33,33	100		
39	66,67	33,33	100		
40	85,71	14,29	100		
41					
42					
43	100		100		
44					
45					
46					
47					
48					
49					
50					

Tabla 26. Proporción sexual a la talla en langostino colorado, en la III Región.

III REGION					
LC	TOTAL				
10					
11					
12	100		100		
13					
14					
15					
16	100		100		
17	100		100		
18	40,00	60,00	100		
19	43,55	56,45	100		
20	44,44	55,56	100		
21	46,33	53,67	100		
22	46,01	53,99	100		
23	47,89	52,11	100		
24	44,16	55,84	100		
25	40,85	59,15	100		
26	46,02	53,98	100		
27	48,65	51,35	100		
28	51,62	48,38	100		
29	52,48	47,52	100		
30	47,32	52,68	100		
31	41,71	58,29	100		
32	45,29	54,71	100		
33	53,61	46,39	100		
34	46,88	53,13	100		
35	58,54	41,46	100		
36	67,86	32,14	100		
37	41,67	58,33	100		
38	70,00	30,00	100		
39	66,67	33,33	100		
40	100		100		
41					
42					
43					
44	400		4.00		
45	100		100		
46					
47					
48					
49					
50					

Tabla 27. Proporción sexual a la talla en langostino colorado, en la IV Región.

IV REGION					
LC	MACHOS	HEMBRAS	TOTAL		
10					
11		100,00	100		
12	50,00	50,00	100		
13		100,00	100		
14	50,00	50,00	100		
15	53,57	46,43	100		
16	47,69	52,31	100		
17	38,37	61,63	100		
18	51,88	48,12	100		
19	61,27	38,73	100		
20	51,52	48,48	100		
21	47,54	52,46	100		
22	44,80	55,20	100		
23	47,66	52,34	100		
24	44,08	55,92	100		
25	41,12	58,88	100		
26	36,50	63,50	100		
27	33,04	66,96	100		
28	27,92	72,08	100		
29	28,35	71,65	100		
30	32,30	67,70	100		
31	43,56	56,44	100		
32	58,27	41,73	100		
33	67,46	32,54	100		
34	70,41	29,59	100		
35	75,68	24,32	100		
36	76,38	23,62	100		
37	79,23	20,77	100		
38	82,54	17,46	100		
39	78,13	21,88	100		
40	73,33	26,67	100		
41	80,00	20,00	100		
42	75,00	25,00	100		
43	50,00	50,00	100		
44	100,00		100		
45					
46					
47					
48					
49					
50					

Tabla 28. Proporción sexual a la talla en langostino colorado, en la VII Región.

VII REGION					
LC	MACHOS	HEMBRAS	TOTAL		
10					
11					
12					
13	50,00	50,00	100		
14		100,00	100		
15	54,17	45,83	100		
16	66,23	33,77	100		
17	63,83	36,17	100		
18	65,45	34,55	100		
19	67,01	32,99	100		
20	60,92	39,08	100		
21	64,79	35,21	100		
22	56,00	44,00	100		
23	48,94	51,06	100		
24	34,48	65,52	100		
25	34,88	65,12	100		
26	39,16	60,84	100		
27	40,71	59,29	100		
28	36,20	63,80	100		
29	43,06	56,94	100		
30	41,45	58,55	100		
31	46,20	53,80	100		
32	51,20	48,80	100		
33	57,47	42,53	100		
34	62,32	37,68	100		
35	85,96	14,04	100		
36	61,54	38,46	100		
37	91,67	8,33	100		
38	62,50	37,50	100		
39	71,43	28,57	100		
40	66,67	33,33	100		
41	100,00		100		
42	33,33	66,67	100		
43	50,00	50,00	100		
44					
45	100,00		100		
46					
47					
48					
49					
50					

Tabla 29. Proporción sexual a la talla en langostino colorado, en la VIII Región.

VII REGION					
LC	MACHOS	TOTAL			
10	53,85	46,15	100		
11	43,36	56,64	100		
12	50,53	49,47	100		
13	48,77	51,23	100		
14	47,44	52,56	100		
15	53,44	46,56	100		
16	47,27	52,73	100		
17	48,91	51,09	100		
18	48,08	51,92	100		
19	55,39	44,61	100		
20	58,81	41,19	100		
21	58,66	41,34	100		
22	57,83	42,17	100		
23	59,23	40,77	100		
24	61,57	38,43	100		
25	61,04	38,96	100		
26	60,63	39,37	100		
27	62,13	37,87	100		
28	69,97	30,03	100		
29	75,68	24,32	100		
30	82,34	17,66	100		
31	84,03	15,97	100		
32	87,57	12,43	100		
33	89,66	10,34	100		
34	81,51	18,49	100		
35	82,61	17,39	100		
36	78,13	21,88	100		
37	73,91	26,09	100		
38	75,00	25,00	100		
39	76,47	23,53	100		
40	71,43	28,57	100		
41	100,00		100		
42	100,00		100		
43	100,00		100		
44					
45					
46	100,00		100		
47					
48					
49			100		
50	50,00	50,00	100		

4.5.4.1.3. Proporción sexual a la talla por foco de abundancia.

En la Tabla 30 se muestra la proporción sexual de langostino colorado estimada por foco de abundancia. A diferencia de lo observado en langostino amarillo, no se aprecia ninguna tendencia latitudinal en el predominio de alguno de los dos sexos, aunque tanto en la II como III Región hay más focos con predominio de las hembras, mientras de la IV Región al sur hay un mayor número de focos donde predominan los machos (Fig. 30).

Tabla 30. Proporción sexual en langostino colorado, por foco de abundancia.

	MACHOS		MACHOS HEMBRAS		RAS	
FOCO	N	P(i)	VAR	N	P(i)	VAR
1	137	0,559	0,001799	108	0,441	0,002282
2	186	0,282	0,001089	473	0,718	0,000428
3	2816	0,424	0,000087	3828	0,576	0,000064
4	208	0,598	0,001156	140	0,402	0,001718
5	210	0,346	0,001077	397	0,654	0,000570
6	56	0,441	0,004402	71	0,559	0,003472
7	17	0,187	0,008936	74	0,813	0,002053
8	42	0,840	0,003200	8	0,160	0,016800
9	217	0,508	0,001152	210	0,492	0,001190
10	3697	0,494	0,000068	3785	0,506	0,000066
11	399	0,555	0,000619	320	0,445	0,000772
12	97	0,584	0,002504	69	0,416	0,003520
13	27	0,391	0,008822	42	0,609	0,005671
14	1270	0,495	0,000197	1296	0,505	0,000193
15	4218	0,532	0,000059	3704	0,468	0,000067
16	9862	0,666	0,000023	4949	0,334	0,000045
17	257	0,461	0,000967	300	0,539	0,000828
18	2048	0,634	0,000113	1182	0,366	0,000196

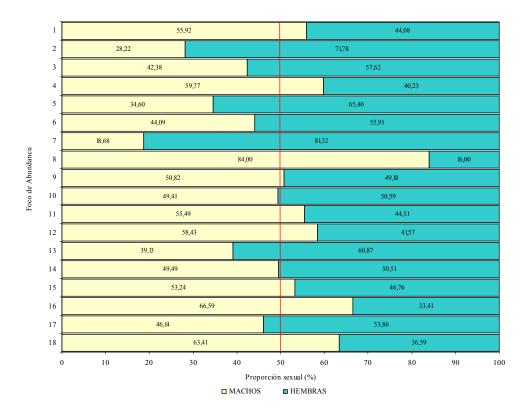


Fig. 30. Proporción sexual en langostino colorado, por foco de abundancia.

4.6. Objetivo Específico 1

4.6.1. Identificación de focos de abundancia

Los límites de los caladeros fueron determinados aplicando el "Método Transitivo" descrito en la Propuesta Metodológica, y el análisis se ejecutó por separado e independientemente para ambas especies. El sustento científico-técnico de la utilización de dicho enfoque se basa en que el diseño de muestreo (lances de pesca) traspasa los límites de distribución de la especie en estudio y son considerados todos los valores muestreales, incluidos los ceros. Se asumió también que la densidad poblacional disminuye sistemáticamente hacia los límites de distribución de la especie.

4.6.1.1. Langostino amarillo

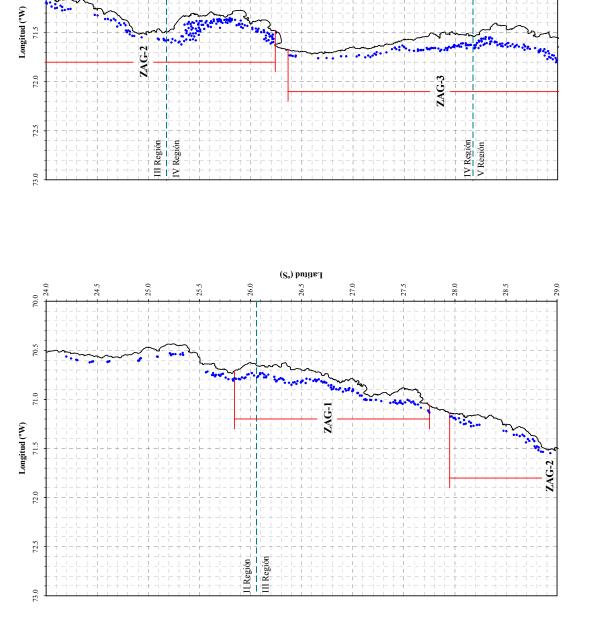
En el caso del langostino amarillo, el área de estudio se dividió en cinco grandes zonas, las que fueron denominadas arbitrariamente como ZAGs (**Z**onas de **A**nálisis **G**eoestadístico), las que incluyeron tanto lances de investigación como lances comerciales, particularmente en el caso de las ZAGs 2 y 3 (Fig. 31). Los límites latitudinales de las ZAGs se entregan en la Tabla 31.

Tabla 31. Límites latitudinales de las Zonas de Análisis Geoestadístico (ZAGs) para el langostino amarillo (*C. johni*) y número de lances de pesca involucrados en cada caso.

ZAG	Límites latit	Número	
ZAU	Norte	Sur	lances
1	25° 50' 40,5"	27° 45' 05,5"	103
2	27° 57' 21,5"	30° 12' 59,2"	146
3	30° 22' 55,5"	33° 30' 00,0"	176
4	33° 30' 00,0"	35° 22' 30,0"	104
5	35° 40' 00,0''	36° 48' 00,0''	168
Total			697

70.0 + 28.0

70.5


71.0

29.0

29.5

30.0

28.5

Latitud ($^{\circ}S$)

30.5

31.0

32.0

32.5

Fig. 31. Disposición espacial de los lances de pesca (puntos azules) y delimitación de las Zonas de Análisis Geoestadístico (ZAGs) para langostino amarillo (C. johni). Para detalles ver texto.

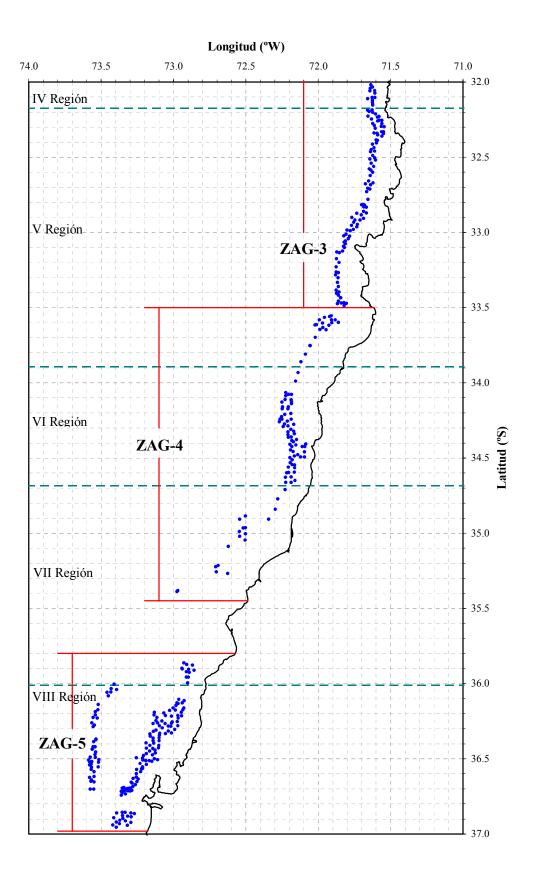


Fig. 31. Continuación.

Se descartó del análisis aquellos lances de pesca "nulos" debido a caer en fondos no rastreables, ya sea por grandes obstáculos submarinos o altas profundidades (> 900 m), y aquellos lances realizados entre 24°11′51″S y 25°50′40″S en la parte norte del estudio, por carecer de capturas y que no aportan información relevante a la estimación de abundancia posterior, así como aquellos localizados al sur de la latitud 36°48′S. Por lo tanto, en el análisis geoestadístico se incluyó el 88,1% de los lances de pesca realizados entre la II y VIII Regiones (n = 791).

El análisis de la distribución espacial de los lances de pesca (tanto negativos como positivos) y el valor de la captura por unidad de área barrida (cpua, ton/km²) por latitud, reveló la presencia de 30 focos de abundancia o caladeros de langostino amarillo entre la II y VIII Regiones (Tabla 32, Fig. 32).

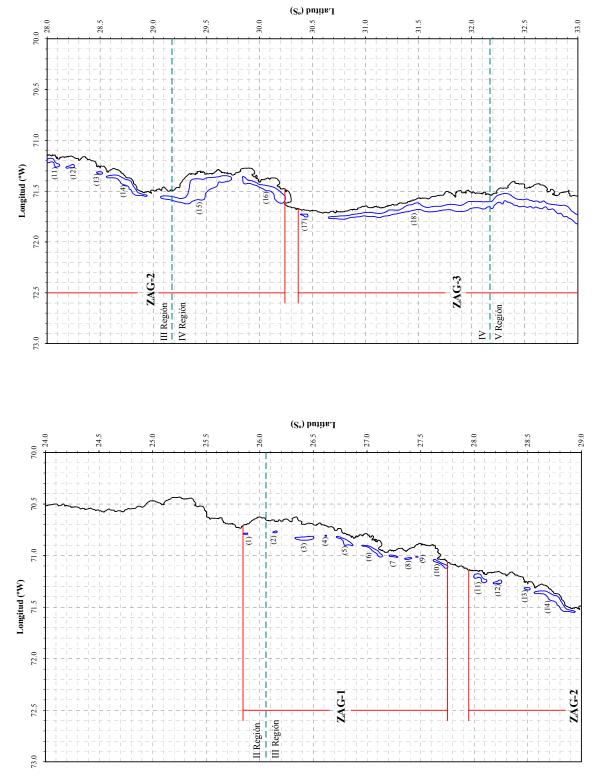

En segundo lugar, para cada uno de los ZAGs se estableció una grilla de estimación aleatoriamente distribuida en el área. El tamaño de malla de la grilla de estimación, para definir los bordes de los focos de abundancia, correspondió a 100 m en el caso de ZAG-1 y 200 m para las ZAGs 2 a 5. Dado que en muchos casos, parte de los focos se encontró dentro de las 5 millas náuticas de exclusión artesanal, y acorde a los Términos Técnicos de Referencia, en la Tabla 33 se muestra el área de los focos de abundancia dentro y fuera de las 5 mn.

Tabla 32. Límites latitudinales de los focos de abundancia de langostino amarillo (*C. johni*) y área (mn2 y km2) correspondiente.

Caladero	Límites latit	udinales (°S)	Aı	rea
Caladelo	Norte	Sur	mn ²	km ²
1	25° 50' 52,7"	25° 53' 19,3"	1,339	4,592
2	26° 07' 21,0"	26° 09' 43,2"	1,520	5,214
3	26° 19' 41,9"	26° 30' 57,6"	15,559	53,367
4	26° 36' 32,6"	26° 37' 24,6"	0,366	1,255
5	26° 42' 55,8"	26° 52' 08,0"	14,242	48,847
6	26° 57' 04,3"	27° 08' 39,1"	14,260	48,911
7	27° 12' 27,0"	27° 17' 16,8"	3,114	10,679
8	27° 21' 04,0"	27° 25' 04,1"	2,632	9,026
9	27° 27' 13,3"	27° 28′ 39,4′′	0,393	1,347
10	27° 37' 03,0"	27° 45' 13,7"	9,153	31,395
11	27° 59' 45,6"	28° 07' 05,2"	13,301	45,620
12	28° 10' 37,9"	28° 15' 24,1"	5,564	19,083
13	28° 28' 01,6"	28° 31' 21,4"	3,213	11,019
14	28° 33' 30,6"	28° 56' 34,1"	51,108	175,296
15	29° 04' 04,1"	29° 44' 17,5"	198,654	681,365
16	29° 50' 26,5"	30° 14' 38,4"	71,597	245,570
17	30° 23' 07,4"	30° 27' 25,6"	4,015	13,771
18	30° 38′ 59,3″	33° 30′ 02,2″	491,232	1684,878
19	33° 33′ 51,1″	33° 57' 22,7"	72,697	249,344
20	34° 03' 36,7"	34° 11' 36,6"	21,987	75,412
21	34° 13' 16,7"	34° 33' 51,8"	76,252	261,536
22	34° 34' 57,4"	34° 51' 34,2"	38,455	131,898
23	35° 04' 14,5"	35° 06' 37,1"	4,138	14,194
24	35° 11' 40,9"	35° 14' 03,5"	3,880	13,308
25	35° 21' 38,5"	35° 24' 01,1"	4,126	14,151
26	35° 52' 32,5"	35° 54' 55,1"	4,099	14,061
27	35° 56' 15,7"	35° 58' 38,3"	4,096	14,049
28	36° 00' 32,0"	36° 04' 38,6"	12,168	41,735
29	36° 15' 20,5"	36° 17' 43,1"	4,084	14,008
30	36° 20′ 51,7"	36° 40′ 28,6′′	40,300	138,226
Total			1.187,542	4.073,155

Tabla 33. Fracción de área (km2) de los caladeros de langostino amarillo (*C. johni*) dentro y fuera de las 5 mn de exclusión artesanal.

Caladana	Dentr	0	Fuer	Fuera		
Caladero	(km ²)	%	(km ²)	%	(km ²)	
1	4,380	95,4	0,212	4,6	4,592	
2	3,836	73,6	1,378	26,4	5,214	
3		0,0	53,367	100,0	53,367	
4	0,046	3,7	1,209	96,3	1,255	
5	43,943	90,0	4,904	10,0	48,847	
6	46,237	94,5	2,674	5,5	48,911	
7	10,679	100,0		0,0	10,679	
8	9,026	100,0		0,0	9,026	
9		0,0	1,347	100,0	1,347	
10	31,395	100,0		0,0	31,395	
11	45,62/	100,0		0,0	45,620	
12	5,703	29,9	13,380	70,1	19,083	
13	11,019	100,0		0,0	11,019	
14	175,296	100,0		0,0	175,296	
15	230,250	33,8	451,115	66,2	681,365	
16	209,005	85,1	36,565	14,9	245,570	
17	13,771	100,0		0,0	13,771	
18	465,409	27,6	1.219,469	72,4	1684,878	
19		0,0	249,344	100,0	249,344	
20	•	0,0	75,412	100,0	75,412	
21	40,148	15,4	221,388	84,6	261,536	
22	•	0,0	131,898	100,0	131,898	
23		0,0	14,194	100,0	14,194	
24	•	0,0	13,308	100,0	13,308	
25		0,0	14,151	100,0	14,151	
26		0,0	14,061	100,0	14,061	
27		0,0	14,049	100,0	14,049	
28		0,0	41,735	100,0	41,735	
29		0,0	14,008	100,0	14,008	
30		0,0	138,226	100,0	138,226	
Total	1.305,610	32,1	2.767,545	67,9	4.073,155	

Disposición espacial de los focos de abundancia de langostino amarillo (C. johni) en las tres Zonas de Análisis Geoestadístico (ZAGs). Para detalles ver texto. Fig. 32.

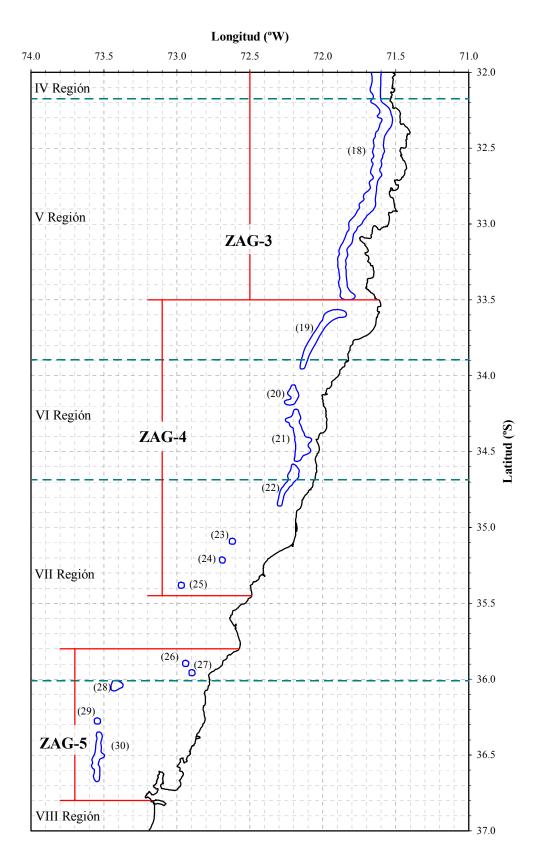


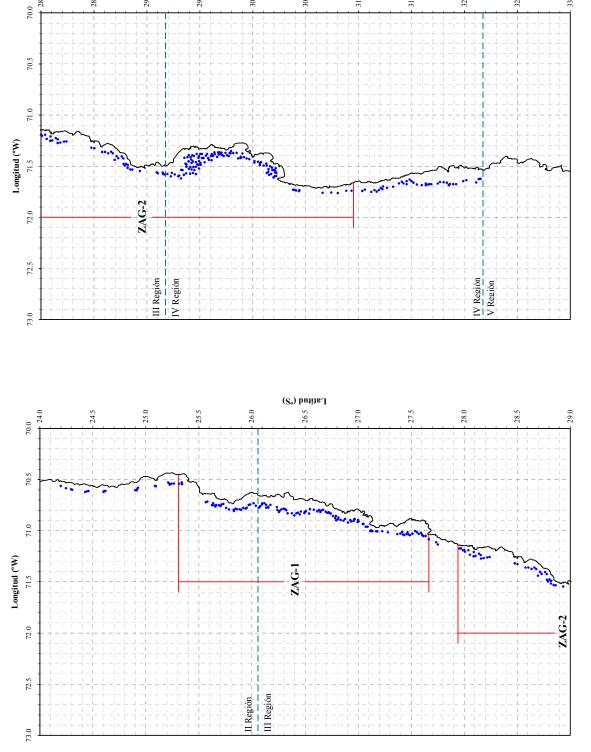
Fig. 32. Continuación.

4.6.1.2. Langostino colorado

En el caso del langostino colorado, en forma similar a lo realizado con el langostino amarillo, el área de estudio se dividió en tres zonas de análisis geoestadístico (Fig. 33) y cuyos límites latitudinales de las ZAGs se entregan en la Tabla 34.

Tabla 34. Límites latitudinales de las Zonas de Análisis Geoestadístico (ZAGs) para el langostino colorado (P. monodon) y número de lances de pesca involucrados en cada caso.

ZAG	Límites latit	Número	
ZAG	Norte Sur		lances
1	25° 18' 48,9"	27° 40' 04,6''	119
2	27° 59' 16,0"	30° 56' 03,7"	191
3	35° 48' 00,0"	36° 58' 48,8"	186
Total			496


En el caso del langostino colorado, se descartó de las zonas de análisis geoestadístico todos aquellos lances "nulos" al norte de 25°18'30"S y entre 31°00' S y 35° 48' S por no contener capturas y, desde luego, no aportan información a la posterior estimación de biomasa. También se eliminó del análisis aquellos lances de pesca "nulos" que no se realizaron por caer en fondos no rastreables, ya sea por grandes obstáculos submarinos o altas profundidades. A pesar de la reducción del número de lances incorporados, el presente estudio consideró 62,7% de los lances de pesca realizados entre la II y VIII Regiones (n = 791).

El análisis de la distribución espacial de los lances de pesca negativos y positivos, y el valor de la captura por unidad de área barrida (cpua, ton/km²) por latitud, reveló la presencia de 18 focos de abundancia de langostino colorado entre la II y VIII Regiones (Tabla 35, Fig. 34). En la Tabla 36 se muestra el área de los caladeros de langostino colorado dentro y fuera de las 5 mn.

- 28.0

29.0

28.5

(S₀) butited

30.5

30.0

29.5

31.0

32.0

32.5

Disposición espacial de los lances de pesca (puntos azules) y delimitación de las Zonas de Análisis Geoestadístico (ZAGs) para langostino colorado (P. monodon). Para detalles ver texto. Fig. 33.

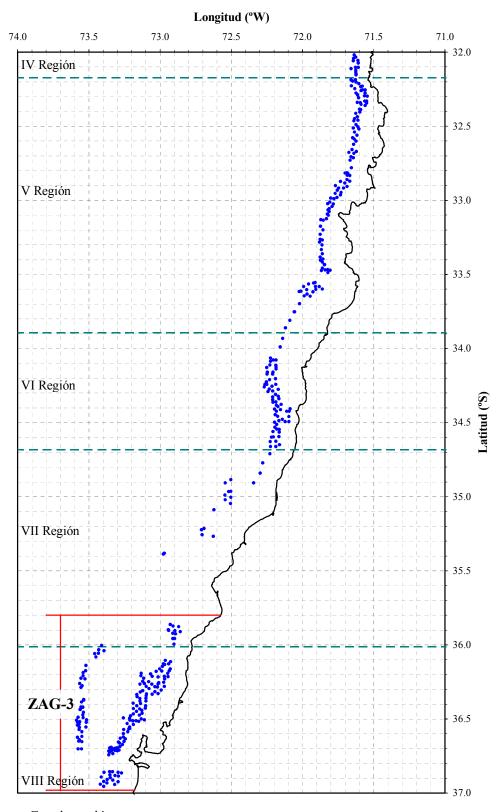
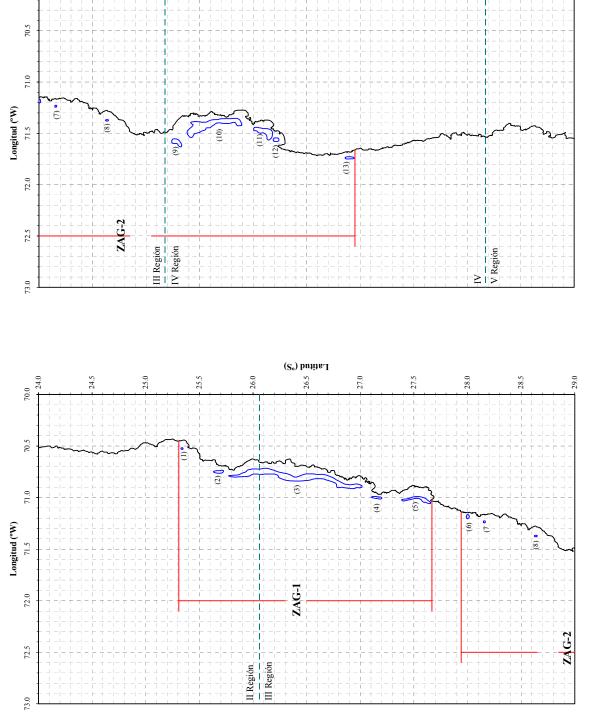



Fig. 33. Continuación.

Latitud (°S)

30.5

31.0

31.5

32.0

32.5

30.0

29.5

29.0

28.5

F 28.0

70.0

Disposición espacial de los focos de abundancia de langostino colorado (*P. monodon*) en las tres Zonas de Análisis Geoestadístico (ZAGs). Para detalles ver texto. Fig. 34.

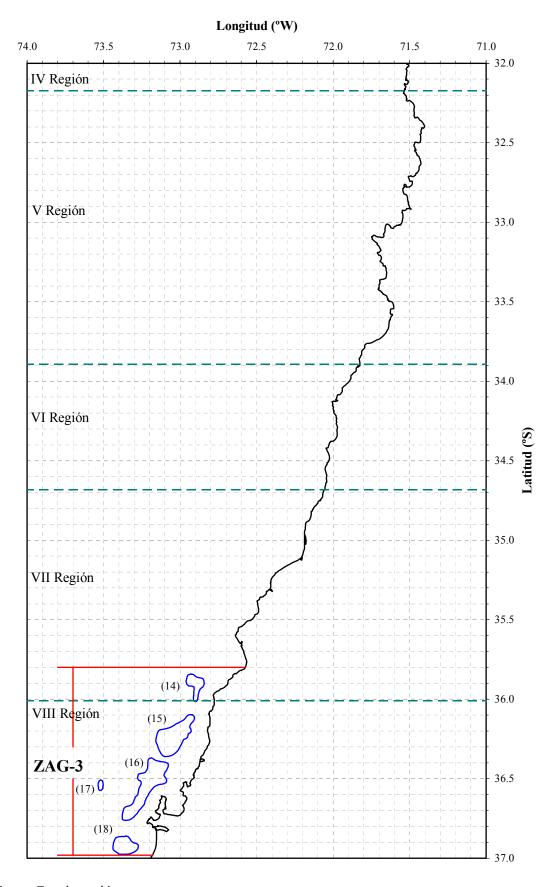


Fig. 34. Continuación.

Tabla 35. Límites latitudinales de los focos de abundancia de langostino colorado (*P. monodon*) y área (mn2 y km2) correspondiente.

Caladero	Límites latit	udinales (°S)	Area		
Caladelo	Norte	Sur	mn ²	km ²	
1	25° 19' 44,1"	25° 20' 50,4"	0,770	2,643	
2	25° 37' 57,4"	25° 43' 29,3"	6,564	22,513	
3	25° 46' 30,0"	27° 01' 01,6"	179,976	617,301	
4	27° 06' 15,8"	27° 12' 01,8	4,965	17,030	
5	27° 23' 12,8"	27° 39' 22,3"	18,755	64,327	
6	27° 59' 21,8"	28° 00' 57,0"	2,777	9,526	
7	28° 08' 52,0"	28° 10' 02,5"	0,981	3,363	
8	28° 37' 23,5"	28° 38' 56,2"	0,964	3,305	
9	29° 14' 24,0''	29° 19' 58,8"	12,363	42,405	
10	29° 23' 01,0"	29° 53' 42,0"	103,470	354,891	
11	30° 00' 20,2"	30° 10' 58,4"	31,704	108,743	
12	30° 11' 18,6"	30° 14' 31,6"	5,168	17,725	
13	30° 51' 36,0"	30° 56' 37,7"	4,706	16,141	
14	35° 50' 33,0"	36° 00' 50,0"	29,795	102,193	
15	36° 05' 46,0"	36° 21' 33,3"	101,517	348,192	
16	36° 22' 12,7"	36° 45' 44,6''	120,276	412,534	
17	36° 30' 30,6"	36° 34' 28,6"	4,982	17,088	
18	36° 51' 41,8"	36° 58' 29,3"	40,954	140,469	
Total			670,686	2.300,390	

Tabla 36. Fracción de área (km2) de los caladeros de langostino colorado (*P. monodon*) dentro y fuera de las 5 mn de exclusión artesanal.

Caladero	Dentr	0	Fuer	Fuera		
Caladelo	(km ²)	%	(km ²)	%	(km2)	
1	2,643	100,0		0,0	2,643	
2	22,513	100,0		0,0	22,513	
3	297,539	48,2	319,762	51,8	617,301	
4	17,030	100,0		0,0	17,030	
5	33,772	52,5	30,555	47,5	64,327	
6	9,527	100,0		0,0	9,526	
7	3,363	100,0		0,0	3,363	
8	2,790	84,4	0,515	15,6	3,305	
9	10,462	24,7	31,943	75,3	42,405	
10	173,911	49,0	180,980	51,0	354,891	
11	90,628	83,3	18,115	16,7	108,743	
12	17,725	100,0		0,0	17,725	
13	16,142	100,0		0,0	16,141	
14		0,0	102,193	100,0	102,193	
15		0,0	348,192	100,0	348,192	
16	10,859	2,6	401,675	97,4	412,534	
17		0,0	17,088	100,0	17,088	
18		0,0	140,469	100,0	140,469	
Total	724,485	31,5	1.575,905	68,5	2.300,390	

4.6.2. Análisis estructural

4.6.2.1. Langostino amarillo

El análisis de variogramas unidireccionales reveló la presencia de efecto anisotrópico de la distribución espacial de la densidad poblacional de langostino amarillo en todas las ZAGs. En la ZAG-1, el efecto anisotrópico se observó en la dirección NE-SO. En cambio, en el caso de las ZAGs 2 a 5, el efecto direccional de la distribución espacial de la densidad se observó en a dirección N-S, asociado a la orientación de la plataforma continental y la línea de la costa.

Así también, en los cinco casos (ZAGs), el modelo de variograma teórico que mostró el mejor ajuste, mediante el procedimiento de mínimos cuadrados ponderados (Cressie, 1993) fue el modelo esférico con rango r, igual a:

$$\gamma(h) = \begin{cases} 0, & h = 0 \\ C_0 + C\left(\frac{3}{2}\left(\frac{h}{r}\right)\right) - \frac{1}{2}\left(\frac{h}{r}\right)^3, & 0 < \|\mathbf{h}\| \le r \\ C_0 + C, & \|\mathbf{h}\| \ge r \end{cases}$$

donde C_0 es el efecto nugget que caracteriza la variabilidad de microescala, C es el valor asintótico o sill del variograma menos el nugget, y r es el rango del variograma, más allá del cual los datos ya no presentan correlación.

En el caso de las ZAGs 1, 2, 4 y 5, el variograma teórico mostró una muy baja a baja proporción de la estructura de varianza no resuelta por el diseño de muestreo. Sólo la ZAG-3, mostró una varianza no explicada alta (VNE = 37,8%). Las figuras 35 a 39 muestran el ajuste del variograma teórico (modelo esférico) al variograma empírico para cada una de las zonas de análisis identificadas.

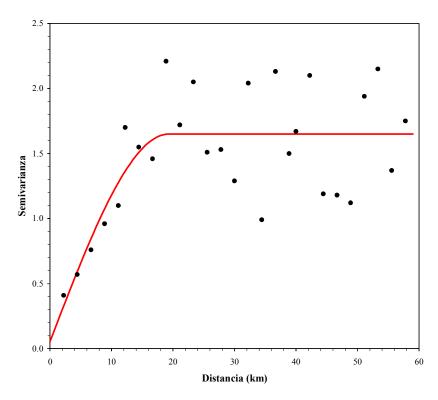


Fig. 35. Variograma experimental (puntos) y variograma teórico (modelo esférico, línea continua). La información considerada corresponde a la ZAG-1 de langostino amarillo (*C. johni*).

Por otro lado, la Tabla 37 entrega los parámetros propios del variograma (efecto pepita, rango y umbral), y la bondad de ajuste correspondiente, medida como la sumatoria de los cuadrados residuales para cada una de las ZAGs, así como la varianza no explicada en cada caso. El rango de las estructuras espaciales fluctuó entre 18,78 y 35,62 km (Tabla 37). Lo anterior permitió caracterizar la biomasa de langostino amarillo al interior de los focos de abundancia identificados para la especie.

Tabla 37. Parámetros del variograma teórico según el modelo esférico para las ZAGs de langostino amarillo (C. johni). SCR: suma de cuadrados de los residuos, VNE: Varianza no explicada.

Parámetro	ZAG-1	ZAG-2	ZAG-3	ZAG-4	ZAG-5
Rango (Km)	19,389	35,620	26,420	28,922	18,779
Sill	1,597	58,844	187,547	89,387	0,670
Nugget	0,055	0,198	171,675	6,872	0,002
SCR	0,352	9,229	32,773	12,936	0,136
VNE (%)	3,31	0,34	37,79	7,14	0,28

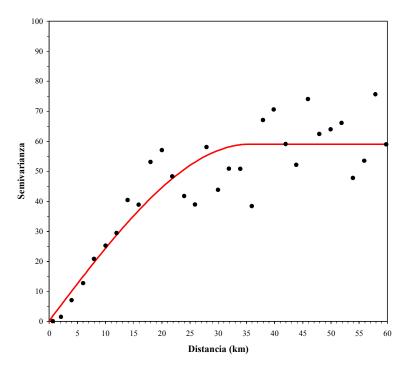


Fig. 36. Variograma experimental (puntos) y variograma teórico (modelo esférico, línea continua). La información considerada corresponde a la ZAG-2 de langostino amarillo (*C. johni*).

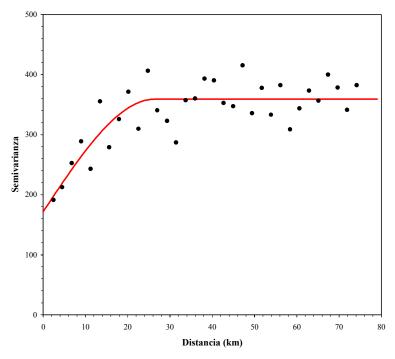


Fig. 37. Variograma experimental (puntos) y variograma teórico (modelo esférico, línea continua). La información considerada corresponde a la ZAG-3 de langostino amarillo (*C. johni*).

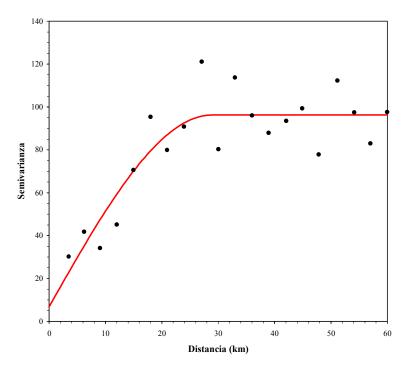


Fig. 38. Variograma experimental (puntos) y variograma teórico (modelo esférico, línea continua). La información considerada corresponde a la ZAG-4 de langostino amarillo (*C. johni*).

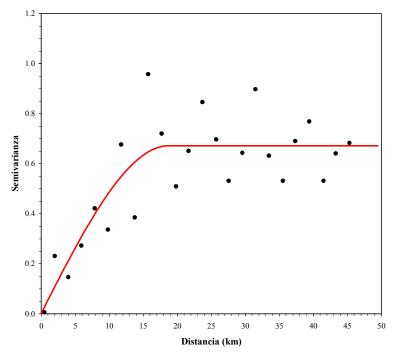


Fig. 39. Variograma experimental (puntos) y variograma teórico (modelo esférico, línea continua). La información considerada corresponde a la ZAG-5 de langostino amarillo (*Cervimunida johni*).

Los parámetros del variograma teórico esférico seleccionado y del *kriging* (modelo de covariograma, y geometría de la grilla de interpolación) fueron utilizados para calcular las ponderaciones óptimas asignadas a cada estimación local de la densidad de langostino amarillo. Una vez realizada la interpolación, sólo aquellos nodos de la grilla que se encontraban dentro de los polígonos de estimación (focos, caladeros) definidos previamente, fueron considerados en el mapeo de la densidad y posterior estimación de la densidad media y biomasa total.

4.6.2.2. Langostino colorado

En el caso del langostino colorado, el análisis de variogramas unidireccionales reveló la presencia de efecto anisotrópico de la distribución espacial de la densidad poblacional en la dirección N-S, tanto en la ZAG-1 como en la ZAG-2 y ZAG-3. En las tres zonas de análisis, el modelo de variograma teórico que mostró el mejor ajuste, mediante el procedimiento de mínimos cuadrados ponderados (Cressie, 1993) fue el modelo esférico, de forma similar a lo observado en el caso de langostino amarillo.

El rango de las estructuras espaciales en el caso de la ZAG-1 alcanzó a 22,8 Km, con una varianza no resuelta por el diseño de muestreo que alcanzó a 13,31% (Fig. 40). En la ZAG-2, el rango de las estructuras espaciales alcanzó a 13,8 Km (Fig. 41) y a 38,1 Km en el caso de la ZAG-3 (Fig. 42). Adicionalmente, en la ZAG-1 y ZAG-2, el variograma teórico mostró una baja proporción de la estructura de varianza no resuelta por el diseño de muestreo alcanzando a 13,3% y 21,9%, respectivamente. En cambio, en la ZAG-3 se obtuvo una muy baja proporción de la estructura de varianza no resuelta (Tabla 38).

Como en el caso del langostino amarillo, los parámetros del variograma teórico esférico seleccionado y del *kriging* (modelo de covariograma, y geometría de la grilla de interpolación) fueron utilizados para calcular las ponderaciones óptimas asignadas a cada estimación local de la densidad de langostino colorado. Una vez realizada la interpolación, sólo aquellos nodos de la grilla que se encontraban dentro de los polígonos de estimación (focos, caladeros) definidos previamente, fueron considerados en el mapeo de la densidad y posterior estimación de la densidad media y biomasa total.

Tabla 38. Parámetros del variograma teórico según el modelo esférico para las ZAGs de langostino colorado (P. monodon). SCR: suma de cuadrados de los residuos, VNE: Varianza no explicada.

Parámetro	ZAG-1	ZAG-2	ZAG-2
Rango (Km)	22,804	13,763	38,074
Sill	70,205	67,861	43,273
Nugget	10,781	19,045	1,648
SCR	14,612	12,829	7,633
VNE (%)	13,312	21,914	3,669

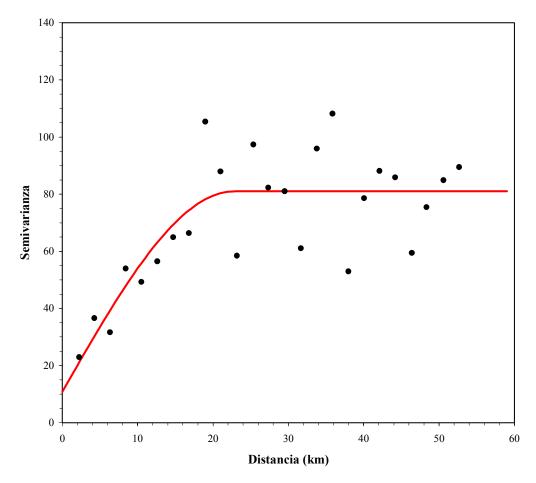


Fig. 40. Variograma experimental (puntos) y variograma teórico (modelo esférico, línea continua). La información considerada corresponde a la ZAG-1 de langostino colorado (*Pleuroncodes monodon*).

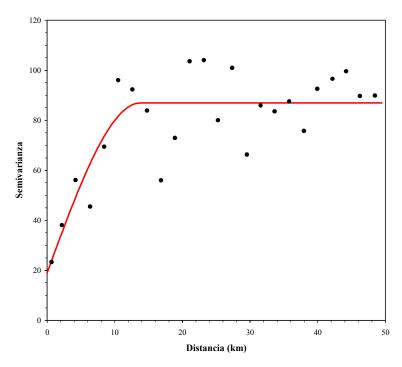


Fig. 41. Variograma experimental (puntos) y variograma teórico (modelo esférico, línea continua). La información considerada corresponde a la ZAG-2 de langostino colorado (*P. monodon*).

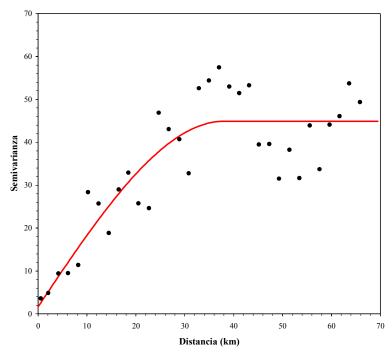


Fig. 42. Variograma experimental (puntos) y variograma teórico (modelo esférico, línea continua). La información considerada corresponde a la ZAG-3 de langostino colorado (*P. monodon*).

4.7. Objetivo Específico 2

Determinar la biomasa vulnerable total (en peso) y la abundancia vulnerable total (en número), según talla y sexo, del langostino amarillo y langostino colorado en el área de estudio, por región y focos de abundancia, según corresponda.

4.7.1. Enfoque geoestadístico

La densidad poblacional promedio de langostino amarillo y langostino colorado, se estimó como el promedio aritmético de los estimadores de densidad al interior de los focos de abundancia identificados mediante el método geoestadístico transitivo. Los valores de los estimadores puntuales de densidad (cpua) fueron generados mediante el método intrínseco aplicando kriging ordinario. Cabe hacer notar que, en la estimación de la densidad promedio por caladero, están incorporados los valores muestreales, siendo una de las propiedades del enfoque geoestadístico por el método intrínseco.

Al respecto, tanto para langostino amarillo como para langostino colorado, los focos de abundancia previamente identificados fueron separados en aquella fracción que quedaba dentro del Area de Reserva a la Pesca Artesanal (ARPA), por consiguiente, la densidad poblacional promedio se estimó independientemente para cada una de las fracciones de área, es decir, fuera (OUT) o dentro (IN) del ARPA.

4.7.1.1. Langostino amarillo

En el caso del langostino amarillo, la densidad poblacional promedio fluctuó entre 0,374 tons/km² en el Foco 9, localizado fuera del ARPA, y a 59,996 tons/km² en la Sección 2 del Foco 21, dentro del ARPA. El tamaño de muestra generado por kriging alcanzó a 104.665 observaciones (Tabla 39, Anexo 6).

Tabla 39. Densidad poblacional (cpua, ton/km²) promedio, desviación estándar, tamaño de muestra (n) e intervalos de confianza (LI = límite inferior; LS = límite superior) de langostino amarillo (*C. johni*) por fracción de área de los focos de abundancia entre la II y IV Región.ARPA: 1 = OUT, 2 = IN.

Foco.Sección	ARPA		cı	oua (ton/km2)	cpua (ton/km2)				
roco.seccion	AKFA	Prom.	D.E.	LI	LS	n			
1.1	1	7,449	0,270	7,307	7,590	14			
1.2	2	3,994	2,552	3,753	4,235	431			
2.1	1	1,091	0,247	1,046	1,135	120			
2.2	2	1,952	0,667	1,885	2,019	384			
3.0	1	1,412	1,087	1,355	1,469	1399			
4.1	1	0,665	0,063	0,653	0,677	104			
4.2	2	0,622	0,026	0,607	0,637	12			
5.1	1	4,511	0,726	4,382	4,641	121			
5.2	2	3,578	1,096	3,516	3,640	1194			
6.1	1	1,017	0,219	0,990	1,043	262			
6.2	2	2,479	1,314	2,407	2,551	1275			
7.0	2	3,212	0,335	3,171	3,253	256			
8.0	2	9,216	3,152	8,790	9,642	210			
9.0	1	0,374	0,128	0,350	0,397	117			
10.0	2	10,186	6,856	9,728	10,645	859			
11.0	2	1,417	0,703	1,376	1,458	1143			
12.1	1	6,754	6,534	6,057	7,452	337			
12.2	2	18,659	2,815	18,196	19,122	142			
13.0	2	15,264	3,973	14,789	15,738	269			
14.0	2	5,233	3,641	5,131	5,335	4890			
15.1	1	10,014	8,492	9,862	10,167	11939			
15.2	2	22,760	6,200	22,394	23,126	1103			
15.3	2	4,399	1,363	4,234	4,564	263			
15.4	2	13,405	9,258	13,150	13,659	5080			
16.1	1	14,467	3,915	14,058	14,876	352			
16.2	1	2,073	1,386	1,900	2,246	246			
16.3	1	1,505	1,037	1,386	1,623	295			
16.4	2	10,158	6,524	9,992	10,323	5951			
17.0	2	10,801	2,606	10,530	11,072	354			
18.1	1	8,313	2,413	8,066	8,561	365			
18.2	1	21,735	7,114	21,643	21,828	22645			
18.3	2	10,131	2,525	10,079	10,183	9092			
18.4	2	21,465	1,941	21,257	21,672	337			
18.5	2	32,001	4,402	31,837	32,165	2754			
18.6	2	36,062	4,482	35,839	36,286	1548			
19.0	1	7,830	4,374	7,730	7,929	7390			
20.0	1	2,510	1,280	2,457	2,564	2188			
21.1	1	13,931	12,691	13,623	14,239	6534			
21.2	2	59,996	11,801	59,316	60,675	1159			
22.0	1	10,265	8,425	10,001	10,528	3920			
23.0	1	0,356	0,092	0,346	0,365	388			
24.0	1	0,284	0,110	0,273	0,296	360			

Tabla 39. Continuación.

Foco.Sección	ARPA	cpua (ton/km2)				
1 oco. Seccion		Prom.	D.E.	LI	LS	n
25.0	1	4,530	1,117	4,419	4,641	388
26.0	1	0,241	0,135	0,228	0,255	388
27.0	1	0,093	0,050	0,088	0,098	388
28.0	1	10,103	7,431	9,684	10,523	1204
29.0	1	0,390	0,266	0,361	0,418	336
30.0	1	12,076	9,919	11,774	12,377	4159

Consecuentemente, la biomasa total del stock de langostino amarillo (*Cervimunida johni*) en la plataforma y talud continental de las Regiones II a VIII estimada según el enfoque geoestadístico alcanzó a 58.392,3 toneladas (D.E. = 2.586,2 tons). El intervalo de confianza de la biomasa es entre 58.250,5 tons (límite inferior) y 58.534,1 tons (límite superior). En la Tabla 40 se presenta la biomasa del stock de langostino amarillo, por caladero, destacando el Foco 18 con cerca de 59,3% de la biomasa total, seguido del Foco 15, con 13,7% de la biomasa total de langostino amarillo en el área de estudio.

En la Tabla 41, se entrega la estimación de biomasa de langostino amarillo por región, identificándose la biomasa contenida dentro o fuera del Area de Reserva para la Pesca Artesanal. En este sentido, cabe hacer notar que 78,7% de la biomasa de langostino amarillo se encuentró en los focos o fracciones de focos de abundancia localizados entre la IV y V Regiones. La V Región aportó con 41,5% de la biomasa total, seguida de la IV Región con 37,2%, la VI Región con 11,3% y la III Región con 5,3%. La VIII Región aportó con 3,6% de la biomasa total del recurso langostino amarillo, restando sólo un 1,1% para las regiones II y VII.

Adicionalmente, se destaca que en la III Región, 93,8% de la biomasa estimada se encuentra dentro del ARPA, siendo superior a lo observado en la IV Región, donde 61,0% de la biomasa de langostino amarillo se encuentra fuera del ARPA. La situación totalmente contraria se observa en la II Región, donde 100% de la biomasa estimada se localiza dentro del ARPA (Tabla 41).

Tabla 40. Biomasa estimada (toneladas) de langostino amarillo (*C. johni*), error estándar de la estimación (EEE, tons) e intervalos de confianza (LI = límite inferior; LS = límite superior) por foco de abundancia entre la II y VIII Región.

Foco		Biomas	sa (tons)	
roco	Estimada	E.E.E.	LI	LS
1	19,1	0,9	19,0	19,2
2	9,0	1,1	8,9	9,1
3	75,3	10,8	74,7	75,9
4	0,8	0,3	0,8	0,8
5	179,3	9,9	178,6	180,0
6	117,3	9,9	116,7	117,9
7	34,3	2,2	34,0	34,6
8	83,2	1,8	83,0	83,4
9	0,5	0,3	0,5	0,5
10	319,8	6,4	319,4	320,2
11	64,6	47,8	61,8	67,4
12	196,8	20,0	194,3	199,3
13	168,2	11,6	166,8	169,6
14	917,4	184,8	912,2	922,6
15	7.970,3	723,3	7.953,4	7.987,2
16	2.357,7	262,2	2.347,6	2.367,8
17 18	148,7	26,5	145,9	151,5
18	34.567,6	3.309,1	34.508,6	34.626,6
19	1.952,3	365,6	1.944,0	1.960,6
20	189,3	111,1	184,6	194,0
21	5.492,9	386,3	5.481,6	5.504,2
22	1.353,9	195,6	1.347,8	1.360,0
23	5,0	21,1	2,9	7,1
24	3,8	19,8	1,8	5,8
25	64,1	21,1	62,0	66,2
26	3,4	1,9	3,2	3,6
27	1,3	1,9	1,1	1,5
28	421,7	5,6	421,4	422,0
29	5,5	1,9	5,3	5,7
30	1.669,2	18,5	1.668,6	1.669,8
Total	58.392.3	5.779,2	58.250,5	58.534,1

Tabla 41. Biomasa estimada (toneladas) de langostino amarillo (*C. johni*) e intervalos de confianza (LI = límite inferior; LS = límite superior) por Región, fuera y dentro de la ARPA. ARPA: 1 = OUT, 2 = IN.

Foco.ARPA	Biomasa (tons)				
FUCU.AKFA	Estimada	LI	LS		
2.1	1,6	1,6	1,6		
2.2	17,5	17,4	17,6		
3.1	193,4	190,9	195,7		
3.2	2.919,8	2.904,8	2.934,8		
4.1	13.252,4	13.226,8	13.277,9		
4.2	8.475,2	8.446,7	8.503,8		
5.1	19.678,9	19.650,1	19.707,7		
5.2	4.545,9	4.534,7	4.557,0		
6.1	4.183,5	4.166,8	4.200,1		
6.2	2.408,7	2.405,3	2.412,1		
7.1	619,2	610,1	628,2		
7.2					
8.1	2.096,4	2.095,3	2.097,5		
8.2					
Total	58.392,3	58.250,5	58.534,1		

4.7.1.2. Langostino colorado

En el caso del langostino colorado, la densidad poblacional promedio fluctuó entre 0,439 tons/km² en el Foco 7, dentro del ARPA, principalmente debido a su pequeño tamaño, y 22,213 tons/km² en la Sección 3 del Foco 5, dentro del ARPA, seguido por la Sección 2 del Foco 1 con 21,653 tons/km², también dentro del ARPA. El tamaño de muestra generado por kriging alcanzó a 63.409 observaciones (Tabla 42).

La biomasa total del stock de langostino colorado (*Cervimunida johni*) en la plataforma y talud continental de las Regiones II a VIII estimada según el enfoque geoestadístico alcanzó a 22.833,1 toneladas (D.E. = 807,0 tons). El intervalo de confianza de la biomasa se encontró entre 22.726,1 tons (límite inferior) y 22.940,1 tons (límite superior). En la Tabla 43 se presenta la biomasa del stock de langostino colorado, por caladero, destacando el Foco 3, en la tercera región, con cerca de 35,6% de la biomasa total, seguido de los focos Foco 10 y 16, con 13,1% y 12,6% de la biomasa total, respectivamente.

Tabla 42. Densidad poblacional (cpua, ton/km2) promedio, desviación estándar, tamaño de muestra (n) e intervalos de confianza (LI = límite inferior; LS = límite superior) de langostino colorado (*P. monodon*) por fracción de área de los focos de abundancia entre la II y IV Región.ARPA: 1 = OUT, 2 = IN.

Foco.Sección	ARPA		cr	oua (ton/km2)		
Foco.Seccion	AKPA	Prom.	D.E.	LI	LS	n
1.0	2	5,600	0,505	5,537	5,662	251
2.0	2	21,653	16,920	20,241	23,064	552
3.1	1	14,431	11,735	13,959	14,903	2379
3.2	1	9,877	11,618	9,579	10,175	5823
3.3	1	1,877	0,511	1,805	1,949	194
3.4	1	1,342	0,511	1,277	1,408	234
3.5	2	8,820	6,657	8,393	9,246	936
3.6	2	6,556	2,589	6,440	6,673	1890
3.7	2	20,173	22,061	19,577	20,769	5263
4.0	2	1,724	1,029	1,625	1,823	414
5.1	1	5,006	6,070	4,592	5,421	824
5.2	2	8,658	3,895	8,001	9,315	135
5.3	2	22,213	11,577	21,378	23,047	739
6.0	2	5,506	1,420	5,324	5,688	234
7.0	2	0,439	0,048	0,434	0,444	346
8.1	1	3,383	0,137	3,342	3,423	44
8.2	2	3,202	0,509	3,142	3,262	279
9.1	1	4,218	1,386	4,126	4,310	869
9.2	2	5,173	0,876	5,067	5,279	262
10.1	1	5,442	5,852	5,267	5,617	4303
10.2	1	3,132	1,447	2,988	3,276	389
10.3	2	11,545	7,112	11,345	11,745	4849
11.1	1	4,509	2,858	4,166	4,852	267
11.2	1	0,587	0,252	0,546	0,628	147
11.3	2	7,304	4,488	7,130	7,478	2546
12.0	2	2,872	1,126	2,768	2,976	450
13.0	2	2,458	0,258	2,433	2,484	384
14.0	1	11,259	5,727	11,055	11,464	3008
15.0	1	8,084	8,629	7,915	8,253	10024
16.1	1	7,145	7,715	7,007	7,283	12012
16.2	2	9,856	3,774	9,441	10,270	318
17.0	1	4,952	1,275	4,840	5,065	494

Tabla 43. Biomasa estimada (toneladas) de langostino colorado (*P. monodon*), error estándar de la estimación (EEE, tons) e intervalos de confianza (LI = límite inferior; LS = límite superior) por foco de abundancia entre la II y VIII Región.

Foco	Biomasa (tons)						
F000	Estimada	E.E.E.	LI	LS			
1	14,8	3,0	14,4	15,2			
2	487,5	25,4	485,4	489,6			
3	8.036,4	702,1	8.011,3	8.061,5			
4	29,4	19,5	27,5	31,3			
5	826,9	73,9	821,1	832,7			
6	52,5	16,7	50,4	54,6			
7	1,5	5,9	0,9	2,1			
8	10,6	5,8	9,7	11,5			
9	188,8	75,3	182,8	194,8			
10	2.959,1	631,7	2.939,0	2.979,2			
11	718,4	194,6	707,7	729,1			
12	50,9	31,7	48,0	53,8			
13	39,7	29,1	36,8	42,6			
14	1.150,6	100,5	1.147,0	1.154,2			
15	2.814,9	343,6	2.808,2	2.821,6			
16	2.977,1	408,6	2.968,8	2.985,4			
17	84,6	16,9	83,1	86,1			
18	2.389,4	139,8	2.384,0	2.394,8			
Total	22.833,1	2.824,1	22.726,1	22.940,1			

Como en el caso del langostino amarillo, en la Tabla 44, se entrega la estimación de biomasa de langostino colorado por región, identificándose la biomasa contenida dentro o fuera del ARPA, destacándose que 35,8% de la biomasa de langostino colorado se encuentró en los focos o fracciones de focos de abundancia localizados en la VIII Región, seguida de la III Región con 32,6% de la biomasa total de este recurso. La II Región aportó con 9,1% de la biomasa total, precedida de la IV Región con 17,4% de la biomasa total (Tabla 44).

Tabla 44. Biomasa estimada (toneladas) de langostino colorado (*P. monodon*) e intervalos de confianza (LI = límite inferior; LS = límite superior) por Región, fuera y dentro de la ARPA. ARPA: 1 = OUT, 2 = IN.

Foco.ARPA	Biomasa (tons)					
FUCU.AKFA	Estimada	LI	LS			
2.1	1.259,4	1.255,4	1.263,4			
2.2	813,2	808,1	818,3			
3.1	2.301,9	2.290,3	2.313,5			
3.2	5.085,1	5.066,9	5.103,3			
4.1	1.140,9	1.121,3	1.160,5			
4.2	2.816,0	2.793,0	2.839,0			
5.1						
5.2						
6.1						
6.2						
7.1	1.150,6	1.147,0	1.154,2			
7.2						
8.1	8.159,0	8.138,3	8.179,7			
8.2	107,0	105,8	108,2			
Total	22.833,1	22.726,1	22.940,1			

Latitudinalmente, por Región, se observó un incremento en la fracción de la biomasa de langostino colorado dentro del ARPA. Al respecto, en la II Región, menos de la mitad de la biomasa explotable (39,2%) se encuentra dentro del ARPA, en comparación al 68,8% y 70,8% de las Regiones III y IV, respectivamente.

4.7.1.3. Abundancia

La abundancia, tanto para langostino amarillo como para el langostino colorado, sigue la misma tendencia de la biomasa. Al respecto, la abundancia total de langostino amarillo alcanzó a cerca de 2.300 millones de ejemplares, encontrándose el 50% ella circunscrita al Foco 18, seguido del Foco 15 con 21,6%. Por región, la abundancia se concentró entre la III y IV Regiones con 1.732,7 millones de ejemplares, representando 75,6% de abundancia total de langostino amarillo en la zona de estudio (Anexo 4).

En el caso de langostino colorado, la abundancia total en el área de estudio alcanzó a 2.947,1 millones de ejemplares, siendo el Foco 3 el más abundante con 41,9% de la abundancia total (1.221,6 millones de ejemplares), seguido del Foco 15 y luego el Foco 16, con 494,3 y 393,2 millones de individuos, respectivamente (Anexo 4).

La distribución de la densidad de langostino colorado por región indica que el recurso es casi equi-abundante en las regiones III y VIII debido a que en ambas, la abundancia alcanzó a 37,3% (1.101,3 millones de ejemplares) y 37,2% (1.098,4 millones de individuos) de la abundancia total, respectivamente. En el Anexo 4 se entrega la composición de la abundancia de langostino amarillo y colorado por rango de longitud y sexo tanto dentro como fuera de la ARPA y por región.

4.7.2. Método de la Distribución Delta-lognormal

4.7.2.1. Langostino amarillo

Para la estimación de abundancia de langostino amarillo mediante el estimador de la Distribución Delta, se estimó la densidad poblacional promedio para cada una de las zonas de análisis geoestadístico (ZAGs) descritas para el recurso, lo anterior para asegurar suficiencia de datos (registros) para la estimación.

La distribución de frecuencias de la captura por unidad de área (cpua), en el caso de la ZAG-1, se mostró aproximadamente log-normal, luego la distribución de la cpua log-transformada (ln[cpua]), es aproximadamente normal (Fig. 43a), con lo que se valida el uso de la Distribución Delta como un estimador de la densidad media (Penington, 1983, 1986) para este caso. Sin embargo, en el caso de la ZAG-2, la distribución de probabilidad de ln[cpua] es sesgada hacia la derecha, sobre-estimando el estimador de densidad media (Fig. 43b), por lo que, **en estricto rigor**, no se debiera utilizar el estimador de densidad media para la estimación de biomasa, pues no se puede aplicar los criterios que sustentan el uso de la distribución Delta (Syrjala, 2000). Sin embargo, para efectos comparativos (entre estimadores de biomasa) se ha optado, de todas maneras, en hacer el cálculo de biomasa mediante este enfoque.

Una situación similar a la anterior ocurre con la distribución de probabilidad de los valores logtransformados de la ZAG-3 (Fig. 43c), luego, son totalmente aplicables las consideraciones antes señaladas respecto de la ZAG-2. En cambio, en la ZAG-4, la distribución de probabilidad del logaritmo de la cpua se presentó aproximadamente normal (Fig. 43d), presentado una estructura fuertemente platicútica.

En total contraposición a los casos antes señalados de las ZAGs 1 a 4, en la ZAG-5, la distribución de probabilidad de la cpua log-transformada se presentó completamente alejada de la normalidad (Fig. 44). Por lo tanto, el uso del estimador de la densidad media poblacional en la ZAG-5, vulnera por completo todos los supuestos asociados a la teoría de la distribución Delta de Penington (1983, 1986), no debiendo ser utilizada en la estimación de la biomasa del recurso langostino amarillo en la zona correspondiente.

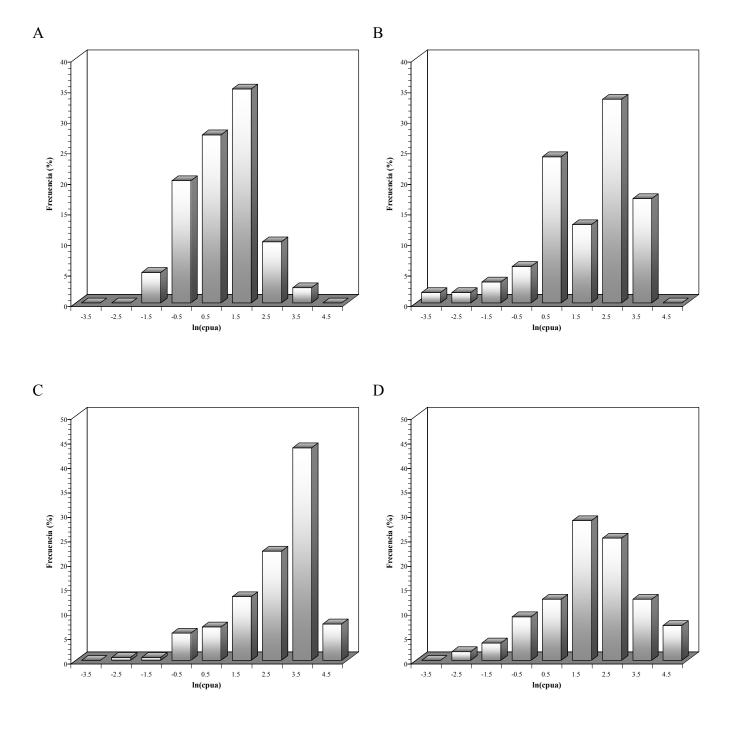


Fig. 43. Distribución de frecuencias del logaritmo de la captura por unidad de área (ln[cpua]) de langostino amarillo (*C. johni*). A =ZAG-1, B = ZAG-2, C = ZAG-3 y D = ZAG-4.

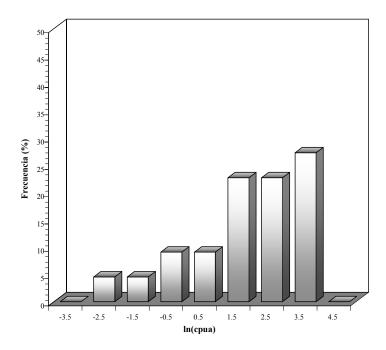


Fig. 44. Distribución de frecuencias del logaritmo de la captura por unidad de área (ln[cpua]) de langostino amarillo (*C. johni*) en la ZAG-5.

Sin embargo, aún teniendo en cuenta lo antes expuesto respecto del estimador de la densidad media, en la Tabla 45 se muestra los resultados de la estimación de la densidad poblacional media para las cinco macrozonas de estudio y en la Tabla 46 se muestran los estimadores de biomasa e intervalos de confianza respectivos, por foco de abundancia.

Tabla 45. Estimador de la densidad poblacional (ton/mn²) de langostino amarillo (*C. johni*) mediante el estimador de la Distribución Delta.

	ln(cpua)		Densidad (ton/km ²)	
Zona	Prom.	D.E.	Media	Var(D)
ZAG-1	0,845	1,095	1,593	0,146
ZAG-2	1,599	1,585	10,545	5,222
ZAG-3	2,592	1,333	29,392	17,593
ZAG-4	1,726	1,598	10,321	9,916
ZAG-5	1,659	1,728	2,648	1,684
Total	1,936	1,562	10,587	2,343

Tabla 46. Biomasa estimada (toneladas) de langostino amarillo (*C. johni*), error estándar de la estimación (EEE, tons) e intervalos de confianza (LI = límite inferior; LS = límite superior) por foco de abundancia entre la II y IV Región. Distribución Delta.

Foco		Bioma	sa (tons)	
1000	Estimada	E.E.E.	LI	LS
1	7,3	1,8	4,8	11,5
2	8,3	2,0	5,5	13,1
3	85,0	20,4	56,3	133,7
4	2,0	0,5	1,3	3,1
5	77,8	18,6	51,6	122,3
6	77,9	18,7	51,6	122,5
7	17,0	4,1	11,3	26,7
8	14,4	3,4	9,5	22,6
9	2,1	0,5	1,4	3,4
10	50,0	12,0	33,1	78,6
11	481,0	104,2	359,3	631,0
12	201,2	43,6	150,3	263,9
13	116,2	25,2	86,8	152,4
14	1.848,4	400,6	1.380,6	2.424,6
15	7.184,8	1.557,0	5.366,5	9.424,1
16	2.589,5	561,1	1.934,1	3.396,5
17	404,8	57,8	389,7	411,2
18	49.523,3	7.067,1	47.681,2	50.312,4
19	2.573,5	785,2	1.992,7	2.776,0
20	778.3	237,5	602,7	839,6
21	2.699,3	823,6	2.090,1	2.911,7
22	1.361,3	415,3	1.054,1	1.468,4
23	146,5	44,7	113,4	158,0
24	137,4	41,9	106,4	148,2
25	146,1	44,6	113,1	157,5
26	37,2	18,2	4,5	70,0
27	37,2	18,2	4,5	69,9
28	110,5	54,2	13,3	207,7
29	37,1	18,2	4,5	69,7
30	366,0	179,4	44,0	688,0
Total	71.121,4	12.579,3	63.718,2	77.118,5

Al respecto, la biomasa total estimada de langostino amarillo alcanzó a 71.121,4 tons (D.E. = 12.579,3 tons) con intervalos de confianza de 63.718,2 tons (límite inferior) y 77.118,5 tons (límite superior).

4.7.2.1. Langostino colorado

En el langostino colorado, para estimar la biomasa mediante el estimador de la Distribución Delta, se siguió el mismo criterio que en el langostino amarillo, esto es, se calculó la densidad poblacional promedio para cada una de las zonas de análisis geoestadístico (ZAG-1 y ZAG-2) descritas para el recurso. Al respecto, la distribución de frecuencias del logaritmo de la captura por unidad de área (ln[cpua]), tanto en la ZAG-1 como en la ZAG-2, se mostró aproximadamente normal, aunque levemente sesgada hacia la derecha en el caso de la ZAG-1 (Fig. 45A).

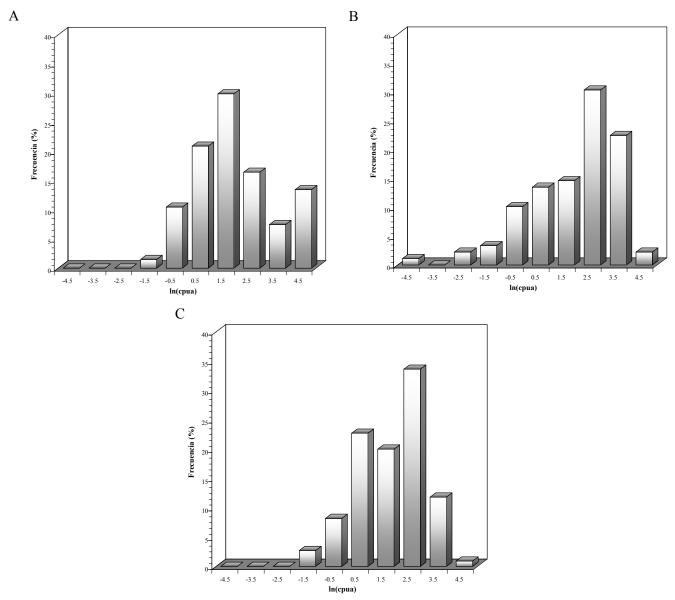


Fig. 45. Distribución de frecuencias del logaritmo de la captura por unidad de área (ln[cpua]) de langostino colorado (*P. monodon*). A =ZAG-1, B = ZAG-2 y C = ZAG-3.

La estimación de biomasa se hizo para cada foco de abundancia dentro de las zonas de análisis geoestadístico, utilizándose para ello el estimador de densidad media calculado en cada caso (Tabla 47). La biomasa por foco de abundancia y sus respectivos límites de confianza se presentan en la Tabla 48. Al respecto, la biomasa total estimada de langostino colorado alcanzó a 19.815,2 tons (D.E. = 4.581,3 tons) con intervalos de confianza de 14.862,9 tons (límite inferior) y 25.733,3 tons (límite superior).

Tabla 47. Estimador de la densidad poblacional (ton/mn2) de langostino colorado (*P. monodon*) mediante el estimador de la Distribución Delta.

	ln(cpua)		Densidad (ton/km²)		
Zona	Prom.	D.E.	Media	Var(D)	
ZAG-1	1,754	1,447	9,068	5,108	
ZAG-2	1,723	1,746	11,497	10,531	
ZAG-3	1,626	1,255	6,720	1,250	
Total	1,691	1,478	8,614	1,378	

Tabla 48. Biomasa estimada (toneladas) de langostino colorado (*P. monodon*), error estándar de la estimación (EEE, tons) e intervalos de confianza (LI = límite inferior; LS = límite superior) por foco de abundancia entre la II y VIII Región. Distribución Delta.

Eage	Biomasa (tons)						
Foco	Estimada	E.E.E.	LI	LS			
1	24,0	6,0	17,8	31,3			
2	204,2	50,9	151,9	266,6			
3	5.597,9	1.395,1	4.165,3	7.310,0			
4	154,4	38,5	114,9	201,7			
5	583,3	145,4	434,1	761,8			
6	109,5	30,9	87,4	135,9			
7	38,7	10,9	30,9	48,0			
8	38,0	10,7	30,3	47,2			
9	487,5	137,6	389,1	605,1			
10	4.080,1	1.151,7	3.256,5	5.064,4			
11	1.250,2	352,9	997,8	1.551,8			
12	203,8	57,5	162,6	252,9			
13	185,6	52,4	148,1	230,3			
14	686,8	114,2	488,3	924,0			
15	2.340,0	389,3	1.663,8	3.148,1			
16	2.772,4	461,2	1.971,2	3.729,8			
17	114,8	19,1	81,6	154,5			
18	944,0	157,0	671,2	1270,0			
Total	19.815,2	4.581,3	14.862,9	25.733,3			

4.7.3. Estimador de razón

El estimador de razón como método de estimación de la densidad media poblacional no estaba originalmente comprometido en la Propuesta Técnica presentada por la Universidad Católica del Norte, sin embargo se ha optado por considerarlo aquí como un referente de comparación, debido a que es frecuentemente utilizado por otros grupos de investigación nacionales.

El estimador de la densidad poblacional mediante el estimador de razón se calculó para cada una de las secciones de área de los focos de abundancia identificados para cada especie, tal como en el caso del enfoque geoestadístico. Al respecto, en aquellas secciones de los focos de abundancia en los que no contaba con registros de captura y esfuerzo de pesca, se impuso el valor del polígono más cercano, pero dentro del mismo foco de abundancia Tabla 49. La biomasa de langostino amarillo en base a este método alcanzó a 64.560,0 tons, con intervalos de confianza de 60.869,3 tons como límite inferior y límite superior de 68.250,7 tons, respectivamente (Tabla 49). Por otro lado, en el caso del langostino colorado, la biomasa entre la II y IV Regiones alcanzó a 24.207,5 tons e intervalos de confianza de la estimación con límite inferior de 23.075,4 tons y límite superior de 25.339,5 tons (Tabla 50).

Tabla 49. Densidad poblacional (cpua, ton/km2), error de estimación (EE, ton/km2), biomasa (tons) e intervalos de confianza inferior (LI, tons) y superior (LS, tons) de langostino amarillo (*C. johni*) entre la II y VIII Región.ARPA: 1 = OUT, 2 = IN. Estimador de razón.

Foco-	ARPA	cpua (to	on/km²)	Biomasa (tons)		
Sección	AKFA	Prom.	E.E.	Estimada	LI	LS
1.1	1	5,779	3,414	1,2	1,2	1,3
1.2	2	5,779	3,414	25,3	24,4	26,2
2.1	1	0,966	0,097	1,3	1,3	1,3
2.2	2	2,588	2,150	9,9	9,4	10,4
3.0	1	1,437	1,486	76,7	71,8	81,6
4.1	1	0,909	0,909	1,1	1,0	1,2
4.2	2	0,909	0,909	0,0	0,0	0,0
5.1	1	5,829	0,583	28,6	28,4	28,8
5.2	2	3,926	3,063	172,5	164,2	180,9
6.1	1	1,806	0,181	4,8	4,8	4,9
6.2	2	3,136	3,016	145,0	136,3	153,6
7.0	2	3,652	0,122	39,0	38,9	39,1
8.0	2	11,580	9,496	104,5	99,2	109,8
9.0	1	0,749	0,075	1,0	1,0	1,0
10.0	2	14,309	7,420	449,2	434,8	463,7
11.0	2	1,942	0,346	88,6	87,6	89,6
12.1	1	1,534	0,573	20,5	20,1	21,0
12.2	2	21,934	0,573	125,1	124,9	125,3
13.0	2	14,317	5,073	157,8	154,3	161,2
14.0	2	4,656	0,349	816,1	812,3	819,9
15.1	1	9,011	0,296	4.067,1	4.058,9	4.075,4
15.2	2	25,744	2,103	1.071,3	1.065,9	1.076,8
15.3	2	9,011	2,103	22,9	22,6	23,2
15.4	3	14,476	11,401	2.695,8	2.564,3	2.827,4
16.1	1	19,027	1,099	254,9	254,0	255,8
16.2	1	1,723	1,099	18,2	17,5	18,9
16.3	1	0,832	0,845	10,5	9,8	11,2
16.4	2	11,230	8,435	2347,2	2.238,0	2.456,5
17.0	2	9,442	3,031	130,0	127,4	132,6
18.1	1	23,713	21,460	320,1	302,1	338,1
18.2	1 2	23,713	21,460	28.596,6	26.992,5	30.200,7
18.3	2	22,042	17,851	6.886,8	6.541,1	7.232,5
18.4 18.5	2	22,042 22,042	17,851 17,851	73,2 2.116,6	69,5 2.010,3	76,8 2.222,8
18.5	2	22,042	17,851	1.182,0	2.010,3 1.122,7	2.222,8 1.241,4
19.0	1	11,278	8,938	2.812,0	2.673,9	2.950,2
20.0	1	3,236	1,778	2.812,0	2.073,9	252,3
21.1	1	17,097	25,513	3.785,2	3.435,1	4.135,3
21.1	2	97,315	15,029	3.907,0	3.869,6	3.944,4
22.0	1	12,276	17,813	1.619,2	1.473,6	1.764,8
23.0	1	0,059	0,006	0,8	0,8	0,8
24.0	1	0,396	0,040	5,3	5,2	5,3
25.0	1	4,618	6,050	65,3	60,0	70,7
26.0	1	0,043	0,361	0,6	0,3	0,9
27.0	1	0,091	0,124	1,3	1,2	1,4
28.0	1	11,266	12,572	470,2	437,7	502,7
29.0	1	0,189	0,273	2,6	2,4	2,9
30.0	1	18,456	13,034	2.551,1	2439,5	2.662,8
Total		14,534	18,310	64.560,0	60.869,3	68.250,7

Tabla 50. Densidad poblacional (cpua, ton/km2), error de estimación (EE, ton/km2), biomasa (tons) e intervalos de confianza inferior (LI, tons) y superior (LS, tons) de langostino colorado (*P. monodon*) entre la II y IV Región.ARPA: 1 = OUT, 2 = IN. Estimador de razón.

Foco-	ARPA	cpua (to	on/km2)	Biomasa (tons))
Sección	AKPA	Prom.	E.E.	Estimada	LI	LS
1.0	2	7,612	0,761	20,1	20,0	20,2
2.0	2	24,324	8,811	547,6	535,3	559,9
3.1	1	11,014	0,572	961,2	958,1	964,3
3.2	1	11,014	0,572	2.363,9	2.356,3	2.371,5
3.3	1	11,014	0,572	85,6	85,4	85,9
3.4	1	11,014	0,572	105,9	105,5	106,2
3.5	2	13,338	0,738	470,2	468,6	471,9
3.6	2	13,338	0,738	961,7	958,4	965,0
3.7	2	13,338	0,738	2.542,9	2.534,2	2.551,7
4.0	2	1,128	2,565	19,2	16,5	21,9
5.1	1	1,216	1,015	37,1	35,2	39,0
5.2	2	27,437	8,025	155,3	152,5	158,1
5.3	2	27,437	8,025	772,1	758,1	786,1
6.0	2	14,805	1,480	141,0	140,2	141,9
7.0	2	0,555	0,055	1,9	1,9	1,9
8.1	1	5,635	0,563	2,9	2,9	2,9
8.2	2	5,635	0,563	15,7	15,6	15,8
9.1	1	5,340	5,295	170,6	160,1	181,1
9.2	2	5,340	5,295	55,9	52,4	59,3
10.1	1	9,033	12,919	1.498,6	1.365,8	1.631,5
10.2	1	9,033	12,919	134,9	122,9	146,9
10.3	2	18,669	12,847	3.249,3	3.110,7	3.387,9
11.1	1	0,797	4,691	9,3	5,9	12,7
11.2	1	0,797	4,691	5,1	3,2	7,0
11.3	2	6,434	8,462	583,1	535,6	630,6
12.0	2	6,514	3,679	115,5	111,4	119,5
13.0	2	2,335	0,962	37,7	36,7	38,7
14.0	1	5,640	10,173	576,3	511,9	640,8
15.0	1	8,503	12,899	2.960,6	2.682,2	3.239,0
16.1	1	8,370	8,368	3.362,0	3.153,7	3.570,4
16.2	2	8,370	8,368	90,9	85,3	96,5
17.0	1	5,821	1,937	99,5	97,4	101,5
18.0	2	14,620	18,178	2.053,7	1.895,4	2.211,9
Total		11,645	15,723	24.207,5	23.075,4	25.339,5

4.7.4. Media aritmética

Tal como en el caso del estimador de razón, el estimador de la media aritmética como método de cálculo de la densidad media poblacional no estaba originalmente comprometido en la Propuesta Técnica presentada por la Universidad Católica del Norte, sin embargo se ha consideró aquí con propósitos de comparación.

4.7.4.1. Langostino amarillo

En el caso del langostino amarillo, la media aritmética de la densidad local, como estimador de la densidad poblacional, se calculó para las tres zonas de análisis geoestadistico y fue aplicado a cada foco de abundancia al interior de la correspondiente ZAG, tal y como fuera presentado en el caso del estimador de la Distribución Delta.

La Tabla 51, muestra los valores de densidad media poblacional, su desviación estándar e intervalos de confianza respectivos. Al respecto, se observó una tendencia creciente de la densidad promedio en la dirección norte-sur desde la ZAG-1 a la ZAG-3 y decreciente entre la ZAG-4 y ZAG-5. Esta misma tendencia fue considerada para la definición de las zonas de análisis geoestadístico, sin embargo, no significa que se exprese a través de los focos de abundancia al interior de las ZAGs.

Tabla 51. Estimador de la densidad poblacional (ton/mn2) de langostino amarillo (*C. johni*) mediante la media aritmética. LI = límite inferior y LS = límite superior del intervalo de confianza.

	Densidad (ton/km2)					
Zona	Prom.	D.E.	LI	LS		
ZAG-1	1,549	3,609	0,855	2,242		
ZAG-2	6,742	9,817	5,312	8,172		
ZAG-3	21,405	20,613	18,359	24,449		
ZAG-4	8,253	19,313	4,541	11,965		
ZAG-5	1,654	6,230	0,712	2,596		
Total	8,574	15,712	7,437	9,712		

La biomasa de langostino amarillo, estimada a partir de la estimación de la densidad local mediante la media aritmética alcanzó a 51.270,8 tons, con un intervalo de confianza entre 41.234,5 tons, como límite inferior, y 61.092,9 tons, como límite superior, respectivamente. La Tabla 52 entrega los estimadores de biomasa de langostino amarillo por foco de abundancia entre la II y VIII Regiones.

Tabla 52. Biomasa estimada (toneladas) de langostino amarillo (*C. johni*), error estándar de la estimación (EEE, tons) e intervalos de confianza (LI = límite inferior; LS = límite superior) por foco de abundancia entre la II y IV Región. Media aritmética.

Foco	Biomasa (tons)						
F000	Estimada	E.E.E.	LI	LS			
1	7,1	16,6	3,9	10,3			
2	8,1	18,8	4,5	11,7			
3	82,7	192,6	45,6	119,7			
4	1,9	4,5	1,1	2,8			
5	75,7	176,3	41,8	109,5			
6	75,8	176,5	41,8	109,7			
7	16,5	38,5	9,1	23,9			
8	14,0	32,6	7,7	20,2			
9	2,1	4,9	1,2	3,0			
10	48,6	113,3	26,8	70,4			
11	307,6	447,8	242,3	372,8			
12	128,7	187,3	101,4	155,9			
13	74,3	108,2	58,5	90,0			
14	1.181,9	1.720,9	931,2	1.432,6			
15	4.593,9	6.688,9	3.619,4	5.568,3			
16	1.655,7	2.410,7	1.304,5	2.006,9			
17	294,8	283,9	252,8	336,7			
18	36.063,3	34.730,5	30.932,2	41.194,4			
19	2.057,8	4.815,6	1.132,3	2.769,3			
20	622,4	1.456,4	342,5	902,3			
21	2.158,5	5.051,1	1.187,7	3.129,2			
22	1.088,6	2.547,4	599,0	1.578,1			
23	117,1	274,1	64,5	169,8			
24	109,8	257,0	60,4	159,2			
25	116,8	273,3	64,3	169,3			
26	23,3	87,6	10,0	36,5			
27	23,2	87,5	10,0	36,5			
28	69,0	260,0	29,7	108,4			
29	23,2	87,3	10,0	36,4			
30	228,7	861,1	98,5	358,9			
Total	51.270,8	63.411,2	41.234,5	61.092,9			

4.7.4.2. Langostino colorado

La media aritmética de la densidad local, como estimador de la densidad poblacional, en el caso del langostino colorado se calculó para las dos ZAGs identificadas para la especie, y fue aplicado a cada foco de abundancia al interior de la correspondiente ZAG. A diferencia de lo ocurrido con el langostino amarillo, se observó una tendencia decreciente de la densidad media entre la ZAG-1 y ZAG-3 (Tabla 53). La biomasa de langostino colorado alcanzó a 16.257,7 tons, con un intervalo de confianza entre 11.214,6 tons, como límite inferior, y 21.300,7 tons, como límite superior, respectivamente Tabla 54.

Tabla 53. Estimador de la densidad poblacional (ton/mn²) de langostino colorado (*P. monodon*) mediante la media aritmética. LI = límite inferior y LS = límite superior del intervalo de confianza.

	Densidad (ton/km2)						
Zona	Prom.	D.E.	LI	LS			
ZAG-1	8,979	19,697	5,425	12,534			
ZAG-2	6,376	11,962	4,679	8,072			
ZAG-3	5,723	9,788	4,316	7,130			
Total	6,751	13,582	5,555	7,948			

Tabla 54. Biomasa estimada (toneladas) de langostino colorado (*P. monodon*), error de estimación (EEE, tons) e intervalos de confianza (LI = límite inferior; LS = límite superior) por foco de abundancia entre la II y VIII Región. Media aritmética.

Eaga	Biomasa (tons)						
Foco	Estimada	E.E.E.	LI	LS			
1	23,7	52,1	14,3	33,1			
2	202,2	443,5	122,1	282,2			
3	5.543,9	12.163,0	3.349,3	7.738,5			
4	152,9	335,5	92,4	213,5			
5	577,6	1.267,3	349,0	806,3			
6	60,7	114,0	44,6	76,9			
7	21,4	40,2	15,7	27,1			
8	21,1	39,5	15,5	26,7			
9	270,4	507,3	198,4	342,3			
10	2.262,7	4.245,2	1.660,7	2.864,8			
11	678,6	1.273,1	498,0	859,1			
12	113,0	212,0	82,9	143,1			
13	102,9	193,1	75,5	130,3			
16	619,7	1.059,9	467,4	772,0			
15	2.119,7	3.625,2	1.598,7	2.640,7			
16	2.520,5	4.310,6	1.901,0	3.140,0			
17	104,3	178,5	78,7	130,0			
18	862,2	1.474,6	650,3	1.074,1			
Total	16.257,7	31.534,5	11.214,6	21.300,7			

4.7.5. Microceldas de estimación geoestadística

El método de las celdas de integración o estimación geoestadística, en el langostino amarillo permitió estimar una biomasa que alcanzó a 59.459,2 tons, con intervalos de confianza de 56.022,3 tons, como límite inferior, y 62.896,2 tons, como límite superior, respectivamente (Tabla 55).

Tabla 55. Biomasa estimada (toneladas) de langostino amarillo (*C. johni*) e intervalos de confianza (LI = límite inferior; LS = límite superior) por foco de abundancia entre la II y VIII Región. Microceldas de estimación geoestadística.

Ease	Biomasa (tons)					
Foco	Estimada	LI	LS			
1	15,5	15,5	15,6			
2	7,5	7,4	7,5			
3	67,2	65,2	69,1			
4	0,6	0,6	0,6			
5	163,8	162,0	165,6			
6	109,7	107,9	111,5			
7	28,0	27,6	28,4			
8	65,8	65,5	66,1			
9	0,4	0,4	0,4			
10	297,5	296,0	299,0			
11	55,1	48,4	61,7			
12	167,5	164,8	170,2			
13	139,6	138,1	141,1			
14	870,1	840,1	900,0			
15	7.243,7	7.140,3	7.347,2			
16	2.260,8	2.222,8	2.298,7			
17	130,0	116,0	144,0			
18	36.657,5	33.694,7	39.620,2			
19	1.967,3	1.874,7	2.059,9			
20	186,7	162,9	210,6			
21	5.459,0	5.373,7	5.544,4			
22	1.368,1	1.319,3	1.416,8			
23	4,7	-0,4	9,8			
24	3,5	-0,9	7,8			
25	59,8	54,9	64,6			
26	3,2	2,8	3,5			
27	1.2	0,9	1,5			
28	413,6	412,5	414,7			
29	4,5	4,2	4,7			
30	1.707,6	1.704,2	1.711,0			
Total	59459,2	56.022,3	62.896,2			

En el caso del langostino colorado, la estimación de biomasa alcanzó a 22.950,1 tons, con intervalos de confianza de 22.223,4 tons, como límite inferior, y 23.676,9 tons, como límite superior, respectivamente (Tabla 56).

Tabla 56. Biomasa estimada (toneladas) de langostino colorado (*P. monodon*) e intervalos de confianza (LI = límite inferior; LS = límite superior) por foco de abundancia entre la II y VIII Región. Microceldas de estimación geoestadística.

Eaga		Biomasa (tons))
Foco	Estimada	LI	LS
1	12,7	12,4	12,9
2	430,3	423,4	437,2
3	7.896,2	7.665,9	8.126,5
4	25,7	20,4	31,0
5	781,5	758,3	804,7
6	46,4	42,3	50,4
7	1,4	1,0	1,7
8	9,4	9,0	9,7
9	180,8	160,6	200,9
10	2.902,2	2.742,8	3.061,6
11	715,9	664,5	767,3
12	46,5	38,9	54,1
13	34,0	26,8	41,2
14	1.219,2	1.199,1	1.239,4
15	2.917,3	2.852,7	2.982,0
16	3.202,7	3.123,0	3.282,5
17	88,1	84,9	91,3
18	2.439,9	2.397,3	2.482,6
Total	22.950,1	22.223,4	23.676,9

4.7.6. Estrategia de muestreo estratificado

El procedimiento de estimación consideró el uso de una estrategia de muestreo estratificado. Los estratos fueron definidos sobre los caladeros conocidos, incorporando las áreas adyacentes en aquellos casos en que las unidades muestrales quedaron parcialmente fuera de éstos. Esta metodología considera expresiones específicas para la estimación de la media, la varianza y el total poblacional, las que se encuentran detalladas en la propuesta técnica correspondiente.

La unidad muestral se definió en base a una grilla de 1x1 mn, de orientación latitudinallongitudinal, de modo que una unidad muestral corresponde a un cuadrado de 1x1 mn. De este modo, el tamaño de cada estrato quedó definido por su número de unidades de superficie (mn²). El tamaño de muestra correspondiente a cada estrato se determinó en forma proporcional al tamaño de cada estrato, medido éste en unidades muestrales. En la práctica ello implicó el muestreo al interior de los caladeros, se realizaron, en promedio, un número de lances equivalente aproximadamente al 40% de las unidades muestrales.

Para la zona indicada, se determinó un total de 35 estratos, con una distribución de tamaños de estrato y de muestra (número de lances) como se indica en la Tabla 57. Por razones técnicas, el número de lances fue reducido al que se indica en la columna correspondiente de la misma tabla. Para la estimación del tamaño efectivo de cada estrato, se redujo el tamaño inicial, en un porcentaje similar al de la reducción del número de lances (lances efectivos), estos valores se muestran también en la Tabla 57.

Tabla 57. Distribución y tamaño de los estratos. Nh = tamaño estrato, nh = tamaño de muestra, nhe = tamaño de la muestra efectiva, nh% = porcentaje del tamaño de muestra.

Estrato	Nh	nh	efect	%
1	28	10	10	100
2	44	14	14	100.0
3	39	15	12	80.0
4	76	34	24	70.6
5	79	30	21	70.0
6	63	22	18	81.8
7	65	24	19	79.2
8	61	23	15	65.2
9	38	15	9	60.0
10	81	28	14	50.0
11	65	27	17	63.0
12	54	22	20	90.9
13	41	16	14	87.5
14	48	18	15	83.3
15	52	22	21	95.5
16	56	20	19	95.0
17	72	26	25	96.2
18	49	20	19	95.0
19	91	31	25	80.6
20	54	21	17	81.0
21	62	24	22	91.7
22	67	26	20	76.9
23	47	19	19	100.0
24	32	13	9	69.2
25	46	17	17	100.0
26	86	32	30	93.8
27	84	33	33	100.0
28	14	7	7	100.0
29	30	13	13	100.0
30	82	32	32	100.0
31	40	16	14	87.5
32	73	28	28	100.0
33	69	27	23	85.2
34	71	28	25	89.3
35	47	18	16	88.9

La estimación de la biomasa se realizó separadamente para cada una de las regiones políticas consideradas, sobre la base de la superficie de los estratos correspondientes a cada región. En aquellos estratos que estaban parcialmente en una región, la estimación se realizó considerando la parte proporcional del estrato que correspondía a cada región (estrato 4 para la transición 2ª a 3ª regiones y estrato 12 para la de la 3ª a la 4ª regiones, y así sucesivamente).

La estimación total de la biomasa se realizó sólo considerando las áreas asignadas a cada estrato sin integrar áreas entre caladeros. Este procedimiento se considera en general conservador, y puede producir una subestimación cercana al 15% respecto de otros procedimientos de estimación utilizados en este y en proyectos anteriores (método geoestadístico, método de Thompson sin estratificar).

La Tabla 58 siguiente muestra los resultados de la estimación por estrato y por región, incorporando la superficie estimada inicialmente en km², la biomasa (Biom., tons), densidad (ton/km²) y una estimación de los límites de confianza del 95% por región. Para efectos del cálculo de la CPUE, se consideró una APA promedio de 11,2 m. Estudios anteriores indican que el efecto de la variabilidad del APA no influye en más de un 2% de la estimación de la biomasa total.

Tabla 58. Biomasa de langostino amarillo y langostino colorado por región y total (tons), área de los estratos (km²), cpua (tons/km²) e intervalos de confianza para el estimador de biomasa por región.

Región	Estrato	Area	Cerv	imunida johni	Pleuro	oncodes monodon
Region	Estrato	(km ²)	cpua	Biom,	cpua	Biom,
	1	96,037		0,000	0,00	0,000
2	2	150,916	0,00	0,000	0,56	84,040
2	3	107,013	0,00	0,000	14,49	1.550,490
	4	173,782	0,85	147,065	11,59	2.014,856
	Estim,	527,748	BM, Estim,	147,065		3.649,385
Subtotal	LI		LI	81,10		3.009,25
	LS		LS	213,03		4.289,52
	4	200,517	0,82	163,949	6,67	1.336,793
	4 5	189,674	0,53	100,213	8,08	1.532,606
	6	176,796	2,16	382,621	19,20	3.394,597
	7	176,497	1,79	315,696	1,31	230,791
3	8 9 10	136,451	2,11	287,584	2,20	300,336
	9	78,202	3,19	249,728	9,41	736,031
	10	138,911	2,19	303,618	1,05	146,359
	11	140,372	5,62	788,917	0,34	48,403
	12	138,911	21,46	2.980,986	0,00	0,000
	Estim,		BM, Estim,	5.573,313	5,00	7.725,916
Subtotal	LI		LI	5.066,772		6.987,447
	LS		LS	6.079,854		8.464,385
		105.015	-		4.50	·
	12	185,215	11,68	2.163,628	1,58	292,680
	13	123,048	17,87	2.199,432	0,43	53,208
	14	137,196	4,21	577,635	3,64	499,835
	15	170,248	8,22	1.399,214	8,45	1.438,653
4	16	182,471	7,68	1.401,078	8,35	1.523,787
	17	237,455	6,52	1.548,925	3,87	919,654
	18	159,662	6,52	1.041,678	0,28	44,684
	19	251,711	19,57	4.925,013	0,00	0,000
	20	138,911	30,76	4.272,756	0,00	0,000
	Estim,	1.585,916	BM, Estim,	19.529,359		4.772,500
Subtotal	LI		LI	17.367,151		4.297,252
I_	LS		LS	21.69,567		5.247,748
	20	152,530	6,03	920,481	0,00	0,000
	21	194,933	16,06	3.130,314	0,00	0,000
_	22	176,772	22,36	3.952,169	0,00	0,000
5	23	161,205	24,83	4.002,304	0,00	0,000
	24	75,986	26,22	1.992,674	0,00	0,000
	25	157,776	10,40	1.641,464	0,00	0,000
	Estim,		BM, Estim,	15.639,405	- ,	0,000
Subtotal	LI		LI	14.79,985		Ó
	LS		LS	16.298,824		0
	26	276,536	2,74	758,380	0,00	0,000
6	27	294,972	16,98	5.007,765	0,00	0,000
	Estim,		BM, Estim,	5.766.145	0,00	0,000
Subtotal	LI	371,300	LI	5.072,550	0,00	0,000
Saototai	LS		LS	6.459,741		0
	LLU	<u>l</u>	LU	0.700,171		U I
_	28	48,019	0,00	0,000	0,00	0,000
7	29	102,897	0,00	2,335	12,44	1.279,594
	Estima	150,916		2,335	12,44	1.279,594
Subtotal	LI	100,910	LI	2,333		826,450
Saototai	LS		LS	4,07		1.732,736
	29	102,897		713,106	0,00	0,000
	30	281,252		0,000	8,47	2.382,599
_	31	120,047	4,04		0,00	0,000
8	32	250,383	0,01	3,508	0,67	168,047
	33	201,602	0,00	0,000	0,69	139,927
	34	217,431	0,00	0,000	12,12	2.634,495
	35	143,294		0,000	6,39	915,920
	Estim,	1.316,906	BM, Estim,	1.201,700		6.240,99
Subtotal	LI		LI	901,638		5.809,919
	LS		LS	1.501,769		6.672,059
		6.448,526	BM, Estim,	47.859,324	BM, Estim,	23.668,384
Total			LI	45.421,969	LI	22.414,539
İ			LS	50.296,953	LS	24.922,228
		l				,

4.8. Objetivo Específico Nº 3

Determinar la condición reproductiva del langostino amarillo y langostino colorado, en el área y período de estudio.

4.8.1. Condición reproductiva del langostino amarillo

4.8.1.1. Estados de madurez embrionaria de las hembras ovíferas

Durante el período de estudio se analizaron 4.562 hembras ovíferas de langostino amarillo con huevos en distintos estados de desarrollo embrionario, indicando así que su ciclo reproductivo estaba en las primeras etapas, lo cual explica el escaso número de hembras en Estado 4. Las hembras ovíferas analizadas, procedentes de las distintas zonas de pesca, se distribuyeron en los siguientes estados de desarrollo:

- Estado 2: 1095 individuos equivalentes al 24% del total.
- Estado 3: 3043 individuos equivalentes al 66,7% del total.
- Estado 4: 292 individuos equivalentes al 6,4% del total.
- Estado 5: 132 individuos equivalentes al 2,89% del total.

En esta especie se encontró que el mayor porcentaje de hembras (90,7%) estaba en estados iniciales de desarrollo embrionario (Estados 2 y 3). El examen visual bajo la lupa binocular, también mostró que las hembras en Estado 4, tenía larvas recién eclosionadas entre su masa ovífera.

4.8.1.2. Distribución mensual de las hembras ovíferas por región de pesca

En el mes abril se obtuvieron muestras en las III-IV Regiones. En la III Región, se registraron solo 5 hembras portando huevos, las cuales se encontraban en estado de desarrollo 3; En la IV Región, se observó un predominio de hembras en Estado 3 (69,25%), seguido del estado 2 y porcentajes mucho menores en estados más avanzados de maduración (Estados 4 y 5) (Tabla 59).

En mayo, se obtuvieron muestras en las regiones IV y V, encontrando un mayor porcentaje de hembras con su masa ovífera en estado 3, con un 81,08% y 72,5% respectivamente, particularmente los estados 4 y 5 fueron bajos en estas regiones (Tabla 60). En junio se concentró el mayor esfuerzo de muestreo, obteniendo ejemplares entre la IV y VIII Regiones; con la mayor parte de las hembras (65,39%) en estado de desarrollo 3. En la VII y VIII Regiones, se observa un aumento considerable de las etapas avanzadas de desarrollo, siendo mayor en la primera con valores de 59,09% y 26,62% para los Estados 4 y 5, respectivamente (Tabla 61). En el mes de julio, se realizaron lances sólo en la VIII obteniendo un bajo número de ejemplares con huevos (134), de los cuales el 44,03% de las hembras se encontraba en estado 3 (Tabla 62).

Tabla 59. Distribución por región de las hembras ovíferas de langostino amarillo capturadas en Abril, según su estado de desarrollo.

REGIÓN	DATO	Estado 2	Estado 3	Estado 4	Estado 5	TOTAL
III	N		5			5
	%	0,00%	100,00%	0,00%	0,00%	100%
IV	N	88	259	8	19	374
	%	23,53%	69,25%	2,14%	5,08%	100%
Total N		88	264	8	19	379
Total %		23,22%	69,66%	2,11%	5,01%	100%

Tabla 60. Distribución por región de las hembras ovíferas de langostino amarillo capturadas en Mayo, según su estado de desarrollo.

REGIÓN	DATO	Estado 2	Estado 3	Estado 4	Estado 5	TOTAL
IV	N	69	330	5	3	407
	%	16,95%	81,08%	1,23%	0,74%	100%
V	N	26	87	1	6	120
	%	21,67%	72,50%	0,83%	5,00%	100%
Total N		95	417	6	9	527
Total %		18.03%	79.13%	1.14%	1.71%	100%

Tabla 61. Distribución por región de las hembras ovíferas de langostino amarillo capturadas en Junio, según su estado de desarrollo.

REGIÓN	DATO	Estado 2	Estado 3	Estado 4	Estado 5	TOTAL
IV	N	209	418	8		635
	%	32,91%	65,83%	1,26%	0,00%	100%
V	N	294	1050	43	9	1396
	%	21,06%	75,21%	3,08%	0,64%	100%
VI	N	177	667	29	15	888
	%	19,93%	75,11%	3,27%	1,69%	100%
VII	N		22	91	41	154
	%	0,00%	14,29%	59,09%	26,62%	100%
VIII	N	193	146	74	36	449
	%	42,98%	32,52%	16,48%	8,02%	100%
Total N		873	2303	245	101	3522
Total %		24,79%	65,39%	6,96%	2,87%	100%

Tabla 62. Distribución por región de las hembras ovíferas de langostino amarillo capturadas en Julio, según su estado de desarrollo.

REGIÓN	DATO	Estado 2	Estado 3	Estado 4	Estado 5	TOTAL
VIII	N	39	59	33	3	134
	%	29,10%	44,03%	24,63%	2,24%	100%
Total N		39	59	33	3	134
Total %		29,10%	44,03%	24,63%	2,24%	100%

4.8.1.3. Distribución de la talla corporal de las hembras ovíferas por estado de madurez embrionaria

La longitud cefalotorácica de las hembras ovíferas fluctuó entre un mínimo de 19,1 mm y un máximo de 50,0 mm, determinándose para el total de ejemplares de cada estado de desarrollo, los rangos de talla corporal, talla promedio y su desviación estándar (Tabla 63).

Tabla 63. Características morfométricas de las hembras de langostino amarillo, por estado de desarrollo de los huevos.

	Estado 2	Estado 3	Estado 4	Estado 5	TOTAL
N	1095	3043	292	132	4562
Prom. LC	33,70	33,22	34,34	33,38	33,41
D.E. LC	3,74	3,69	4,89	4,71	3,84
Mín LC	21,80	19,10	20,30	23,00	19,10
Máx LC	45,30	50,00	47,60	47,20	50,00

Se determinó que la talla promedio de hembras portadoras correspondió a 33,41 mm de longitud cefalotorácica (D.E. = 3,84 mm) con un mínimo y máximo de 33,22 y 34,34 mm, respectivamente; sin embargo, la moda se ubicó en los 32 mm de LC en todos los estados de desarrollo (Fig. 46). La distribución de frecuencia de tallas para los distintos estados de desarrollo mostró una distribución similar a la curva normal, con bajos porcentajes de individuos en las tallas inferiores a 25 mm y superiores a 42 mm (Tabla 64).

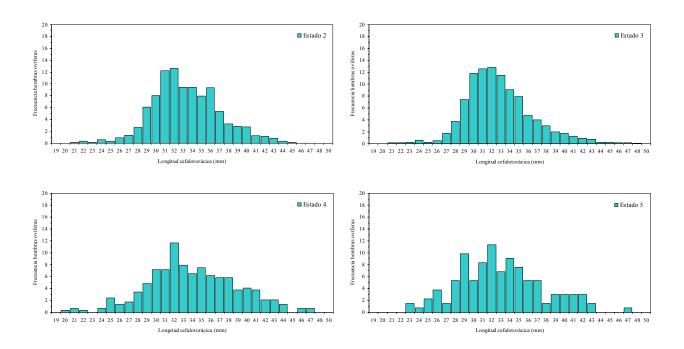


Fig. 46. Distribución de frecuencia de tamaños de las hembras ovíferas de langostino amarillo por estado de desarrollo de los huevos.

Tabla 64. Distribución de frecuencia de tamaño y estados de madurez del langostino amarillo.

	Es	tado 2	Est	tado 3	E	stado 4	E	stado 5	
RANGO	N	%	N	%	N	%	N	%	TOTAL
19		0,000	1	0,033		0,000		0,000	1
20		0,000	1	0,033	1	0,342		0,000	2
21	2	0,183	4	0,131	2	0,685		0,000	8
22	4	0,365	4	0,131	1	0,342		0,000	9
23	2	0,183	8	0,263		0,000	2	1,515	12
24	6	0,548	17	0,559	2	0,685	1	0,758	26
25	4	0,365	8	0,263	7	2,397	3	2,273	22
26	10	0,913	15	0,493	4	1,370	5	3,788	34
27	15	1,370	52	1,709	5	1,712	2	1,515	74
28	29	2,648	115	3,779	10	3,425	7	5,303	161
29	67	6,119	226	7,427	14	4,795	13	9,848	320
30	88	8,037	361	11,863	21	7,192	7	5,303	477
31	134	12,237	384	12,619	21	7,192	11	8,333	550
32	138	12,603	390	12,816	34	11,644	15	11,364	577
33	104	9,498	350	11,502	23	7,877	9	6,818	486
34	104	9,498	277	9,103	19	6,507	12	9,091	412
35	87	7,945	242	7,953	22	7,534	10	7,576	361
36	103	9,406	144	4,732	18	6,164	7	5,303	272
37	59	5,388	121	3,976	17	5,822	7	5,303	204
38	36	3,288	91	2,990	17	5,822	2	1,515	146
39	31	2,831	62	2,037	11	3,767	4	3,030	108
40	30	2,740	52	1,709	12	4,110	4	3,030	98
41	14	1,279	39	1,282	11	3,767	4	3,030	68
42	13	1,187	27	0,887	6	2,055	4	3,030	50
43	9	0,822	22	0,723	6	2,055	2	1,515	39
44	4	0,365	8	0,263	4	1,370		0,000	16
45	2	0,183	7	0,230		0,000		0,000	9
46		0,000	6	0,197	2	0,685		0,000	8
47		0,000	5	0,164	2	0,685	1	0,758	8
48		0,000	3	0,099		0,000		0,000	3
50		0,000	1	0,033		0,000		0,000	1
TOTAL	1095	100	3043	100	292	100	132	100	4562

4.8.1.4. Distribución geográfica global de las hembras ovíferas por estado de madurez embrionaria

El conjunto de hembras ovíferas analizadas provino de las distintas regiones donde se efectuaron lances de pesca, pero la cantidad de ejemplares procedentes de cada región geográfica fue muy diferente. Las diferentes regiones estuvieron bien representadas en las capturas, encontrándose los máximos entre la IV y V Regiones, a excepción de la III Región en la cual sólo se encontraron 5 ejemplares (0,11%) (Tabla 65). A continuación, se indica la distribución de las 4.562 hembras analizadas en cada región geográfica:

III Región : 5 ejemplares con el 0,11% del total.

IV Región : 1.416 ejemplares con el 31,04% del total.

V Región : 1.516 ejemplares con el 33,23% del total.

VI Región : 888 ejemplares con el 19,47% del total.

VII Región : 154 ejemplares con el 3,38% del total.

VIII Región : 583 ejemplares con el 12,78% del total.

La distribución de hembras ovíferas por región, no sólo presentó diferencias importantes en el número de ejemplares examinados, sino también en su estado de maduración (Tabla 65). Los resultados obtenidos en las distintas regiones indicaron que en la IV, V y VIII se encontró la mayor proporción de hembras en Estado 2; en tanto que el porcentaje de hembras en este estado fue marginal en la zona norte (III Región).

Tabla 65. Distribución del estado de madurez embrionario de hembras ovíferas de langostino amarillo por Región.

REGION	ESTADO	N	%	Prom. LC	D.E. LC	Máx. LC	Mín. LC
	2	0	0,00	0	0	0	0
III	3	5	100,00	25,9	4,13	28,8	19,1
	4	0	0,00	0	0	0	0
	5	0	0,00	0	0	0	0
	2	366	25,85	33,33	3,33	44,1	22,5
IV	3	1007	71,12	32,89	3,32	47,8	22,1
	4	21	1,48	33	4,73	44,2	25,7
	5	22	1,55	30,9	2,77	36,6	23,3
	2	320	21,11	32,8	3,35	45,3	22,4
V	3	1137	75,00	33,24	3,63	48,9	21,6
	4	44	2,90	31,97	3,02	43,3	26,3
	5	15	0,99	34,44	2,68	37,3	28,5
	2	177	19,93	34,44	3,97	42,8	21,8
VI	3	667	75,11	32,92	3,6	45,7	23,5
·	4	29	3,27	33,82	3,62	42	29,1
	5	15	1,69	34,31	3,17	40,8	31,1
	2	0	0,00	0	0	0	0
VII	3	22	14,29	37,78	5,54	50	29,2
	4	91	59,09	34,63	6,44	47,6	20,3
	5	41	26,62	32,32	6,18	47,2	23
	2	232	39,79	34,98	4,24	45	21,8
VIII	3	205	35,16	35,41	4,55	46,7	20,6
	4	107	18,35	35,48	3,85	46	27,7
	5	39	6,69	35,13	4,12	43	24,6

4.8.1.5. Distribución batimétrica de las hembras ovíferas según su estado de madurez embrionaria

En el área de estudio, las hembras ovíferas examinadas se capturaron en los lances de pesca efectuados entre 100 y 350 m de profundidad (Tabla 66). Sin embargo, el mayor porcentaje de las

hembras ovíferas (73,08%) se obtuvo en los lances efectuados entre 150 y 250 m, particularmente en el estrato 150-200 m, siendo muy escasos los especímenes capturados en el estrato más somero de 100-150 m.

Tabla 66. Distribución de frecuencia por rango de profundidad y estados de madurez del langostino amarillo.

RANGO PROFUNDIDAD (m)	DATO	Estado 2	Estado 3	Estado 4	Estado 5	TOTAL
100-149,9	N	136	743	12	7	898
100-149,9	%	0,12	0,24	0,04	0,05	0,20
150-199,9	N	629	1405	176	77	2287
130-199,9	%	57,44%	46,17%	60,27%	58,33%	50,13%
200-249,9	N	265	633	101	48	1047
200-249,9	%	24,20%	20,80%	34,59%	36,36%	22,95%
250-299,9	N	27	242	3		272
230-299,9	%	2,47%	7,95%	1,03%	0,00%	5,96%
300-349,9	N	38	20			58
300-349,9	%	3,47%	0,66%	0,00%	0,00%	1,27%
TOTAL		1095	3043	292	132	4562

4.8.2. Langostino colorado

4.8.2.1. Estados de madurez embrionaria de las hembras ovíferas

Durante el período de estudio se analizaron 10.847 hembras ovíferas de langostino colorado con huevos en distintos estados de desarrollo embrionario, indicando así que su ciclo reproductivo estaba en las primeras etapas de desarrollo, lo cual explica el escaso número de hembras en Estado 4. Las hembras ovíferas analizadas, procedentes de las distintas zonas de pesca, se distribuyeron en los siguientes estados de desarrollo:

- Estado 2: 2.314 individuos equivalentes al 21,33% del total.
- Estado 3: 4.549 individuos equivalentes al 41,94% del total.
- Estado 4: 1.809 individuos equivalentes al 16,68% del total.
- Estado 5: 2.175 individuos equivalentes al 20,05% del total.

4.8.2.2. Distribución mensual de las hembras ovíferas por región de pesca

En abril se obtuvieron muestras en la III y IV Regiones. En la III Región, se registraron sólo 1 hembra portando huevos, en estado de desarrollo 3. En la IV Región, se observó un predominio de hembras en Estado 3 (81,42%), seguido del estado 5 y porcentajes menores en estados 2 y 4 (Tabla 67). En mayo, se obtuvieron muestras sólo en la IV Región, encontrando un mayor porcentaje de hembras con su masa ovífera en estado 3 (Tabla 68). En junio se concentró el mayor esfuerzo de muestreo, obteniendo muestras entre la IV y VIII Regiones; se observó que la mayor parte de las hembras en la IV Región (76,76%) se encontraba en estado de desarrollo 3. En la VII se observa un incremento considerable de las etapas avanzadas de desarrollo, siendo mayor para el Estado 5 (Tabla 69). En el mes de julio, se realizaron lances en la VII y VIII Región, obteniendo un 79,5% de ejemplares con huevos en estado 2, mientras en la VIII predominaron aquellos en estado 3 (Tabla 70).

Tabla 67. Distribución por región de las hembras ovíferas de langostino colorado capturadas en Abril, según su estado de desarrollo.

REGIÓN	DATO	Estado 2	Estado 3	Estado 4	Estado 5	TOTAL
III	N		7			7
111	%	0	1	0	0	1
IV	N	42	977	75	106	1200
I V	%	3,50%	81,42%	6,25%	8,83%	100%
Total N		42	984	75	106	1207
Total %		3,48%	81,52%	6,21%	8,78%	100%

Tabla 68. Distribución por región de las hembras ovíferas de langostino colorado capturadas en Mayo, según su estado de desarrollo.

REGIÓN	DATO	Estado 2	Estado 3	Estado 4	Estado 5	TOTAL
IV	N	333	379	82	129	923
IV	%	36,08%	41,06%	8,88%	13,98%	100%
Total N		333	379	82	129	923
Total %		36,08%	41,06%	8,88%	13,98%	100%

Tabla 69. Distribución por región de las hembras ovíferas de langostino colorado capturadas en Junio, según su estado de desarrollo.

REGIÓN	DATO	Estado 2	Estado 3	Estado 4	Estado 5	TOTAL
IV	N	140	984	34	124	1282
1 V	%	10,92%	76,76%	2,65%	9,67%	100%
VII	N	65	203	115	309	692
VII	%	9,39%	29,34%	16,62%	44,65%	100%
VIII	N	820	840	866	903	3429
VIII	%	23,91%	24,50%	25,26%	26,33%	100%
Total N		1025	2027	1015	1336	5403
Total %		18,97%	37,52%	18,79%	24,73%	100%

Tabla 70. Distribución por región de las hembras ovíferas de langostino colorado capturadas en Julio, según su estado de desarrollo.

REGIÓN	DATO	Estado 2	Estado 3	Estado 4	Estado 5	TOTAL
VII	N	221	34	8	15	278
VII	%	79,50%	12,23%	2,88%	5,40%	100%
X/III	N	693	1125	629	589	3036
VIII	%	22,83%	37,06%	20,72%	19,40%	100%
Total N		914	1159	637	604	3314
Total %		27,58%	34,97%	19,22%	18,23%	100%

4.8.2.3. Distribución de la talla corporal de las hembras ovíferas por estado de madurez embrionaria.

La longitud cefalotorácica de las hembras ovíferas fluctuó entre un mínimo de 10,2 mm y un máximo de 50,4 mm, determinándose para el total de ejemplares de cada estado de desarrollo, los rangos de talla corporal, talla promedio y su desviación estándar (Tabla 71).

Tabla 71. Características morfométricas de las hembras de langostino colorado por estado de desarrollo del huevo.

	Estado 2	Estado 3	Estado 4	Estado 5	TOTAL
N	2314	4549	1809	2175	10847
Prom. LC	24,47	27,00	23,31	24,75	25,40
D.E. LC	6,03	5,57	5,97	6,29	6,06
Mín LC	10,6	10,20	10,40	10,50	10,20
Máx LC	40,30	50,40	41,30	43,80	50,40

Se determinó que la talla promedio de hembras portadoras correspondió a 25,40 mm de longitud cefalotorácica (D.E. = 6,06 mm) con un mínimo y máximo de 23,31 y 27,00 mm, respectivamente; sin embargo, se observó una tendencia a la bimodalidad en todos los estados de desarrollo con una moda principal alrededor de los 30 mm de LC y una secundaria alrededor de los 18 mm de LC (Fig. 47, Tabla 72).

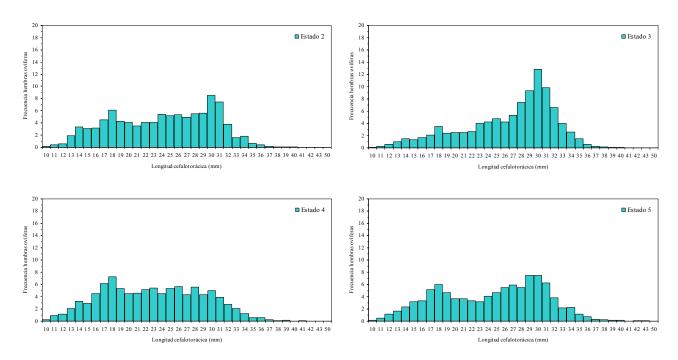


Fig. 47. Distribución de frecuencia de tamaños de las hembras ovíferas de langostino colorado por estado de desarrollo del huevo.

Tabla 72. Distribución de frecuencia de tamaño y estados de madurez del langostino colorado.

	Esta	do 2	Est	ado 3	Esta	do 4	Esta	do 5	TOTA	A L
RANGO	N	%	N	%	N	%	N	%	N	%
10	3	0,13	2	0,04	4	0,22	3	0,14	12	0,11
11	10	0,43	12	0,26	16	0,88	10	0,46	48	0,44
12	14	0,61	25	0,55	21	1,16	25	1,15	85	0,78
13	45	1,94	47	1,03	37	2,05	37	1,70	166	1,53
14	77	3,33	68	1,49	59	3,26	50	2,30	254	2,34
15	71	3,07	62	1,36	53	2,93	69	3,17	255	2,35
16	74	3,20	74	1,63	81	4,48	72	3,31	301	2,77
17	104	4,49	95	2,09	112	6,19	113	5,20	424	3,91
18	142	6,14	160	3,52	131	7,24	130	5,98	563	5,19
19	98	4,24	110	2,42	97	5,36	101	4,64	406	3,74
20	95	4,11	112	2,46	82	4,53	79	3,63	368	3,39
21	82	3,54	112	2,46	83	4,59	79	3,63	356	3,28
22	94	4,06	123	2,70	94	5,20	73	3,36	384	3,54
23	94	4,06	181	3,98	98	5,42	69	3,17	442	4,07
24	126	5,45	195	4,29	81	4,48	88	4,05	490	4,52
25	120	5,19	217	4,77	97	5,36	101	4,64	535	4,93
26	123	5,32	192	4,22	102	5,64	120	5,52	537	4,95
27	114	4,93	244	5,36	79	4,37	129	5,93	566	5,22
28	127	5,49	337	7,41	101	5,58	120	5,52	685	6,32
29	130	5,62	424	9,32	79	4,37	163	7,49	796	7,34
30	198	8,56	583	12,82	90	4,98	163	7,49	1034	9,53
31	172	7,43	449	9,87	71	3,92	136	6,25	828	7,63
32	88	3,80	300	6,59	50	2,76	84	3,86	522	4,81
33	37	1,60	182	4,00	38	2,10	47	2,16	304	2,80
34	43	1,86	118	2,59	22	1,22	49	2,25	232	2,14
35	16	0,69	68	1,49	11	0,61	25	1,15	120	1,11
36	9	0,39	28	0,62	10	0,55	16	0,74	63	0,58
37	3	0,13	13	0,29	4	0,22	8	0,37	28	0,26
38	2	0,09	6	0,13	2	0,11	6	0,28	16	0,15
39	2	0,09	4	0,09	3	0,17	4	0,18	13	0,12
40	1	0,04	3	0,07		0,00	3	0,14	7	0,06
41		0,00		0,00	1	0,06		0,00	1	0,01
42		0,00	1	0,02		0,00	2	0,09	3	0,03
43		0,00	1	0,02		0,00	1	0,05	2	0,02
50		0,00	1	0,02		0,00		0,00	1	0,01
TOTAL	2314	100	4549	100	1809	100	2175	100	10847	100

4.8.2.4. Distribución geográfica global de las hembras ovíferas por estado de madurez embrionaria

El conjunto de hembras ovíferas analizadas provino de las distintas regiones donde se efectuaron lances de pesca, pero la cantidad de ejemplares procedentes de cada región geográfica fue muy diferente. Se encontraron dos máximos en la IV y VII Regiones, a excepción de la III Región en la cual solo se encontraron 7 ejemplares (0,06%) (Tabla 73). A continuación, se indica la distribución de las 10.847 hembras analizadas en cada región geográfica:

III Región : 7 ejemplares con el 0,06% del total.

IV Región : 3.405 ejemplares con el 31,39% del total.

VII Región : 970 ejemplares con el 8,94% del total.

VIII Región : 6.465 ejemplares con el 59,6% del total.

La distribución de hembras ovíferas por región, no sólo presentó diferencias importantes en el número de ejemplares examinados, sino también en su estado de maduración (Tabla 73). Los resultados obtenidos en las distintas regiones indicaron que las Regiones VII y VIII presentaban patrones de distribución homogénea de hembras en los distintos estados de desarrollo del huevo.

Tabla 73. Distribución del estado de madurez embrionario de hembras ovíferas de langostino colorado por Región.

REGIÓN	ESTADO	%	Prom. LC	D.E. LC	Máx. LC	Mín. LC
	2	0,00	0,00	0,00	0,0	0,0
III	3	100,00	27,23	2,04	31,6	25,4
111	4	0,00	0,00	0,00	0,0	0,0
	5	0,00	0,00	0,00	0,0	0,0
	2	15,12	31,09	2,38	39,8	18,5
IV	3	68,72	30,78	2,47	43,0	13,1
1 1 1	4	5,61	31,73	2,48	41,3	24,1
	5	10,54	31,76	2,55	42,1	19,9
	2	29,48	28,06	2,81	35,2	16,6
VII	3	24,43	27,83	3,93	42,0	14,0
VII	4	12,68	28,39	4,00	38,0	16,6
	5	33,40	29,25	3,56	43,8	16,0
	2	23,40	21,53	5,13	40,3	14,6
VIII	3	30,39	22,40	4,95	50,4	10,2
VIII	4	23,12	21,81	5,26	39,8	14,5
	5	23,08	22,09	5,48	39,9	16,2

4.8.2.5. Distribución batimétrica de las hembras ovíferas según su estado de madurez embrionaria

En el área de estudio, las hembras ovíferas examinadas se capturaron en los lances de pesca efectuados entre 50 y 400 m de profundidad (Tabla 74). Sin embargo, el mayor porcentaje de las hembras (73,08%) se obtuvo en los lances efectuados entre 100 y 250 m, particularmente en el estrato 100-150 m (54,71%), siendo muy escasos los especimenes capturados en el estrato más somero de 50-100 m (9,19%) y profundo de 350-400 m (0,08%).

Tabla 74. Distribución de frecuencia por rango de profundidad y estados de madurez del langostino colorado.

RANGO PROFUNDIDAD (m)	DATO	Estado 2	Estado 3	Estado 4	Estado 5	TOTAL
50-99.9	N	265	254	233	245	997
30-99,9	%	11,45%	5,58%	12,88%	11,26%	9,19%
100-149,9	N	1263	2033	1303	1335	5934
100-149,9	%	54,58%	44,69%	72,03%	61,38%	54,71%
150-199,9	N	590	957	200	508	2255
130-199,9	%	25,50%	21,04%	11,06%	23,36%	20,79%
200-249,9	N	185	923	48	82	1238
200-249,9	%	7,99%	20,29%	2,65%	3,77%	11,41%
250-299,9	N		276	1		277
230-299,9	%	0,00%	6,07%	0,06%	0,00%	2,55%
300-349,9	N	11	101	22	3	137
300-349,9	%	0,48%	2,22%	1,22%	0,14%	1,26%
350-399,9	N		5	2	2	9
330-399,9	%	0,00%	0,11%	0,11%	0,09%	0,08%
TOTAL		2314	4549	1809	2175	10847

4.9. Objetivo Específico Nº 4

Determinar la composición e importancia relativa de las especies que constituyan fauna acompañante de estos dos recursos durante los cruceros de evaluación.

4.9.1. Descripción de la abundancia de la fauna acompañante

4.9.1.1. Composición específica general de la fauna acompañante

La fauna acompañante estuvo compuesta por 31 taxa, de los cuales 19 fueron peces, 6 crustáceos, 4 moluscos y 2 mixinoídeos (Tabla 75), destacando los peces merluza común (*Merluccius gayi*), lenguado de ojos grandes (*Hippoglossina macrops*) y pejerrata 1 (*Nezumia pulchella*), los cuales concentraron el 80,51% de la captura total de la fauna acompañante. La captura de las tres especies correspondió al 14,36% de la captura total de las especies objetivo, lo que es alto, considerando que la captura total de la fauna acompañante fue similar al 17,83% de la captura de las especies objetivo. Las especies restantes presentaron una importancia muy baja, muchas de ellas representan menos del 1% de la captura total de la fauna acompañante y sólo 7 superaron el 5%. (Tabla 75).

4.9.1.2. Distribución de la fauna acompañante en sentido latitudinal

El patrón general observado de dominancia de los peces *M. gayi*, *H. macrops* y *N. pulchella* se repitió en casi la totalidad de las regiones. El predominio ocurrió en la magnitud de abundancia relativa (CPUA), fracción respecto a la fauna acompañante y respecto a los recursos objetivos, así como en la frecuencia de ocurrencia en los lances efectuados (Tabla 76). La excepción ocurrió en la II Región, donde la jaiba mochilera (*Lophorochinia parabranchia*) fue la especie de mayor importancia. Esta jaiba estuvo presente sólo en los lances efectuados en la II y IV Regiones. Respecto a los recursos objetivos, en la mayoría de las regiones el valor de captura de cada una de las especies, es menor al 10%, sin embargo en la VII Región ocurre la excepción, ya que la captura de la fauna acompañante es mayor que la de los propios recursos objetivo (Tabla 76). En efecto, la captura de la fauna acompañante fue de 62,06 ton y la captura de los recursos objetivos

fue de 43.93 ton y la captura de *M. gayi* y *H. macrops* fue equivalente al 51,81% y 64,96%, de este valor, respectivamente.

Tabla 75. Listado de las especies que conforman la fauna acompañante en capturas de langostino colorado (*P. monodon*) y langostino amarillo (*C. johni*). IIRFA= índice de importancia relativa respecto a la captura total en peso de la fauna acompañante, IIRO= índice de importancia relativa respecto a la captura total en peso de los recursos objetivo.

Nombre vernacular	Nombre científico	Acrónimo	CPUA Total (ton)	Lances Positivos (%)	IIRFA (%)	IIRRO (%)
Merluza común	Merluccius gayi	Merlgay	1001,75	58,66	53,71	9,58
Lenguado de ojos grandes	Hippoglossina macrops	Нірртас	284,30	38,05	15,24	2,72
Pejerrata (1)	Nezumia pulchella	Nezupul	215,57	7,71	11,56	2,06
Jaiba mochilera	Lophorochinia parabranchia	Loppar	117,54	1,14	6,30	1,12
Jibia	Dosidicus gigas	Dosgig	57,23	3,16	3,07	0,55
Jaiba araña	Libidoclea granaria	Libigra	46,58	6,95	2,50	0,45
Raya volantín sp 1	Raja sp. 1	Rajasp-1	36,46	1,64	1,95	0,35
Jaiba paco	Mursia gaudichaudii	Mursgau	33,46	13,40	1,79	0,32
Jaiba limón	Cancer porteri	Cancpor	15,66	7,71	0,84	0,15
Besugo	Epigonus crassicaudus	Epigcra	12,06	4,93	0,65	0,12
Gamba de profundidad	Haliporoides diomedeae	Halidio	9,82	0,76	0,53	0,09
Tollo luminoso (Halaelurus)	Halaelurus canescens	Halacan	9,79	3,29	0,52	0,09
Torpedo	Discopyge tschudii	Disctsc	7,16	1,26	0,38	0,07
Zapateador	Pterygosquila armata	Pterarm	4,76	0,76	0,26	0,05
Tiburón gato	Aculeola nigra	Aculnig	3,25	1,01	0,17	0,03
Raya chica sp 1	Raja sp. 3	Rajasp-3	3,15	1,64	0,17	0,03
Congrio negro	Genypterus maculatus	Genymac	1,36	0,51	0,07	0,01
Raya chica sp 2	Raja sp. 4	Rajasp-4	1,28	0,51	0,07	0,01
Lamprea oscura	Eptatretus polytrema	Lamprea-os	0,83	1,26	0,04	0,01
Pulpo	Octopus sp.	Octopus	0,59	2,40	0,03	0,01
Pejerrata azul (1)	Coelorhynchus aconcagua	Coelaco	0,55	0,13	0,03	0,01
Caracol indeterminado		Gastr.	0,50	0,76	0,03	< 0,01
Ophichthus	Ophichthus pacifici	Ophipac	0,45	2,02	0,02	< 0,01
Pejerrata plomo (?)	Trachirhynchus villegai	Tracvil	0,39	0,13	0,02	< 0,01
Raya volantín sp 2	Raja sp.2	Rajasp-2	0,30	0,25	0,02	< 0,01
Congrio dorado	Genypterus blacodes	Genybla	0,24	0,38	0,01	< 0,01
Congrio colorado	Genypterus chilensis	Genychi	0,08	0,13	< 0,01	< 0,01
Blanquillo	Prolatilus jugularis	Proljug	0,03	0,13	< 0,01	< 0,01
Lamprea bicolor	Geotria sp.	Lamprea-bc	0,02	0,13	< 0,01	< 0,01
Tollo de profundidad	Centroscyllium nigrum	Centnig	0,01	0,13	< 0,01	< 0,01
Calamar común	Loligo gahi	Loligah	0,01	0,13	< 0,01	< 0,01

En relación a los peces *M. gayi*, *H. macrops* y *N. pulchella* y a la jaiba *L. parabranchia* en la II Región, la mayoría de las especies presentaron valores de captura marginales, y mucho más marginales respecto a los recursos objetivo.

Tabla 76. Listado de las especies que conforman la fauna acompañante en las capturas de langostino colorado (*P. monodon*) y langostino amarillo (*C. johni*), cuya CPUA fue mayor a 5%, ordenados por región. IIRFA= índice de importancia relativa respecto a la captura total en peso de la fauna acompañante, IIRO= índice de importancia relativa respecto a la captura total en peso de los recursos objetivo.

Región	Especie	Total Lances	Lances Positivos (%)	CPUA (ton)	IRFA (%)	Bycatch CPUA (ton)	IRRO	CPUA (ton)		
							(%)	Cervjoh	Pleumon	Heteree
II	Loppar		10,00	117,01			32,29			
	Merlgay	50	26,00	8,03	6,25	128,44	2,22	11,41	331,25	19,68
	Halacan		12,00	3,40	2,65		0,94			
	Merlgay		37,59	54,10	66,19		4,00			
	Нірртас	133	22,56	15,01	18,37		1,11			197,13
TIT	Halacan		6,02	4,53	5,55		0,33			
III	Dossgig		0,75	3,93	4,81	81,73	0,29	407,67	749,29	
	Epigcra Norum.l		6,77	2,27	2,77 1,51		0,17 0,09	,	,	
	Nezupul Mursgau		3,01 1,50	1,23 0,52	0,63		0,09			
	Halidio		0,75	0,13	0,16		0,01			
	Merlgay		80,84	446,96	74,70		11,40			
	Hippmac		53,27	99,45	16,62		2,54			
	Dossgig		6,54	28,70	4,80		0,73			
	Mursgau		20,56	7,87	1,32		0,20			298,43
	Halidio		0,93	7,48	1,25		0,19	2424,65		
IV	Cancpor		7,94	4,26	0,71	598,34	0,11		1196,78	
	Epigcra	214	6,07	1,67	0,28		0,04			
	Rajasp-1		0,47	0,80	0,13		0,02			
	Loppar		1,87	0,53	0,09		0,01			
	Nezupul		2,34	0,53	0,09		0,01			
	Halacan		1,87	0,08	0,01		<0,01			
	Libigra		1,87	0,02	<0,01		<0,01			
V	Merlgay		70,16	239,23	59,23	403,89	8,77	2429,74	0,00	298,72
	Hippmac Norum.l		57,26	77,76 43,50	19,25 10,77		2,85 1,59			
	Nezupul		17,74 23,39	12,27	3,04		0,45			
	Mursgau Dossgig		4,84	11,74	2,91		0,43			
	Epigcra		12,90	8,07	2,00		0,30			
	Libigra	124	10,48	5,13	1,27		0,19			
	Cancpor		9,68	2,07	0,51		0,08			
	Rajasp-1		1,61	1,82	0,45		0,07			
	Halidio		1,61	1,33	0,33		0,05			
	Halacan		5,65	0,97	0,24		0,04			
	Nezupul		27,27	136,95	47,98		17,68	688,84	0,00	85,89
	Merlgay		53,03	54,06	18,94		6,98			
	Rajasp-1		13,64	33,81	11,85		4,36			
VI	Нірртас		51,52	25,66	8,99		3,31			
	Libigra	66	39,39	22,60	7,92	231,37	2,92			
	Cancpor	00	37,88	6,50	2,28	231,37	0,84			
	Mursgau		30,30	4,98	1,75		0,64			
	Halacan		1,52 1,52	0,81	0,28		0,10			
	Epigcra		66,67	0,05 28,54	0,02 45,99		0,01 64,96			
	Hippmac Merlgay		72,22	22,76	36,68		51,81	14,44	0,00	29,49
VII	Mursgau		38,89	5,99	9,65		13,64			
V 11	Nezupul	18	5,56	2,95	4,75	62,06	6,71			
	Libigra		11,11	1,82	2,94		4,15			
VIII	Merlgay	186	50,00	176,62	63,00		17,13	902.44		
	Нірртас		21,51	37,88	13,51		3,67			
	Nezupul		5,91	30,41	10,85	280,34	2,95		137,56	0,88
	Libigra		5,38	17,01	6,07		1,65			
	Dossgig		2,15	12,86	4,59		1,25			
	Cancpor		3,76	2,84	1,01		0,28	892,44		
	Mursgau		2,15	1,83	0,65		0,18			
	Halidio		0,54	0,88	0,31		0,09			
	Rajasp-1		0,54	0,02	0,01		0,00			
	Halacan		0,00	0,00	0,00		0,00			

4.9.1.3. Distribución de la fauna acompañante en sentido batimétrico

Merlucius gayi presentó la importancia relativa más alta en todos los estratos, tanto respecto al resto de la fauna acompañante como respecto a los recursos objetivos. Su abundancia relativa (CPUA) más alta, fue observada en los estratos de profundidad 100-200 y 200-300 m (Tabla 77). En los estratos extremos, <100 y >400, la abundancia relativa fue menor comparada con el resto de la fauna acompañante. En el estrato <100 m se observó la mayor importancia, gracias a que sólo ocurrieron dos especies más y con abundancias mucho menores. Respecto a los recursos objetivos, en la mayoría de los estratos su importancia fue en torno al 50%, exceptuando a los estratos 100-200, 200-300m, donde su importancia fue menor al 10%.

Por su parte *Hippoglossina macrops* presentó los valores de abundancia relativa más altos en los estratos 100-200 y 200-300 m de profundidad. En los estratos restantes su presencia fue baja, lo que se refleja en la importancia respecto al resto de la fauna acompañante y respecto a los recursos objetivo (Tabla 77). El pejerrata (*Nezumia pulchella*) se encontró en mayor abundancia en los estratos 200-300 y 300-400 m de profundidad. En el estrato donde se sobreponen *N. pulchella* y *H. macrops*, esta última presenta una mayor importancia en todos los indicadores señalados (Tabla 77).

Tabla 77. Fauna acompañante en las capturas de langostino colorado (*P. monodon*) y langostino amarillo (*C. johni*), cuya CPUA fue mayor a 5%, ordenados por estratos de profundidad. IIRFA= índice de importancia relativa respecto a la captura total en peso de la fauna acompañante, IIRO= índice de importancia relativa respecto a la captura total en peso de los recursos objetivo.

Profundidad		Total	Lances	CPUA	IRFA	CPUA F.	IRRO	CPUA (ton)		
(m)	Especie	Lances	Positivos (%)	(ton)	(%)	Acomp.	(%)	Cervjoh	Pleumon	Heteree
	Merlgay	31	83,87	59,90	95,89	62,47	47,58			0,00
<100	Нірртас		3,23	1,13	1,80		0,89			
	Cancpor		9,68	1,08	1,73		0,86	10,73	115,18	
	Mursgau		3,23	0,36	0,58		0,29			
	Merlgay		52,14	378,03	69,89		4,33			
	Нірртас		36,47	128,33	23,73	540,92	1,47		5209,84	89,45
	Mursgau		13,68	17,01	3,15		0,19			
	Dossgig		1,14	6,86	1,27		0,08			
100-200	Cancpor		7,12	5,57	1,03		0,06			
	Libigra	351	2,28	4,03	0,74		0,05	3431,22		
	Nezupul		0,57	0,91	0,17		0,01			
	mochilera		0,85	0,14	0,03		0,00			
	Rajasp-1		0,28	0,02	0,00		0,00			
	Epigcra		0,28	0,01	0,00		0,00			
	Merlgay		66,06	397,40	57,89	686,53	9,11	2654,49		
	Нірртас		53,07	136,95	19,95		3,14			
	Nezupul		8,30	81,31	11,84		1,86			
	Dossgig		4,33	28,40	4,14		0,65			
200-300	Libigra	277	9,03	15,29	2,23		0,35			
200 300	Mursgau		16,25	12,80	1,86		0,29		1078,25	627,35
	Cancpor		9,75	7,58	1,10		0,17			
	Halacan		2,89	3,63	0,53		0,08			
	Epigcra		3,25	1,52	0,22		0,03			
	Rajasp-1		0,72	1,25	0,18		0,03			
	mochilera		0,36	0,39	0,06		0,00			
	Merlgay		54,17	156,03	29,29	532,76	23,78	124,88	197,72	333,58
	Nezupul		26,67	131,48	24,68		20,04			
	mochilera	120	4,17	117,01	21,96		17,83			
	Rajasp-1		6,67	33,37	6,26		5,09			
200 400	Libigra		18,33	27,26	5,12		4,15			
300-400	Dossgig		6,67	21,37	4,01		3,26			
	Нірртас		19,17	16,62	3,12		2,53			
	Epigcra		20,83	10,14	1,90		1,55			
	Halidio		4,17	9,48	1,78		1,44			
	Halacan		11,67	5,30	1,00		0,81			
	Mursgau		9,17	3,27	0,61		0,50			
	Cancpor		5,00	1,42	0,27		0,22	2 20	0.00	16.52
	Merlgay	12	58,33	10,39	59,18		55,47			
	Nezupul		33,33	1,88	10,69		10,02			
	Rajasp-1		16,67	1,82	10,39		9,74			
> 400	Hippmac		16,67	1,26	7,18	17,56	6,73			
	Halacan		33,33	0,86	4,87		4,56	2,20	0,00	16,53
	Dossgig		8,33	0,60	3,44		3,22			
	Epigera		33,33	0,39	2,20		2,06			
	Halidio		8,33	0,34	1,95		1,82			
	Mursgau		8,33	0,02	0,10		0,09			

4.9.2. Identificación y caracterización espacial de las asociaciones específicas

4.9.2.1. Identificación de asociaciones específicas

El análisis de clasificación permitió distinguir cuatro grupos de estaciones de muestreo (lances), cada uno de los cuales está conformado por estaciones con similitud superior al 50% (Fig. 48).

En análisis de ordenación distinguió, con un nivel de significancia moderadamente alto (Stress = p = 0.07), los mismos cuatro grupos de estaciones que el análisis de clasificación anterior (Fig. 49). Esto valida el criterio de clasificación de 50% de similitud. Con esto se definió a los cuatro ensambles o grupos de especies.

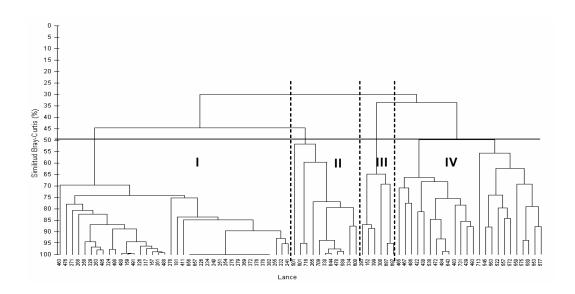


Fig. 48. Análisis de clasificación de la abundancia relativa (CPUA) de la fauna acompañante presente en las capturas de los langostinos amarillo y colorado en las regiones II a VIII.

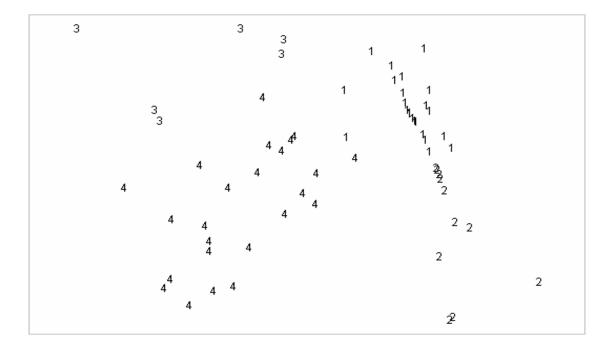


Fig. 49. Análisis de ordenación (MDS) de la abundancia relativa (CPUA) de la fauna acompañante presente en las capturas de los langostinos amarillo y colorado en las regiones II a VIII. Stress (valor-p) =0,07

Las especies que integran las cuatro asociaciones específicas se presentan en la Tabla 78. Las especies de mayor importancia relativa *M. gayi*, *H. macropos* y *N. pulchella* se presentaron en todos los grupos y en la mayoría con los valores de importancia relativa más altos. La excepción ocurrió en el grupo III, siendo la especie de mayor importancia relativa la jibia (*D. gigas*).

Tabla 78. Fauna acompañante en las capturas de langostino colorado (*P. monodon*) y langostino amarillo (*C. johni*), cuya CPUA fue mayor a 5%, ordenados por grupos identificados por clasificación y ordenación. IIRFA= índice de importancia relativa respecto a la captura total en peso de la fauna acompañante.

Grupo	Especie	CPUA (ton)	IRFA (%)	CPUA (ton)			
Grupo		CI OII (toll)	Hu /1 (70)	Cervjoh	Pleumon	Heteree	
	Merlgay	275,80	89,73			53,51	
	Нірртас	25,60	8,33				
	Mursgau	2,82	0,92				
I	Nezupul	1,33	0,43	401,40	326,16		
	Cancpor	0,92	0,30				
	Epigcra	0,54	0,18				
	Libigra	0,37	0,12				
	Нірртас	48,60	67,94				
	Merlgay	16,13	22,56		0,00	5,35	
II	Libigra	3,35	4,69	214,20			
	Cancpor	1,94	2,72				
	Mursgau	1,50	2,10				
	Dossgig	28,67	69,39		0,00	27,99	
	Merlgay	8,22	19,89				
III	Nezupul	4,00	9,67	22,37			
	Нірртас	0,22	0,52				
	Halacan	0,21	0,51				
	Epigcra	0,01	0,02				
	Nezupul	175,54	56,93				
	Merlgay	57,26	18,57				
	Rajasp-1	33,37	10,82				
	Libigra	21,01	6,81		0,00	108,48	
IV	Dossgig	8,59	2,79	36.00			
	Нірртас	7,52	2,44				
	Epigcra	3,87	1,26				
	Cancpor	1,06	0,34				
	Halacan	0,07	0,02				
	Mursgau	0,05	0,02				

No se observa ningún patrón entre la composición específica e importancia relativa de de la fauna acompañante con la abundancia de los recursos objetivos (Tabla 78). Más aún, la correlación entre las tres especies más relevantes de la fauna acompañante y los recursos objetivos fue muy baja (Tabla 79).

Tabla 79. Correlación de la abundancia de las especies más relevantes de la fauna acompañante y los recursos objetivo.

Especie	Cervjoh	Pleumon	Heteree	Нірртас	Nezupul	Merlgay
Cervjoh	1,00	-0,13	-0,17	0,33	-0,17	0,22
Pleumon	-0,13	1,00	-0,22	-0,15	-0,14	0,32
Heteree	-0,17	-0,22	1,00	-0,26	0,10	-0,27
Нірртас	0,33	-0,15	-0,26	1,00	-0,15	-0,23
Nezupul	-0,17	-0,14	0,10	-0,15	1,00	-0,30
Merlgay	0,22	0,32	-0,27	-0,23	-0,30	1,00

Desde el punto de vista espacial los cuatro grupos o asociaciones específicas presentaron un comportamiento en el que los tres primeros se distribuyeron a lo largo de todo el gradiente latitudinal en estudio (Fig. 50). La cuarta asociación de especies se distribuyó sólo desde el centro al sur de la zona de estudio, lo que fue determinado por la importancia relativa del pejerrata (*N. pulchella*). Efectivamente, el pez pejerrata fue la especie de mayor importancia de la asociación específica IV (Tabla 78) y su importancia fue marginal a nula de la IV Región al norte (Tabla 77). Por su parte, las asociaciones I a III tuvieron a *M. gayi* como la primera o segunda especie con mayor importancia relativa y a su vez este pez fue el de primera o segunda importancia en todo el gradiente latitudinal, lo que explica que estas asociaciones se encontraron presentes a lo largo de toda la zona de estudio (Tablas 78 y 79).

En cuanto al comportamiento espacial en el sentido batimétrico, la asociación específica I estuvo presente en todo el gradiente de profundidad de la zona estudiada (Fig. 50). En este caso este comportamiento también se debe a la importancia del recurso merluza, el cual fue el de mayor importancia en todos los estratos de profundidad (Tabla 77). En la asociación específica II el hecho que la especie de mayor importancia fuera el lenguado *H. macrops* (Tabla 79) y, a su vez, ésta fuera la segunda en importancia en los estratos de 300 m y profundidades menores (Tabla 78), explica que esta asociación específica estuviera entre las profundidades 150 a 250 m (Fig. 51). La distribución batimétrica de los grupos III y IV también obedeció a la importancia de la especie que los diferenció en los distintos estratos de profundidad. Estas especies fueron la jibia (*D. gigas*) y el pejerrata (*N. pulchella*), para las asociaciones III y IV respectivamente (Tablas 78 y 79).

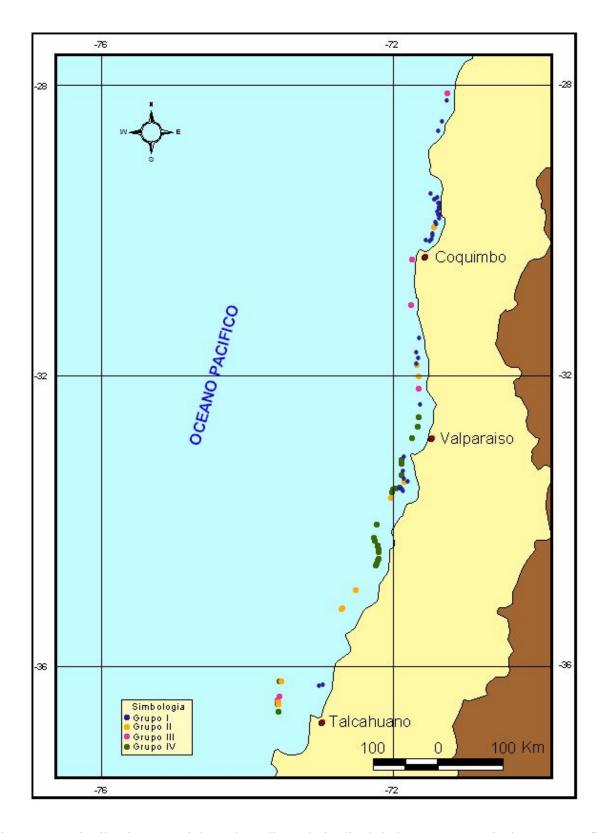


Fig. 50. Distribución espacial en el gradiente latitudinal de las cuatro asociaciones específicas de fauna acompañante (grupos).



Fig. 51. Distribución espacial en el gradiente batimétrico de las cuatro asociaciones específicas de fauna acompañante (grupos).

4.9.2.2. Detección de diferencias entre asociaciones

4.9.2.2.1. Análisis de similitud (ANOSIM)

Las asociaciones específicas; definidas bajo el criterio de un 50% de similitud, cuyo ordenamiento en el análisis MDS fue significativo; son estadísticamente distintos entre si, de acuerdo al análisis de similitud no paramétrico efectuado (ANOSIM). El estadístico global R=0,86 (0,1%, altamente significativo) indica que el promedio de los rangos de similitud, entre asociaciones específicas fue mayor al promedio de los rangos de similitud dentro de las asociaciones específicas. El estadístico R global elevado fue reflejo del alto valor que presentó el mismo estadístico en el contraste de pares de asociaciones específicas, todos altamente significativos (Tabla 80).

Tabla 80. Resultado del contraste entre asociaciones específicas por medio de ANOSIM.

Contraste	Estadístico R	Nivel significancia (%)
I-II	0,825	0,1
I-III	0,999	0,1
I-IV	0,883	0,1
II-III	0,974	0,1
II-IV	0,855	0,1
III-IV	0,700	0,1

4.9.2.2.2. Curvas K-Dominancia (Curvas ABC)

Las curvas k-dominancia presentaron una configuración opuesta en la asociación I y IV (Fig. 52). En la primera, se observó un predominio de la abundancia en peso por sobre la abundancia en número. En cambio en la asociación específica IV se observó un predominio de la abundancia en número por sobre la abundancia en peso.

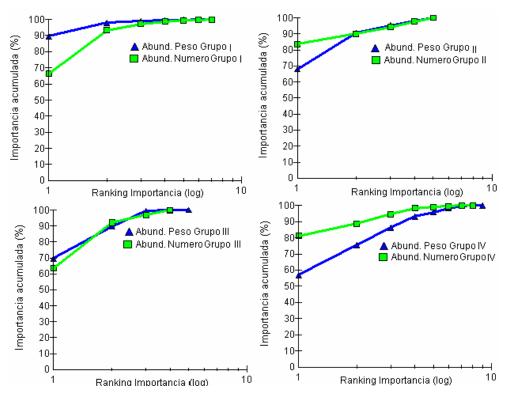


Fig. 52. Curvas k-dominancia (Curvas ABC) con abundancia en peso y número de las especies que conforman la fauna acompañante en cada una de las asociaciones específicas identificadas (Grupos).

Este resultado permite señalar que, comparativamente, la asociación específica I es más kestratega y la asociación IV es más r-estratega. Las especies con selección k tienen mayor tamaño y menor productividad, entre otras diferencias, comparadas con las especies con selección r. En I *M. gayi* tuvo mayor importancia relativa y en IV, la tuvo *N. pulchella* (Tabla 78). *M. gayi* es más k-estratega y *N. pulchella* es más r-estratega, comparando sus tamaños corporales y productividad, P/B=0,39 año⁻¹, P/B=0,70 año⁻¹ (Arancibia & Neira, 2003), respectivamente.

Por su parte, la configuración similar entre abundancia en peso y en número en las asociaciones II y III (Fig. 52), se debió a que la diferencia en importancia relativa de especies más numerosas y con menor tamaño corporal con aquellas menos numerosas y con mayor tamaño corporal no fue tan marcada como en los casos anteriores (Tabla 80).

4.10. Objetivo N° 5.

4.10.1. Langostino colorado

4.10.1.1. Unidad de Pesquería II – IV Regiones

La pesquería de langostino colorado en la zona centro-norte se inicia en 1998, lográndose un desembarque de 630 t. El desembarque se incrementó en el 2.000 (2571 t), manteniéndose por sobre las 1.500 t hasta el 2002, para luego disminuir a 1.078 t en el 2003. En el 2004, el desembarque acumulado a agosto alcanza a 565 t (Fig. 53).

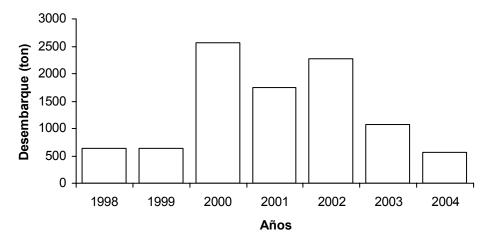


Fig. 53. Desembarque total anual de langostino colorado en la zona centro-norte de Chile (Regiones II-IV).

El estado de situación del recurso, considerando el modelo Coleraine, fue desarrollado incorporando las evaluaciones directas del periodo 2000-2004 y su respectiva estructura de tamaños, así como la estructura de tallas de las capturas comerciales del periodo 1998-2002. Estas piezas de información fueron satisfactoriamente explicadas por el modelo de evaluación de stock (Fig. 54 y 55). Se destaca que la biomasa como la estructura de tallas del recurso es variable temporal y espacialmente en la unidad de pesquería, observándose por lo general mayores biomasas en la III Región y una estructura de tallas representada por ejemplares de mayor tamaño. Esta situación es más evidente en los datos de los años 2000 y 2001, aspecto que incide en la estructura de tallas totales y una menor explicación de dicha estructura por el modelo de evaluación (Fig. 54 y 55).

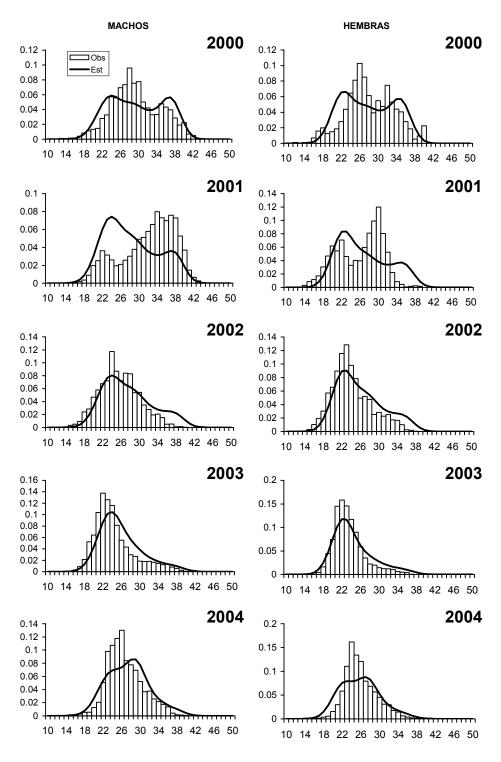


Fig. 54. Estructura de tallas de langostino colorado en los cruceros de evaluación del periodo 2000-2004 en la zona centro-norte. Las barras representan los datos observados y la línea contínua el ajuste del modelo de evaluación.

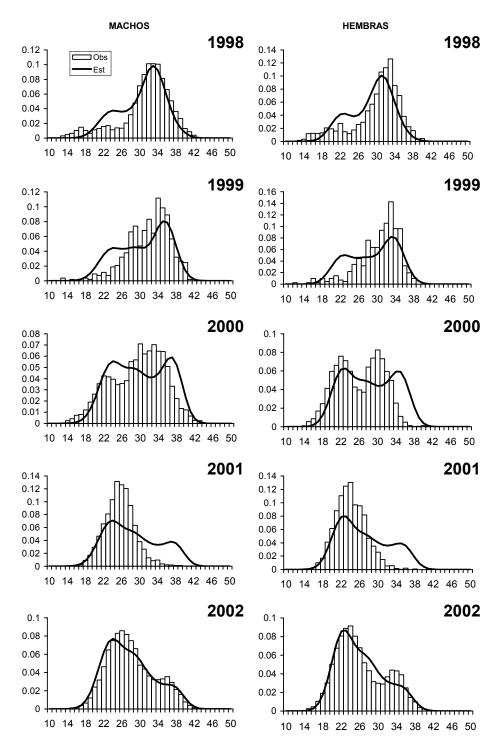


Fig. 55. Estructura de tallas de langostino colorado en los desembarques de la flota en el periodo 1998-2002 en la zona centro-norte. Las barras representan los datos observados y la línea contínua el ajuste del modelo de evaluación.

Respecto de los cambios de biomasa, el modelo de evaluación se ajustó a las evaluaciones directas en términos de la biomasa explotable a mitad de año (ver Tabla 81, Fig. 56). En el periodo de evaluación, se observa una tendencia decreciente en las evaluaciones de biomasa directa, lo que en conjunto con capturas crecientes, están determinando que al final del periodo la biomasa total exhiba una tendencia decreciente de un nivel cercano a las 30 mil t en 1998 a cerca de 23 mil en el 2004.

Tabla 81. Resumen de la evaluación de la biomasa total, explotable y desovante (hembras) de langostino colorado, tasa de explotación anual, y comparación entre la biomasa evaluada en los cruceros con la salida del modelo. Regiones II-IV.

		Biomasa			Tasa de	Biomasa	cruceros
	Capturas	Total	Explotable	Desovante	Explotación	Observada	Estimada
Años	(t)	(t)	(t)	(t)	anual	(t)	(t)
1998	630	30025	21759	11632	0,029		
1999	633	24125	17321	9313	0,037		
2000	2571	19973	14302	7509	0,180	20238	17707
2001	1749	16576	11797	5896	0,148	25175	14737
2002	2267	15856	11246	5403	0,202	14670	14133
2003	1078	21228	14827	6330	0,073	17784	19007
2004	565	23350	16625	7936	0,034	13417	20865

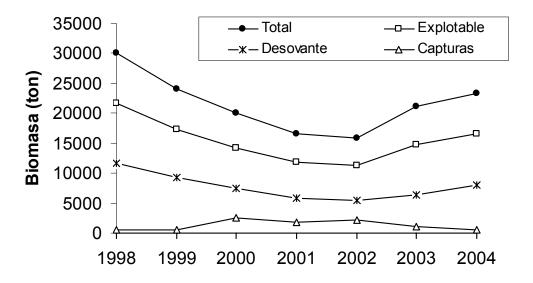


Fig. 56. Tendencias de la biomasa total, explotable, desovante (hembras) y capturas de langostino colorado entre 1998 y 2004. Regiones II-IV.

La tasa de explotación más alta ocurrió en el 2002, removiéndose cerca de 20% de la biomasa explotable. No obstante, en el 2003 se observa un incremento en la biomasa total que se explica por el ingreso de un buen reclutamiento (Fig. 57). A su vez, los desembarques en el 2003 fueron más bajos que en el 2002 y determinaron una disminución en la tasa de explotación, y por ende una acumulación de biomasa hacia el 2004 en el stock.

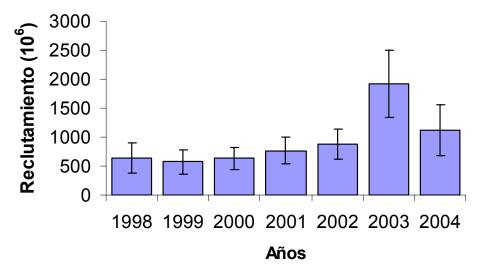


Fig. 57. Reclutamiento en número de individuos (edad 2) de machos y hembras de langostino colorado.

No obstante, a diferencia del modelo anterior, el Modelo de Quinn *et al* (1998), señala que en el 2004 habría ingresado un pobre reclutamiento de langostino colorado, determinando una disminución de la biomasa total en ese año. Se destaca que este último modelo de evaluación estima los parámetros de crecimiento, de tal manera que las diferencias en las evaluaciones están determinadas más bien por este cambio estructural. Los parámetros de crecimiento estimados fueron $L\infty = 48,0$ y K = 0,1 para los machos y $L\infty = 45,6$ y K = 0,1 para las hembras, siendo factible que el coeficiente de crecimiento no refleje adecuadamente el proceso si se considera las estimaciones disponibles para la especie.

Tabla 82. Resumen de la evaluación de la biomasa total, explotable y desovante (hembras) de langostino colorado, tasa de explotación anual, y comparación entre la biomasa evaluada en los cruceros con la salida del modelo. Regiones II-IV.

		Biomasa			Tasa de	Biomasa	cruceros
	Capturas	Total	Explotable	Desovante	Explotación	Observada	Estimada
Años	(t)	(t)	(t)	(t)	anual	(t)	(t)
1998	630	54453	38672	22218	0,016		
1999	633	34783	24713	14229	0,026		
2000	2571	26316	19021	9867	0,135	20238	22031
2001	1749	20445	15032	7037	0,116	25175	16954
2002	2267	17478	12989	5694	0,175	14670	14396
2003	1078	24882	19033	6570	0,057	17784	20201
2004	565	18805	14041	6113	0,040	13417	15398

De acuerdo con los resultados obtenidos, se considera que los cambios de biomasa del langostino colorado son dependientes del ingreso de reclutas a la pesquería, debiéndose verificar esta fuente de incertidumbre para el 2005.

4.10.1.2. Unidad de Pesquería V-VIII

La situación del langostino colorado en la zona centro-sur se analiza para el periodo 1990-2004, sobre la base de las evaluaciones directas que se han realizado en igual periodo. Se destaca que durante el periodo de evaluación, se han observado cambios importantes en la biomasa del stock y en la actividad pesquera. Esta última ha estado regulada por vedas totales que se aplicaron en entre 1989 y 1991, para posteriormente abrir la pesquería en 1992 bajo el regimen de Pesquería en Recuperación con cuotas individuales y globales. Se destaca que en 1993 y 1996, se estimarón niveles de biomasa por sobre las 60 mil ton, las que se redujeron a 17 mil ton en 1999 y a menos de 10 mil ton a contar del año 2000, razón por la cual la autoridad normativa estableció a contar de enero del 2001 una veda total que se mantiene hasta la actualidad.

Durante el periodo en que la pesquería estuvo abierta, los desembarques exhibieron una tendencia creciente entre 1994 y 1998, desde cerca de 3,3 mil ton hasta 12,5 mil ton (Fig. 58), comportamiento que viene determinado por el establecimiento de las cuotas globales.

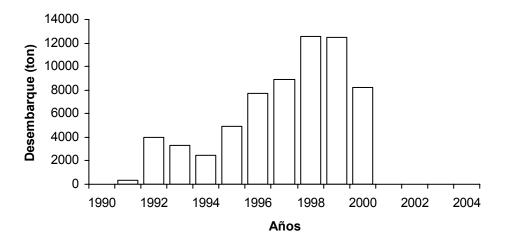


Fig. 58. Desembarque total anual de langostino colorado en la zona centro-sur de Chile (Regiones V-VIII).

La situación del stock de langostino colorado se realiza sobre la base del modelo Coleraine, pues hasta el momento existe información que no ha sido consolidada y que dice relación principalmente con aquella proveniente de la actividad pesquera que se desarrolló entre 1992 y 2000. No obstante, se ha podido integrar la estructura de tallas de los cruceros de evaluación facilitando el análisis de los cambios en el reclutamiento y la explotación.

La estructura de tallas en los cruceros de evaluación del periodo 1991, 1993, 1996, y 2000-2004 fueron satisfactoriamente explicados por el modelo de evaluación (Fig. 59), cuyos cambios estructurales vienen dados por los parámetros de crecimiento según Roa (1993), el patrón de explotación de la pesquería y de los cruceros de evaluación, tasa de explotación como de los cambios en el reclutamiento.

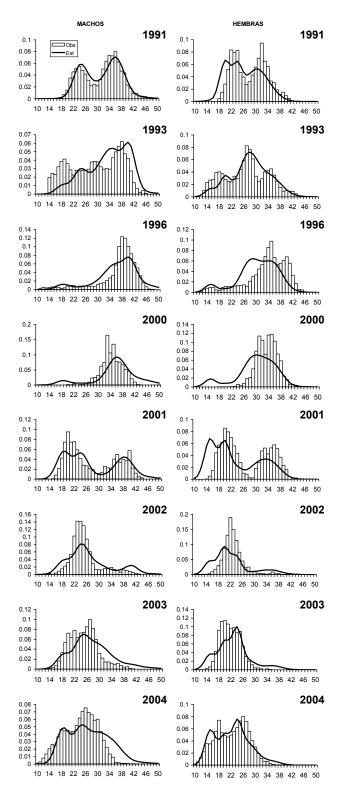


Fig. 59. Estructura de tallas de langostino colorado en los cruceros de evaluación del periodo 1991-2004 en la zona centro-sur (V-VIII Regiones). Las barras representan los datos observados y la línea contínua el ajuste del modelo de evaluación.

La evaluación de stock realizada indica que los cambios en biomasa se explican por una gran variabilidad en el reclutamiento anual, particularmente por las fallas que ocurrieron en 1991, 1994-95, y 1997-1999 (Fig. 60). En los últimos 5 años, se observa un incremento gradual en la magnitud del reclutamiento, identificándose para el 2004 el ingreso de una clase anual abundante que puede favorecer el crecimiento de la biomasa en el corto plazo.

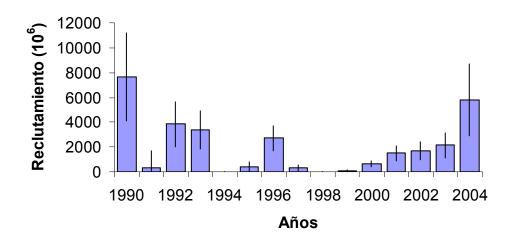


Fig. 60. Reclutamiento en número de individuos (edad 2) de machos y hembras de langostino colorado en la zona centro-sur.

Los cambios en la biomasa se ajustan a las evaluaciones directas en términos de la biomasa explotable a mitad de año (ver Tabla 83, Fig. 61). En el periodo de evaluación, producto de la veda total impuesta entre 1989 y 1991 y un reclutamiento importante en 1990, 1992 y 1993, se observaron niveles de biomasa total del orden de 90 a 100 mil ton. Las tasas de explotación fueron inferiores al 10% hasta 1995, de tal manera que la disminución progresiva de la biomasa total que se inicia en 1993 se debió a las fallas sucesivas en el reclutamiento. Tal disminución progresiva ocurre a contar de 1996 en la fracción explotable, lo que en conjunto con capturas crecientes determinaron tasas de explotación altas que condujeron al stock a una severa disminución a contar del 2001.

Durante el segundo periodo de veda total (2001-2004), no se observan fallas en el reclutamiento. Más bien se observa una tendencia creciente en estos que están posibilitando la recuperación de la biomasa de langostino colorado en el corto plazo. Dicha recuperación aún no es detectada en

las evaluaciones directas de biomasa, pero sí en la estructura de tamaños que se está fortaleciendo gradualmente después de las sucesivas fallas que ocurrieron en el reclutamiento, así como la alta tasa de explotación que se aplicó en el 2000.

Tabla 83. Resumen de la evaluación de la biomasa total, explotable y desovante (hembras) de langostino colorado, tasa de explotación anual, y comparación entre la biomasa evaluada en los cruceros con la salida del modelo. Regiones V-VIII.

	Biomasa				Tasa de	Biomasa cruceros	
	Capturas	Total	Explotable	Desovante	Explotación	Observada	Estimada
Años	(t)	(t)	(t)	(t)	anual	(t)	(t)
1990	-	91317	35825	12477	0,000		
1991	346	97283	44481	16722	0,008	38997	50620
1992	4002	103574	50514	19492	0,079		
1993	3334	103799	57095	21849	0,058	68797	59803
1994	2421	95787	56709	22222	0,043		
1995	4938	83481	53760	21249	0,092		
1996	7726	73574	49608	19620	0,156	62000	49431
1997	8939	59260	38861	15668	0,230		
1998	12573	43705	27106	11050	0,464		
1999	12473	27285	18308	7096	0,681		
2000	8262	14094	9514	3688	0,868	5900	9237
2001	-	9465	2836	1133	0,000	5700	3526
2002	-	15077	2988	1178	0,000	8800	4877
2003	-	22690	4693	1709	0,000	5188	7692
2004	-	39323	8413	2972	0,000	9416	12312

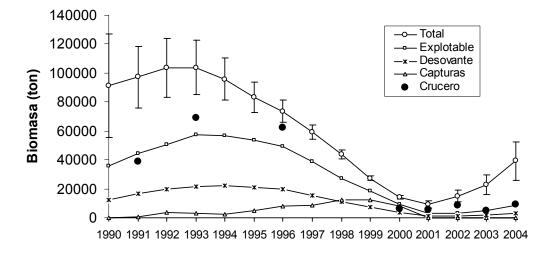


Fig. 61. Tendencias de la biomasa total, explotable, desovante (hembras) y capturas de langostino colorado entre 1990 y 2004. Regiones V-VIII.

4.10.2. Langostino amarillo

4.10.2.1. Unidad de Pesquería II-IV

La pesquería de langostino amarillo en la zona centro-norte se evalúa para el periodo 1995-2004, sobre la base de las evaluaciones directas que se han realizado en igual periodo. Los desembarques de esta pesquería se presentan en la Figura 62, observándose niveles por sobre las 4 mil ton entre 1995 y 2000, para posteriormente disminuir a niveles inferiores a las 1000 ton entre los años 2001-2004 a excepción del 2003 en que se desembarcaron 2.038 ton. La pesquería de langostino amarillo ha estado regulada por cuotas globales de captura.

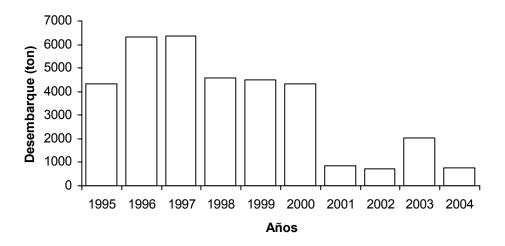


Fig. 62. Desembarque total anual de langostino amarillo en la zona centro-norte de Chile (Regiones III-IV).

La situación del stock de langostino amarillo se analiza sobre la base del modelo Coleraine. Al momento de la información existe información no consolidada para aplicar los otros modelos comprometidos, principalmente la estructura de tallas proveniente de la actividad pesquera y que aún no ha sido puesta a disposición del proyecto. No obstante, lo anterior se pudo integrar la estructura de tallas de los cruceros de evaluación facilitando el análisis de los cambios estructurales que han ocurrido en el stock centro-norte.

La estructura de tallas en los cruceros de evaluación de los años 1997, y 2000-2004 fueron satisfactoriamente explicados por el modelo de evaluación (Fig. 63), cuyos cambios estructurales vienen dados principalmente por los parámetros de crecimiento de Arancibia *et al.* (en prensa), el patrón de explotación de la pesquería y de los cruceros de evaluación, tasa de explotación como por los cambios en el reclutamiento.

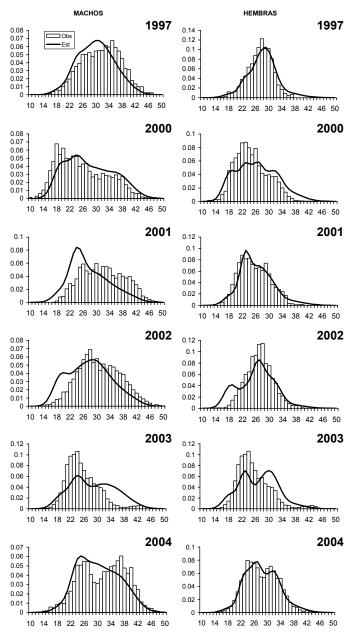


Fig. 63. Estructura de tallas de langostino amarillo en los cruceros de evaluación del periodo 1995-2004 en la zona centro-norte (III-IV Regiones). Las barras representan los datos observados y la línea contínua el ajuste del modelo de evaluación.

Los cambios en la biomasa total, explotable y desovante se presentan en la Fig. 64 y Tabla 84, observándose una tendencia creciente en los indicadores durante los últimos cuatro años. Tal situación se debe a una disminución importante de la tasa de explotación anual a contar del año 2001, puesto que en el periodo 1995-2000 superaba el 50% con un valor máximo de 71% en el año 2000. Dicha tasa de explotación produjo una disminución de la fraccióna adulta en el 2001, que se verifica particularmente en la estructura de tamaños de las hembras.

Tabla 84. Resumen de la evaluación de la biomasa total, explotable y desovante (hembras) de langostino colorado, tasa de explotación anual, y comparación entre la biomasa evaluada en los cruceros con la salida del modelo. Regiones III-IV.

		Biomasa		Tasa de	Biomasa cruceros		
	Capturas	Total	Explotable	Desovante	Explotación	Observada	Estimada
Años	(t)	(t)	(t)	(t)	anual	(t)	(t)
1995	4314	24186	9305	9190	0,464		
1996	6328	24361	9429	9913	0,671		
1997	6370	20973	9777	8884	0,652	10292	11140.8
1998	4598	17621	9023	6956	0,510		
1999	4498	16046	7941	6294	0,566		
2000	4325	16528	6120	5866	0,707	8269	7708
2001	831	16078	5077	6543	0,164	6000	7032
2002	715	21634	7665	8085	0,093	10930	9797
2003	2038	27175	11243	10467	0,181	6751	13251
2004	762	29022	13439	12914	0,057	24850	15911

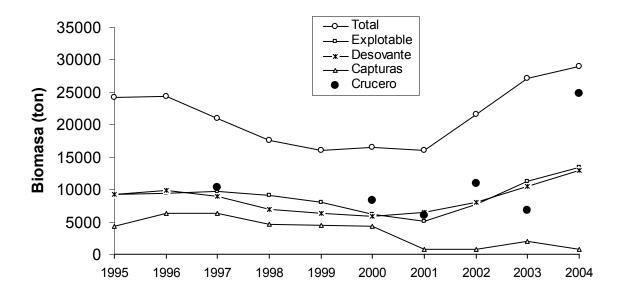


Fig. 64. Tendencias de la biomasa total, explotable, desovante (hembras) y capturas de langostino amarillo entre 1995 y 2004.

A su vez, la tendencia creciente de la biomasa en los últimos cuatro años se debe también al éxito del reclutamiento en los años 2000, 2002 y 2003 (Fig. 65), los que en concomitancia con tasas de explotación bajas han permitido que gran parte de los excedentes productivos se integren a la biomasa del stock.

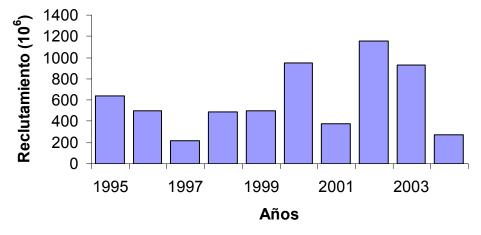


Fig. 65. Reclutamiento en número de individuos (edad 2) de machos y hembras de langostino amarillo en la zona centro-norte.

b) Unidad de Pesquería V - VIII

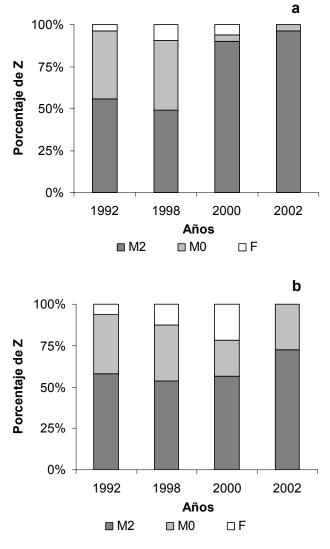
La pesquería de langostino amarillo de la unidad de pesquería V - VIII, estuvo sometida a un largo periodo de veda. La actividad pesquera se inicia en 1997 y se detiene nuevamente a contar del primero de enero del 2001, moratoria que se mantiene hasta el 2004. Hasta el momento no ha sido posible consolidar información suficiente para aplicar los métodos de evaluación de stock comprometidos, y aunque se cuenta con la estructura de tamaños y las evaluaciones directas éstas no han sido suficientes por sí solas para dar cuenta de un análisis integrado en el contexto de la dinámica de la abundancia del stock. No obstante lo anterior, en este estudio se evalúa una biomasa vulnerable del orden de 33 mil ton de langostino amarillo en la unidad de pesquería V-VIII Región. Este nivel de biomasa podría ser consecuencia de niveles de reclutamiento importantes ocurridos recientemente y la nula tasa de explotación a la que ha estado sometido el recurso en los últimos años.

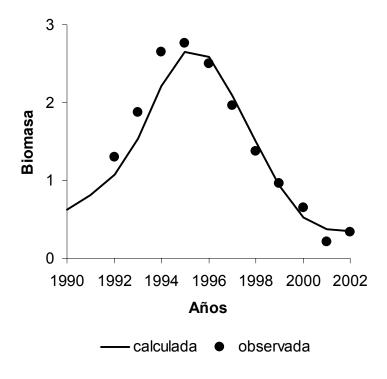
Para verificar esta hipótesis, se consolidará la información disponible en el Fondo de Investigación Pesquera, particularmente sobre la base de los proyectos de evaluación directa realizados durante la primera mitad de los años 90 con el objeto de contar con grados de libertad suficientes para aplicar las metodologías de evaluación comprometidas.

4.11. Objetivo Nº 6.

4.11.1 Estimación de M y M2 para langostino colorado y langostino amarillo entre las Regiones V y la VIII (Chile central)

En general, la mortalidad natural (M=M2+M0) corresponde a la principal causa de mortalidad Z) en los recursos langostino colorado y langostino amarillo en los períodos analizados (Fig. 66).




Fig. 66. Mortalidad por predación (M2) y mortalidad por "otras causas" (M0) expresadas como porcentaje de la mortalidad total (Z). Para fines comparativos se incorpora también la mortalidad por pesca (F). a) langostino colorado; b) langostino amarillo.

Sin embargo, con un análisis más detallado, se observa que M2 es la principal causa de mortalidad en ambos recursos. En el caso de langostino colorado, M2 se habría incrementado fuertemente en el año 2000 (Fig. 67a), mientras que para langostino amarillo M2 se habría mantenido en un nivel cercano al 50% en los años analizados (Fig. 67b). En ambos recursos M2 alcanzaría la mayor proporción de mortalidad en el año 2002 cuando F=0 como consecuencia de la veda total impuesta en ese año.

Con respecto a la mortalidad por pesca (F), ésta habría representado un porcentaje muy bajo de mortalidad en ambos recursos en los cuatro años analizados (Fig. 67a y 67b).

4.11.2. Cambios en F y M2 y su efecto sobre la biomasa de langostinos

Los resultados del ajuste de las proyecciones del modelo multiespecífico a series de tiempo de biomasa utilizando las tasas de mortalidad por pesca para los recursos langostino colorado y langostino amarillo se presentan en la Fig. 67. En el caso de langostino colorado se observa que la biomasa calculada por EwE se ajusta bien a la serie de tiempo de biomasas observadas (Fig. 67a). Para langostino amarillo, la biomasa calculada por EwE se ajusta bien a los últimos años de la serie de biomasa observada, pero EwE subestima el valor de biomasa observado al comienzo de la serie de tiempo (Fig. 67b), lo que puede deberse a que sólo existe una evaluación de la biomasa para este recurso, a inicios de la serie de tiempo, lo que es absolutamente insuficiente para producir un ajuste satisfactorio en el período de los primeros 5 años.

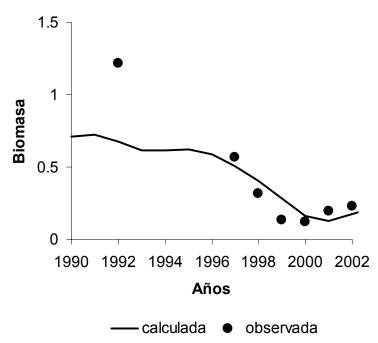


Fig. 67. Ajuste de la biomasa por el modelo multiespecífico EwE utilizando mortalidad por pesca como función forzante. a) langostino colorado; b) langostino amarillo.

4.11.3. Tendencia de la biomasa de langostino amarillo y langostino colorado ante cambios en los niveles de F y aumento de M2

La tendencia de la biomasa de langostino colorado y langostino amarillo ante cambios en los niveles de F y aumento de M2 se muestran en las Figs. 68 a 69.

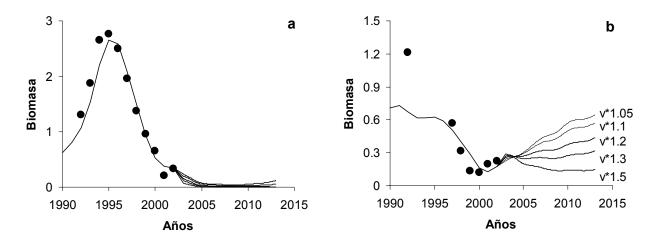


Fig. 68. Tendencia de las biomasas de langostino colorado ante escenario de no pesca (F=0) durante 10 años y aumento de M2 a partir del año 2003. a) langostino colorado. b) langostino amarillo.

Al analizar los resultados del escenario de no pesca (F=0), se observa que, en el caso de langostino colorado, su biomasa tiende a disminuir sin exhibir recuperación en el largo plazo, ni siquiera ante niveles moderados de M2 (Fig. 68a).

En el caso de langostino amarillo, se observa que la biomasa tiende a recuperarse en el largo plazo, pero sólo ante niveles muy moderados de M2, i.e. v < 1.2 (Fig. 68b).

En la Figura 69 se muestra la tendencia de la biomasa de langostino colorado ante escenarios que simulan aumento combinado en F y M2. Se observa que en todos los escenarios de pesca, la biomasa continúa disminuyendo sin exhibir recuperación (Fig. 69a - 69d).

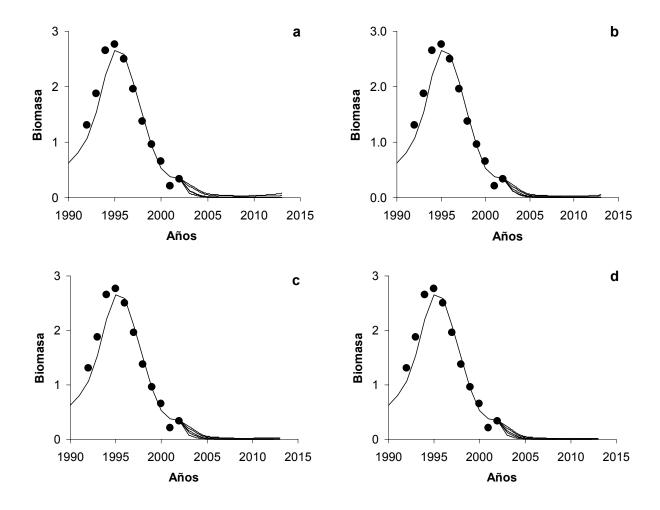


Fig. 69. Tendencia de la biomasa de langostino colorado ante cambios en los niveles de F y aumento de M2 a partir del año 2003. a) F=0.05; b) F=0.1; c) F=0.15; d) F=0.2.

En la Figura 70 se muestra la tendencia de la biomasa de langostino amarillo ante aumentos en F y M2. En este caso se observa que la biomasa de este grupo sólo podría recuperarse ante escenarios moderados de pesca (F<0.1) y baja mortalidad por predación (v<1.2).

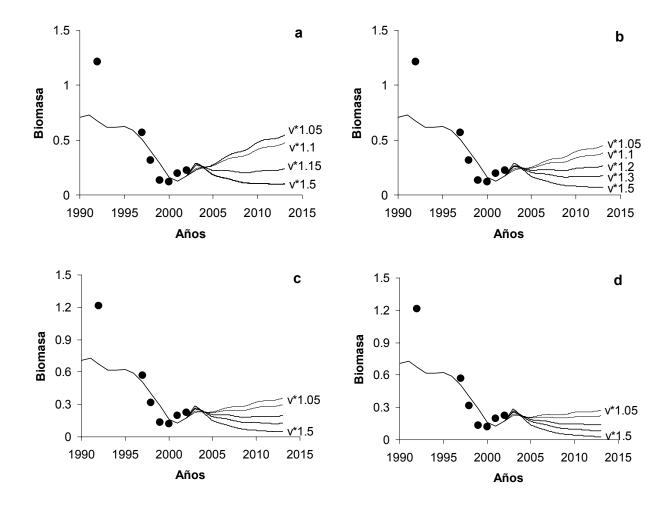


Fig. 70. Tendencia de la biomasa de langostino amarillo ante cambios en los niveles de F y aumento de M2 a partir del año 2003. a) F=0.05; b) F=0.1; c) F=0.15; d) F=0.2.

4.11.4. Discusión y Conclusiones

La tendencia de la biomasa de langostino colorado y langostino amarillo entre los años 1990 y 2002 utilizando un modelo multiespecífico y series de tiempo de mortalidad por pesca es proyectada correctamente por EwE (Fig. 68). Esto implica que junto con la mortalidad por pesca, las relaciones tróficas en la forma de predación también pueden haber jugado un rol importante en la dinámica de la biomasa de estos recursos en el pasado. Además, la mortalidad por predación también podría jugar un rol importante en la recuperación de la biomasa de ambos recursos en el futuro (Figs. 69 y 70).

La importancia de M2 en la dinámica de langostino colorado y amarillo durante la década de los años 1990 y comienzos de 2000 puede relacionarse con la abundancia de su principal predador en el sistema, la merluza común, grupo que habría experimentado un aumento sostenido de su biomasa en los últimos 12 años (Fig. 71). En efecto, la abundancia de langostino colorado (presa) y la de merluza común (predador) se correlacionan negativamente (Fig. 72a), i.e. a mayor abundancia de predador, menor abundancia de presa. Esto podría revelar un efecto top-down en la relación trófica de estos dos recursos pesqueros, lo que podría explicar porqué la biomasa de langostino colorado no tiende a recuperarse ni siquiera en escenarios de pesca moderados, es decir, aunque este grupo se encuentre sin presión de pesca, la alta biomasa de su predador podría impedir su recuperación.

Esta relación top-down no se presenta con tanta claridad entre langostino colorado y merluza común (Fig. 72b), lo que puede deberse al bajo número de observaciones de biomasa de langostino amarillo (n= 6). Esto podría explicar el hecho que la biomasa de langostino amarillo si podría recuperarse en el largo plazo, aunque sólo ante niveles moderados de pesca y mortalidad por predación.

Los resultados de este estudio muestran que M2 es la principal causa de mortalidad tanto en langostino colorado como en langostino amarillo. Por lo tanto, es necesario invertir en investigación tendiente a mejorar estimados de M2 en estos y otros recursos pesqueros e incorporarlos tanto en su evaluación como en su administración. Lo contrario significará mantener esquemas de análisis monoespecíficos de los stocks, lo que se revela claramente insuficiente debido a que las especies de peces y otros organismos marinos no viven asilados en su ambiente natural.

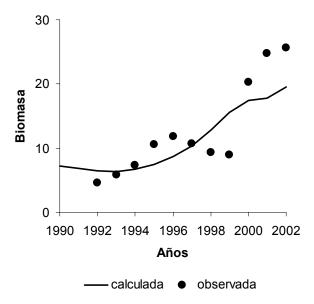


Fig. 71. Ajuste de la biomasa de merluza común por el modelo multiespecífico EwE utilizando mortalidad por pesca como función forzante.

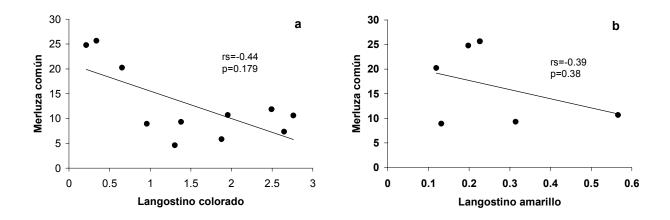


Fig. 72. Correlación entre la abundancia de las presas y su principal predador. a) langostino colorado; b) langostino amarillo.

4.12. Objetivo Específico 7.

Analizar la variabilidad y diferenciación genética dentro y entre los morfos de langostino colorado presentes en Chile, y determinar si las distintas formas encontradas corresponden a una única especie polimórfica y/o stocks.

Según antecedentes de la biología de la población de *Pleuroncodes* de la I y parte de la II Región, estos organismos presentan una fase pelágica que no se ha detectado para los de otras regiones geográficas de Chile. Báez (2001, 2002) realizó estudios comparativos de la morfología de individuos del norte de Chile y del resto del territorio, encontrando que en la I y II Región existe una forma diferente, la cual llamó *Pleuroncodes* sp., comúnmente conocido como langostino enano (Fig. 73). Por otro lado, si bien existen dos unidades de pesquería de *P. monodon* en Chile (de la I a la IV y de la V a la VII Regiones), no está claro que todos los individuos correspondan a la misma especie ni si son stocks independientes.

Fig. 73. Ejemplares de *Pleuroncodes* de la costa de Chile, representando ambas formas. Izquierda: Forma 'normal' encontrada en la costa de Chile y conocida como *P. monodon*. Derecha: Forma enana, o langostino enano, de la I Región, que Baez (2001, 2002) denomina *Pleuroncodes* sp.

EL ADN mitocondrial tiene una tasa de evolución mayor que el ADN nuclear y muestra gran variabilidad a nivel poblacional. Con el objeto de poner a prueba la hipótesis que en la costa de Chile hay más de una especie del género *Pleuroncodes*, se realizaron estudios genéticos, basados en secuenciación de genes mitocondriales. Para esto, se obtuvo material de 11 estaciones de muestreo para el análisis genético. Inicialmente se secuenció el gen que codifica para la subunidad 16S del ribosoma (16S rDNA) en búsqueda de diferencias en las secuencias nucleotídicas entre individuos de las localidades muestreadas.

Al demostrar el análisis anterior que las secuencias resultaron idénticas, se comenzó a analizar otro gen mitocondrial, el gen COI que codifica para la enzima Citocromo Oxidasa. Se obtuvieron secuencias de 550 y 500 pares de bases de largo para los genes 16S y COI, respectivamente, y de 6 y 16 individuos en total para cada gen. Ambos genes mostraron gran similitud entre individuos de todas las localidades, y de los dos, el gen COI es el que mostró mayor número de diferencias y por eso se obtuvieron más secuencias de individuos de más localidades, en búsqueda de alguna característica molecular asociada a la localidad geográfica. En la Figura 74 se presenta la parte más variable del gen COI, y se aprecia que dos de los cambios son únicos para un individuo, por lo tanto no son útiles para determinar parentesco genético. Cabe notar además, que no todos los individuos de una misma localidad poseen el mismo genotipo (por ejemplo la 614 de la VII Región), por lo cual las variaciones probablemente corresponden a variabilidad intrapoblacional normal. La última variación mostrada en la Figura 74 representa el sitio más variable, pero que no es una variación asociada a la geografía, ya que hay individuos tanto del norte como del sur que tienen ambos estados posibles del carácter (G y A). Al realizar un análisis de relaciones de parentesco entre las secuencias utilizando el principio de la máxima parsimonia, es fácil detectar que no hay relación entre la similitud genética y la distancia geográfica.

	111-2	
IB	I	GGCATCCGGTCTATAGTTATGCCGGATGGTCGTATATTGATAACTG
IC	I	GGCATCCGGTCTATAGTTATGCCGGACCGTCGTATATTGATAACTG
187	II	GGCATCCGGTCTATAGTTATGCCGGATGGTCGTATGTTGATAACTG
305G	II	GGCATCCGGTCTATAGTTATGCCGGATGGTCGTATATTGATAACTG
193B	II	GGCATCCGGTCTATAGTTATGCCGGATGGTCGTATATTGATAACTG
193F	II	GGCATCCGGTCTATAGTTATGCCGGATGGTCGTATATTGATAACTG
169D	III	GGCATCCGGTCTATAGTTATGCCGGATGGTCGTATGTTGATAACTG
1691	III	GGCATCCGGTCTATAGTTATGCCGGATGGTCGTATGTTGATAACTG
326D	IV	GGCATCCGGTCTATAGTTATGCCGGATGGTCGTATGTTGATAACTG
326E	IV	GGCATCCGGTCTATAGTTATGCCGGATGGTCGTATGTTGATAACTG
614C	VII	GGCATCCGGTCTATAGTTATGCCGGATGGTCGTATGTTGATAACTG
614D	VII	GGCATTCGGTCTATAGTTATGCCGGATGGTCGTATGTTGATAACTG
636E	VIII	GGCATCCGGTCTATAGTTATGCCGGATGGTCGTATGTTGATAACTG
698A	VIII	GGCATCCGGTCTATAGTTATGCCGGATGGTCGTATATTGATAACTG
770A	VIII	GGCATCCGGTCTATAGTTATGCCGGATGGTCGTATATTGATAACTG
767B	VIII	GGCATCCGGTCTATAGTTATGCCGGATGGTCGTATATTGATAACTG

Fig. 74. Porción de la secuencia del gen COII alineada para todos los individuos incluidos en el estudio, ordenados de norte a sur en las filas. Las columnas corresponden a los caracteres. Las columnas seleccionadas representan tres sitios variables. Los dos primeros sitios muestran diferencias existentes en un solo individuo, mientras que la tercera (a la derecha) muestra el sitio más variable.

En la Figura 75 se presenta el árbol resultante con los valores de soporte de bootstrap para cada nodo. Los valores de bootstrap son más significativos al acercarse a 100, pues corresponden al porcentaje de veces que ese nodo en particular fue generado a partir de pseudoréplicas de los datos obtenidos por muestreo con reposición de la matriz original. Todos los valores de bootstrap son bajos, lo que implica que los datos no respaldan bien la topología presentada: esto es una consecuencia de la falta de variabilidad en los datos, lo que confirma que no existen diferencias significativas entre las secuencias de los distintos individuos utilizados para este estudio.

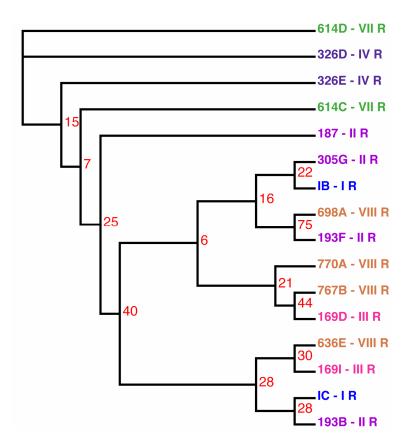


Fig. 75. Árbol filogenético del gen COII para *Pleuroncodes* de la costa de Chile. Las distintas regiones de las que provienen las muestras están representadas con distintos colores. Se aprecia fácilmente que no hay un patrón de parentesco de las secuencias asociado a la geografía.

De acuerdo con los resultados obtenidos, se rechaza la hipótesis que se había propuesto. Los genes mitocondriales 16S y COI, indican que *Pleuroncodes monodon* es una única especie a lo largo de la costa de Chile, sin diferenciación genética (por lo menos para genes mitocondriales). Esto concuerda con resultados previos basados en electroforesis de proteínas (Roa *et al.*, 1997). Por lo tanto, los morfos encontrados corresponden a distintos ecotipos, aunque no están claros ni estudiados los posibles factores causales que generarían estos dos morfos.

5. DISCUSIÓN, ANÁLISIS CRÍTICO DE RESULTADOS Y CONCLUSIONES

En esta parte, el equipo de investigación ha considerado oportuno incluir una discusión crítica de algunos antecedentes disponibles (últimos 5 años) de las evaluaciones directas de los recursos langostino amarillo y langostino colorado de las regiones II a VIII. Así también se discuten los resultados alcanzados en este estudio bajo el marco de referencia en el cual se inserta la actual pesquería de ambas especies de langostinos. El análisis aquí presentado se enfocó principalmente a los últimos cinco años de investigación de los recursos objetivo.

5.1. Diseño de muestreo

5.1.1. Langostino amarillo

En el estudio FIP 2000-05 "Evaluación directa de camarón nailon, langostino amarillo y langostino colorado, año 2000", ejecutado por la Escuela de Ciencias del Mar (2000), se utilizó un diseño de muestreo bi-etápico compuesto en su primera etapa de lances sistemáticos, realizados sobre transectas perpendiculares a la costa, a una distancia de 10 mn entre sí, con los cuales, según los autores, se delimitó el rango de profundidad y el área geográfica que abarcaban el o los focos (conglomerados) de abundancia de los recursos objetivo.

Las transectas utilizadas en el proyecto FIP 2000-05 fueron de dos tipos, a las que arbitrariamente se les llamaron "transectas largas", para determinar la distribución batimétrica de los recursos mediante siete lances realizados en cada grado de latitud, y las "transectas cortas" que se ubicaron cada 10 minutos entre las primeras, con 5 lances. En la segunda etapa los autores realizaron un segundo tipo de lances, denominados "lances de evaluación" (lances de pesca complementarios), ejecutados después de realizados los lances sistemáticos en dos transectas, en las que se detectaron los recursos objetivo. Estos lances, entre 1 - 2 (de verificación cuando no se detectó el recurso) y 4 o más (cuando se presentó mayor abundancia de alguno de los recursos) tuvieron como objetivo aumentar la precisión de los estimaciones de biomasa y delimitar en forma más precisa los focos de abundancia de las especies.

Los lances totales realizados fueron 792, de los cuales sólo 298 resultaron con pesca (37,6%; rango 20,8 – 61,5%), siendo esto particularmente crítico en la II y VII Regiones, con 23 lances (15,5%) y 15 lances positivos (20,8%), respectivamente. De estos 298 lances, 169 obtuvieron capturas clasificadas como "abundancia", 76 como "mediana abundancia" y 53 como "presencia", no encontrándose en el texto del Informe de los autores señalados, referencia alguna respecto de las definiciones de abundancia, y porcentajes de 56,7%, 25,5% y 17,8%, respectivamente. Estos lances se representan por triángulos negros en la Figura 76.

Canales *et al.* (2002) utilizaron el mismo diseño de muestreo bi-etápico ya descrito en el párrafo anterior, ubicando las transectas en las mismas posiciones latitudinales del estudio del año 2000(Escuela de Ciencias del Mar, 2000). Los lances totales realizados fueron 682, de los cuales sólo 266 resultaron con pesca para evaluar el langostino amarillo (39,0%), con sólo 171 positivos para el langostino amarillo (25,1%), los que se representan por cuadrados verdes en la Figura 76.

Posteriormente, Bahamonde *et al.* (2003), utilizaron el mismo diseño de muestreo bi-etápico que Escuela de Ciencias del Mar (2000) y Canales *et al.* (2002), ubicando las transectas en las mismas posiciones latitudinales de esos estudios del año 2000 y 2001. Los lances totales realizados fueron 1.168, de los cuales sólo 407 resultaron con pesca para evaluar el langostino amarillo (34,8%), con sólo 330 con pesca del recurso objetivo (28,3%), habiéndose disminuido la "efectividad" de los lances de pesca, siendo de éstos últimos sólo 15 en la IV y 39 en la III Región. Estos lances se representan por círculos celestes en la Figura 76.

En el estudio FIP 2003-31 denominado "Evaluación directa del langostino colorado y langostino amarillo entre la II y VIII Regiones, año 2003", Bahamonde et al. (2004), nuevamente utilizaron un diseño de muestreo bi-etápico, con la misma clasificación de transectas (transectas largas y transectas cortas). Los lances totales realizados entre la III y VIII Regiones fueron 719, de los cuales sólo 302 resultaron con pesca (42,0%). El Informe Final presentado por Bahamonde et al. (2004) indica que entre III y IV Región, se utilizaron 138 lances para realizar la evaluación, de los cuales 94 resultaron con pesca (68,1%), no indicándose si correspondían a lances positivos para la especie objetivo.

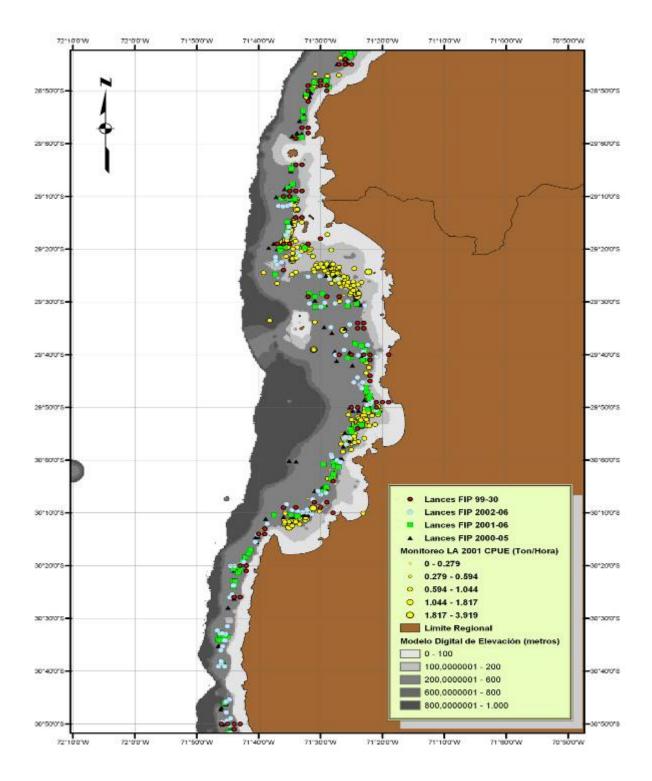


Fig. 76. Distribución de los lances de los Proyectos FIP N° 99-30 (círculos rojos), 2000-05 (triángulos negros), 2001-06 (cuadrados verdes) y 2002-06 (círculos celestes), con respecto a los caladeros de langostino amarillo en la IV Región (círculos amarillos).

En el peresente estudio, el enfoque muestreal que se propuso para la evaluación directa de la biomasa del langostino amarillo y colorado consideró la información existente generada por investigaciones anteriores (Acuña *et al.*, 1995; Acuña *et al.*, 2000; Acuña *et al.*, 2001; Acuña *et al.*, 2002a y Acuña *et al.*, 2002b), las que confirmaron la distribución latitudinalmente discontinua de ambos langostinos y permiten determinar con precisión los límites latitudinales y longitudinales de las zonas de abundancia. Al interior de tales zonas históricas de abundancia se realizó un *muestreo estratificado por celdas*. Esta estrategia permitió evaluar integralmente la abundancia y la densidad de los focos de mayor densidad. La principal ventaja de este esquema de muestreo es permitir la intensificación del esfuerzo de muestreo en las áreas en que la pesca ha sido históricamente exitosa, tal como lo demuestran los resultados alcanzados hasta ahora.

Al respecto, en el presente estudio, entre la II y VIII Regiones se realizaron 876 lances de pesca, de los cuales 67,92% resultaron con pesca, esto es, 595 lances. De los lances con pesca, se obtuvieron 397 lances positivos para langostino amarillo, lo que equivale a 66,72% de los lances con pesca y 45,32% de los lances totales (Tabla 85).

Tabla 85. Número de lances totales, con pesca, positivos para langostino amarillo (*C. johni*) y efectividad de pesca (en paréntesis) según el diseño de muestreo utilizado.

Proyecto	Diseño muestreo	Lances			
		Totales	Con pesca	C. johni	
FIP 2000-05	Bi-etapico por	792	298 (37,6%)		
Esc. Cs. del Mar (2000)	transectas	192	298 (37,070)		
FIP 2001-06	Bi-etapico por	682	266 (39,0%)	171 (25,1%)	
Canales <i>et al.</i> (2002)	transectas	002	200 (39,070)	1/1 (23,1/0)	
FIP 2002-06	Bi-etapico por	1168	407 (34,8%)	330 (28,3%)	
Bahamonde et al. (2003)	transectas	1100	407 (34,670)	330 (20,370)	
FIP 2003-31	Bi-etapico por	719	302 (42,0%)	276 (38,4%)	
Bahamonde et al. (2004)	transectas	/19	302 (42,070)	270 (30,470)	
Este estudio	Estratificado por celdas	876	595 (67,92%)	397 (45,32%)	

El análisis de los resultados antes expuestos demuestra que, en los estudios FIP 2000-05, FIP 2001-06, FIP 2002-06, y secundariamente en el FIP 2003-31, los lances exitosos son una fracción menor de los lances totales ejecutados, por lo que tampoco logran representar bien la forma o las abundancias presentes en los caladeros de la especie objetivo. Por lo tanto, teniendo en cuenta que el langostino amarillo y langostino colorado se distribuyen en focos aislados o con poca

superposición espacial, el esquema de muestreo en transectas no resulta el más adecuado para caracterizar los límites de los focos de abundancia de ambas especies así como su abundancia misma. En efecto, basta que estas agregaciones tengan límites entre los grados o 10' de latitud establecidos como espacio intertransectas "largas y cortas" sensu Escuela de Ciencias del Mar (2000), Canales et al. (2002), Arana et al. (2002), Bahamonde et al. (2003) y Bahamonde et al. (2004), como de hecho ocurre según lo que se observa en la Figura 77, para que queden fuera de la evaluación de biomasa correspondiente, subvalorando gravemente tanto ésta como la abundancia del recurso.

El uso de muestreos sistemáticos por transectas como única estrategia de muestreo, como los utilizados en los estudios antes señalados (Escuela de Ciencias del Mar, 2000; Canales *et al.*, 2002; Arana *et al.*, 2002; Bahamonde *et al.*, 2003; Bahamonde *et al.*, 2004), resultan altamente ineficientes debido a dos causas fundamentales: (1) no se considera el hecho que estos ambos recursos se distribuyen en agregaciones de alta densidad y no de manera aleatoria; y (2) al aplicarlo, la cantidad de lances positivos (con pesca) son escasos en relación al total, desperdiciándose gran parte del esfuerzo de muestreo.

Respecto del muestreo sistemático por transectas aplicado a la evaluación de stock de crustáceos tal como langostino amarillo y langostino colorado, es necesario aclarar que tal procedimiento no debe ser aplicado, en ningún caso, al área total o global del estudio (Pavez *et al.*, 1994; Acuña *et al.*, 1998; Roa *et al.*, 1998), pues, implícitamente se está suponiendo que el recurso se distribuye uniformemente en toda el área (Cochran, 1977; Thompson, 1992), lo que ya ha sido demostrado como falso, pues estos recursos pesqueros se distribuyen frecuentemente en agregaciones o parches de alta densidad.

5.1.2. Langostino colorado

Como se señalara en el numeral 5.1.1, el muestreo desarrollado por la Escuela de Ciencias del Mar (2000), es válido para las tres especies de crustáceos (langostino amarillo, langostino colorado y camarón nailon), por lo cual sólo se analizan los aspectos relativos a la especie langostino colorado. Los lances totales realizados fueron 792, de los cuales sólo 186 resultaron

con pesca para evaluar el langostino colorado (23,5%; rango 9,6-44,6%). De estos 186 lances, en 102 se obtuvo capturas clasificadas como "abundancia", en 59 se obtuvo "mediana abundancia" y 25 lances se registró "presencia" (no se pudo encontrar definiciones de estos conceptos en el texto del Informe), con porcentajes de 54,8%, 31,7% y 13,4%, respectivamente. Estos lances se representan por triángulos azules en la Figura 77, en la que se muestra la posición de los mismos con respecto a los caladeros de la especie en la IV Región determinados por un monitoreo de la pesca realizado por Acuña *et al.* (2002a).

Canales *et al.* (2002) por su parte, en su estudio sobre "*Evaluación directa de langostino colorado y langostino amarillo entre la II y VIII Regiones, año 2001*" (FIP 2001-06), utilizaron el mismo diseño de muestreo bi-etápico ya para langostino amarillo, ubicando las transectas en las mismas posiciones latitudinales del estudio del año 2000 (Escuela de Ciencias del Mar, 2000). Los lances totales realizados fueron 682, de los cuales sólo 228 resultaron con pesca para evaluar el langostino colorado (33,4%), con sólo 150 positivos para el recurso objetivo (22,0%), siendo de éstos últimos sólo 9 en la IV y 27 en la III Región. Bahamonde *et al.* (2002) (FIP 2002-06), utilizaron el mismo diseño de muestreo bi-etápico que Escuela de Ciencias del Mar (2000) y Canales *et al.* (2002), ubicando las transectas en las mismas posiciones latitudinales de esos estudios del año 2000 y 2001.

Los lances totales realizados fueron 1.168, de los cuales sólo 200 resultaron con pesca para evaluar el langostino colorado (17,1%), con sólo 158 positivos para el langostino (13,5%), siendo de éstos últimos sólo 15 en la IV y 39 en la III Región. No hubo lances en las regiones V a la VII para evaluar la especie, aunque su hubo 42 lances para la VIII Región. Estos lances se representan por círculos verdes en la Figura 77 en la que se muestra la posición de los mismos con respecto a los caladeros de la especie en la IV Región determinados por un monitoreo de la pesca realizado por Acuña *et al.* (2002a).

Arana *et al.* (2002) esencialmente aplicó el mismo esquema utilizado por Escuela de Ciencias del Mar (2000), Canales *et al.* (2002) y Bahamonde *et al.* (2002) en sus respectivos Proyectos FIP, realizando 161 lances (90 sistemáticos en transectas y 71 de evaluación entre transectas), de los

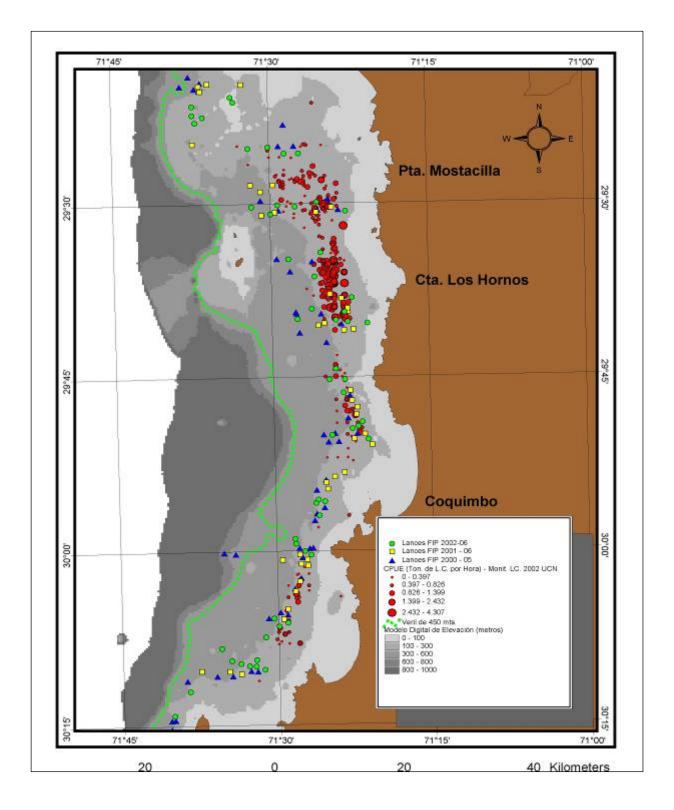


Fig. 77. Distribución de los lances de los Proyectos FIP N° 2000-05 (triángulos azules), 2001-06 (círculos amarillos) y 2002-06 (círculos verdes), con respecto a los caladeros de langostino colorado en la IV Región (círculos rojos).

cuales sólo en 56 lances (34,7%) se obtuvo capturas exitosas de langostino colorado, principalmente en la zona norte del estudio (29°10'S y 30°00'S). En el estudio FIP 2003-31 "Evaluación directa del langostino colorado y langostino amarillo entre la II y VIII Regiones, año 2003", Bahamonde et al. (2004), utilizando el diseño de transectas bi-etápico, aplicado en los tres estudios anteriores ya señalados, observaron que, de los lances totales realizados entre la III y VIII Regiones (719 lances), sólo 147 lances resultaron con pesca de langostino colorado (20,4%) (Tabla 86).

Tabla 86. Número de lances totales, con pesca, positivos para langostino colorado (*P. monodon*) y efectividad de pesca (en paréntesis) según el diseño de muestreo utilizado.

Dravaata	Diseño muestreo	Lances				
Proyecto		Totales	Con pesca	P. monodon		
FIP 2000-05	Bi-etapico por	792	186 (23,5%)			
Esc. Cs. del Mar (2000)	transectas	,,,2	100 (23,570)			
FIP 2001-06	Bi-etapico por	682	228 (33,4%)	150 (22,0%)		
Canales <i>et al.</i> (2002)	transectas	002	228 (33,470)	130 (22,070)		
FIP 2002-06	Bi-etapico por	1168	200 (17,1%)	158 (13,5%)		
Bahamonde et al. (2003)	transectas	1100	200 (17,170)	130 (13,370)		
Arana <i>et al.</i> (2002) ^(*)	Bi-etapico por	161		56 (34,8%)		
7 Hana & at. (2002)	transectas	101		30 (34,070)		
FIP 2003-31	Bi-etapico por	719		147 (20,4%)		
Bahamonde et al. (2004)	transectas	/19		147 (20,470)		
FIP 2003-03 Acuña <i>et al.</i> (2003) ^(*)	Estratificado por celdas	271	188 (69,4%)	115 (42,4%)		
Este estudio	Estratificado por celdas	876	595 (67,92%)	266 (44,71%)		

En el estudio FIP 2003-03 "Evaluación directa de langostino colorado entre la III y IV Regiones, año 2003", Acuña et al. (2003) aplicaron el diseño muestral utilizado en este proyecto para la evaluación de la biomasa de langostino colorado entre la II y IV Regiones, esto es, ellos utilizaron el diseño de muestreo estratificado por celdas. Tal estrategia permitió evaluar integralmente la abundancia y la densidad de los focos de mayor densidad de langostino colorado en el área de estudio. Estos autores realizaron 271 lances de pesca, de los cuales en 188 lances se obtuvo capturas (69,4%). De los lances con captura, 115 lances fueron positivos para langostino colorado (42,4% de los lances totales).

El análisis de estos antecedentes demuestra que el esquema de muestreo en transectas (Escuela de Ciencias del Mar, 2000; Canales *et al.*, 2002; Arana *et al.*, 2002; Bahamonde *et al.*, 2003; Bahamonde *et al.*, 2004) no es el más adecuado para la evaluación de langostinos, ya que tales recursos se distribuyen en focos aislados (Tabla 86).

5.2. Distribución del recurso

5.2.1. Langostino amarillo

Tal como se señaló en el capítulo anterior (Numeral 5.1.), la distribución del recurso es un tema de gran importancia cuando se define la estrategia de muestreo que permite evaluar su abundancia y biomasa en el área de estudio. En este capítulo se analizan las distribuciones espaciales de langostino amarillo de acuerdo a lo obtenido en los estudios más recientes realizados entre la II y IV Región.

La Escuela de Ciencias del Mar (2000) informa haber detectado una distribución de langostino amarillo discontinua desde 23°48'S hasta los 36°59'S, con 21 agregaciones de abundancia bien definidas en ciertas áreas, con una superficie total de 3.197,4 km². De estos el 51,7% correspondió a la pesquería norte (II – IV Región) y el 48,3% en la pesquería sur (V – VIII Regiones), destacando que el mayor foco fue encontrado frente a la V Región, con 646 km². Canales *et al.* (2002) señalan como la zona con mayor presencia al sector entre 25°S y 33,5°S, con seis agregaciones (focos) contínuas que en general no distaron más de 10 mn entre sí, con un total de 2.758 km². Más al sur identificaron 3 focos con un cambio de continuidad en la distribución debido al diseño de muestreo comprometido entre la V-VIII región, zona en la que se evaluaron los caladeros de pesca tradicionales del recurso, con un total de 1.773,1 km².

Bahamonde *et al.* (2003) señalan que el recurso presentó una extensa zona de 7 focos de agregación entre Caldera (27°S) y Valparaíso (33°15'S). Más al sur detectaron 4 agregaciones, encontrándose principalmente y de manera puntual al oeste de Talcahuano (36° - 36°40'S). Arana *et al.* (2002) señalan como área de distribución del langostino amarillo en la IV Región tres focos

entre los 29°10' - 30°10'S, con 400 km² y cinco focos entre Lengua de Vaca y el límite con la V Región (423 km²). Según los antecedentes recopilados por la Universidad Católica del Norte en los últimos 8 años, tanto de evaluaciones directas como de monitoreos de la pesquería realizados por la flota industrial y artesanal de la III y IV Región, los caladeros de langostino amarillo son los que se muestran en la Figura 78. Los antecedentes de la IV Región fueron ratificados recientemente en el monitoreo de las capturas realizadas por la flota durante una Pesca de Investigación de langostino amarillo a fines del año 2001 (Acuña *et al.*, 2002b) en la III y IV Región.

El estudio realizado por Bahamonde *et al.* (2004) indica que el langostino amarillo presentó una extensa zona de distribución casí continua desde el sector norte de Chañaral (26°10'S) hasta el sector de Pichilemu (34°40'S), y agregaciones menores más al sur, en particular frente a Constitución (35°10'S a 35°15'S), frente a Punta Los Maquis (36°01'S a 36°08'S) y en el área comprendida entre Punta Mela (36°16'S) y la Península de Tumbes (36°40'S).

La distribución de langostino amarillo, de acuerdo a Bahamonde *et al.* (2004) se registró en 13 focos de abundancia o caladeros, siete de los cuales se encontraron en la unidad de pesquería norte (II a IV Regiones) y seis en la unidad de pesquería sur (V a VIII Regiones). En la unidad de pesquería norte, el langostino amarillo se concentró en 5 focos de abundancia en la III Región, de los cuales uno es compartido con la IV Región, y 2 focos de abundancia en la IV Región, sumando un area total de 1.895 km².

En el presente estudio se identificaron 18 focos de abundancia entre la II y IV Regiones, cubriendo un área total de 2.149,4 km². A diferencia de los estudios anteriores revisados, (Escuela de Ciencias del Mar, 2000; Canales *et al.*, 2002; Arana *et al.*, 2002; Bahamonde *et al.*, 2003; Bahamonde *et al.*, 2004), en el estudio presente se detectó un número mayor de focos, destacándose la presencia de un núcleo de abundancia en la II Región no registrado por los estudios anteriores citados. Adicionalmente, cabe destacar la similitud de la forma y tamaño del Foco 18 de este estudio (30°38' - 32°11'S, 742,6 km²) y el Foco 7 (30°33'S - 32°00'S, 737,0 km²) reportado por Bahamonde *et al.* (2004).

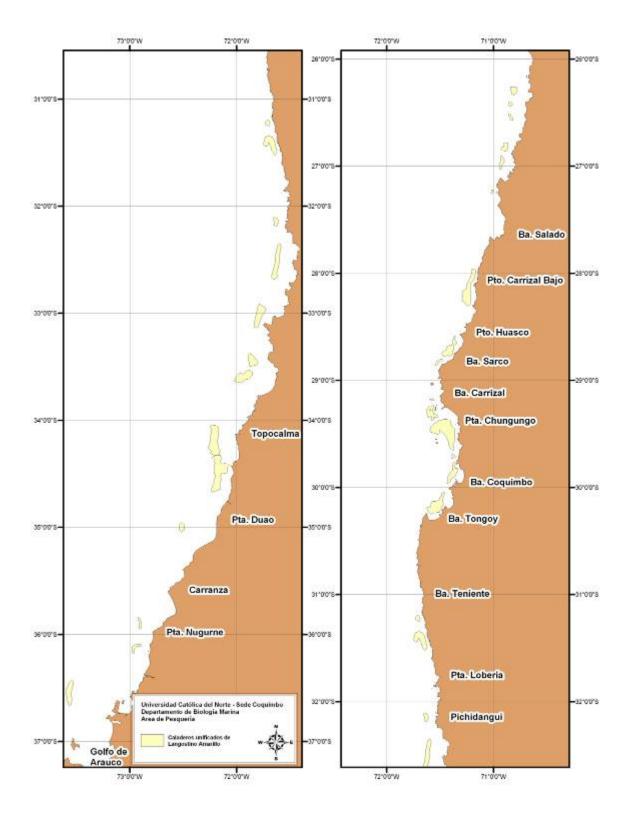


Fig. 78. Caladeros de langostino amarillo entre la III y VIII Regiones según antecedentes recopilados en los últimos ocho años por la Universidad Católica del Norte.

Por el contrario, es notoria la diferencia entre el estudio de Bahamonde *et al.* (2004) y el presente trabajo respecto de la identificación de focos de abundancia entre 29°S y 30°20'S. Al respecto, Bahamonde *et al.* (*op cit*) detectaron un solo foco de abundancia con un área equivalente a 60 km², a diferencia de lo encontrado en este estudio que identificó 2 focos de abundancia (Foco 15 y 16) con un área conjunta de 827,4 km².

Finalmente, el mayor número de focos de abundancia detectado en este estudio se atribuye tanto al diseño de muestreo, como al enfoque de estimación utilizado, esto es, a la estimación del área de los focos de abundancia mediante el enfoque geoestadístico transitivo.

5.2.2. Langostino colorado

En el caso del langostino colorado, la Escuela de Ciencias del Mar (2000) informó haber detectado 3 focos entre Mejillones y Punta Plata y uno frente a Punta Tórtola en la II Región, con un área de 393 km², dos en la III Región, al sur de Punta Achurra y desde el norte de Caldera hasta Huasco (498,68 km²), y uno en la IV Región, entre Punta Totoralillo y Tongoy, con un área de 305,37 km². Canales *et al.* (2002) en su estudio, "*Evaluación directa de langostino colorado y langostino amarillo entre la II y VIII regiones, año 2001*", señalan como la zona con mayor presencia al sector entre los 24°S y los 28°S, con cuatro agregaciones (focos) extensos y continuos, sin grandes distancias entre sí, con un área de 1450,4 km². Luego señalan haber detectado la presencia de langostino colorado en torno a Coquimbo en sólo un pequeño foco, de baja cuantía con un área de 129,8 km². Bahamonde *et al.* (2003) en su estudio, "*Evaluación directa de langostino colorado y langostino amarillo entre la II y VIII regiones, año 2002*", señalan como principal área de agregación de langostino colorado al área comprendida entre el sector sur de Antofagasta (23°45'S) y el norte de Huasco (28°00'S) y señalan una agregación puntual al norte de Coquimbo (29°10'S – 30°10'S) en la IV Región.

Arana *et al.* (2002) señalan como área de distribución del langostino colorado en la IV Región un solo foco delimitado de 189 km² aproximadamente entre Punta Totoralillo y Punta Teatinos (29°30'S – 29°50'S), en fondos entre 130 y 375 m de profundidad. Reconocen también haber registrado capturas positivas, todas de carácter aislado, entre Caleta Apolillado y Punta Mar

Brava (29°10'S – 29°20'S) y a la altura de Punta Lagunillas (30°05'S). Según los antecedentes recopilados en diversos estudios realizados por la Universidad Católica del Norte, como en el caso del langostino amarillo, tanto de evaluaciones directas como de monitoreos de la pesquería realizados por la flota industrial y artesanal de la III y IV Región los caladeros de langostino colorado en la III y IV Regiones, son los que se muestran en la Figura 79.

Acuña et al. (2003) en el estudio FIP 2003-03 "Evaluación directa de langostino colorado entre la III y IV Regiones, año 2003", como en el caso del langostino amarillo, utilizaron el enfoque geoestadístico transitivo para la identificación y delimitación de los focos de abundancia de langostino colorado entre la II y IV Región, habiéndose identificado la presencia de 14 focos de abundancia o caladeros cubriendo un área total de 707,6 km² (Fig. 79). La misma metodología empleada por Acuña et al. (2003), fue utilizada en la presente evaluación de la abundancia de langostino colorado entre la II y IV Regiones, observándose la presencia de 13 focos de abundancia, los que en conjunto cubrieron 1.277,7 km². Al respecto, viene al caso destacar que los focos 2 a 8 señalados por Acuña et al. (2003) se habrían expandido y fusionado (aunque contraido en sus extremos) para conformar el Foco 3 identificado en este estudio.

5.3. Area de distribución de los recursos

Escuela de Ciencias del Mar (2000) en el estudio FIP 2000-05, señala que el área de distribución de los recursos camarón nailon, langostino amarillo y langostino colorado, encontrados en esa investigación, se delimitaron empleando criterios tales como:

- a).- Posicionamiento de los lances en cartas náuticas.
- b).- Antecedentes históricos sobre la distribución y dinámica del recurso.
- c).- Información de lances comerciales realizados en la misma área y período.
- d).- Área que circunscribe los lances de pesca con captura.
- e).- Área expandida por extrapolación lineal de los rendimientos de pesca y,
- f).- Método de kriging

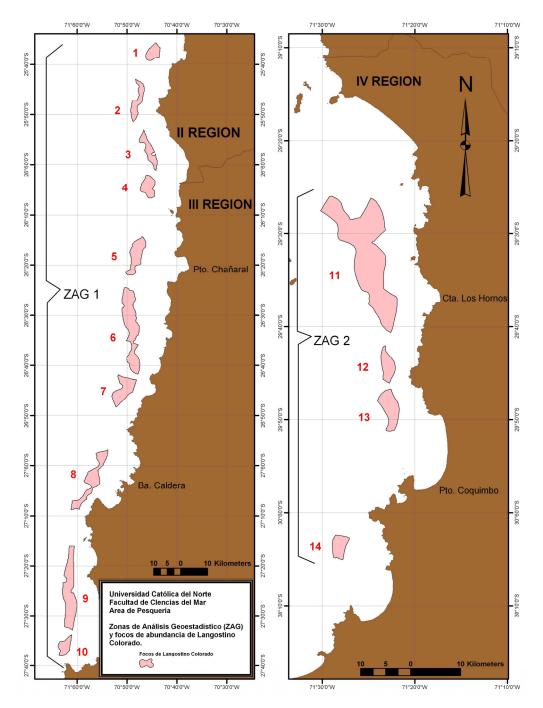


Fig. 79. Disposición espacial de los focos de abundancia de langostino colorado entre la II y IV Región según Acuña *et al.* (2003).

Luego, agregan que "para analizar la distribución espacial de los recursos camarón nailon, langostino amarillo y langostino colorado, se elaboraron cartas donde se posicionaron los lances, considerando para ello las posiciones medias determinadas entre el inicio y el término del arrastre, distinguiendo entre aquellos arrastres con y sin captura de la especie objetivo. De esta

manera, se logra precisar las áreas cubiertas por el recurso, estableciendo los límites de ellas mediante interpolación lineal entre los lances periféricos con pesca y las posiciones más cercanas sin registro de la especie" (sic).

Al respecto, de lo anteriormente señalado se desprende que el área de distribución de los recursos objetivos se estimó sólo considerando los criterio d y e, antes presentados, por cuanto, para la aplicación del kriging se debe conocer previamente los límites del(os) polígono(s) de estimación. Adicionalmente, cabe hacer notar que, de lo que Escuela de Ciencias del Mar (2000) llama criterios, en estricto rigor corresponden a esa definición los numerados como d, e y f por cuanto necesariamente requieren de la información producida por aquellos numerados como a, b y c.

Canales *et al.* (2002) en el estudio FIP 2001-06, señalan que de manera independiente a los estimadores de densidad, y con el fin de determinar el área de distribución del langostino amarillo y colorado, se emplearon diversos criterios tales como:

- a).- Área expandida con apoyo de cartografías e información sobre la distribución y dinámica del recurso
- b).- Información de lances comerciales realizados en la misma área y período
- c).- Área que circunscribe los lances de pesca con captura
- d).- Área expandida por extrapolación lineal de los rendimientos de pesca

Con respecto a la distribución espacial del recurso langostino amarillo y colorado, en Canales *et al.* (2002) se repite casi textualmente lo señalado en Escuela de Ciencias del Mar (2000) en el párrafo correspondiente, agregando que así se configuraron y delimitaron las zonas con presencia del recurso, siendo estas unidades las utilizadas para evaluar la biomasa y la abundancia de dichos recursos. La metodología anterior aparece nuevamente casi textualmente reproducida en Bahamonde *et al.* (2003) en el estudio FIP 2002-06, por lo cual se asume que se ha mantenido la misma en este último estudio.

Bahamonde *et al.* (2004) en el estudio FIP 2003-31 "Evaluación directa del langostino colorado y langostino amarillo entre la II y VIII Regiones, año 2003", señaló que la distribución espacial de los recursos langostino amarillo y langostino colorado se determinaron considerando que ella

correspondía al área ocupada por la fracción de stock presentes en los fondos rastreables de la zona de estudio. Sin embargo, Bahamonde *et al.* (*op cit*) no presentó en su Informe Final una estimación de los fondos rastreables, sino extensos focos de abundancia casi continuos, particularmente entre la II y IV Regiones, tanto para langostino amarillo como para el langostino colorado.

Bahamonde *et al.* (2004) en su Informe Final señala que, para la determinación de la distribución espacial de los recursos objetivo del estudio, se efectuó mapeo de las densidades considerando aspectos relacionados con la técnica geoestadística, en particular, uso de semivariogramas. Sin embargo, lo señalado en el documento hace referencia al método intrínseco, destacando que en este método, **los datos se interpretan como una representación muestreal de un proceso aleatorio dentro del área de estudio**.

En efecto, en el método geoestadistico intrínseco no es posible separar el efecto del área de distribución de la variable regionalizada (variable geoestadística) de sus valores propios (en este caso densidad poblacional). Por lo tanto, la estimación de la abundancia debe obligatoriamente contar con la delimitación del área de estudio (existencia de efecto de borde) dentro de la cual de establece el mapeo de la variable regionalizada. Luego, del análisis anterior surge un elevado grado de incertidumbre respecto de la verdadera forma en que se delimitó el área de distribución de los recursos objetivo del estudio FIP 2003-31, más aún cuando se analiza la Figura 80, construida a partir de la propia información entregada por Bahamonde *et al.* (2004).

En el caso de la metodología propuesta por la Universidad Católica del Norte (UCN) para el proyecto FIP 2003-03 y el presente estudio, para la delimitación del área de distribución de langostino colorado, en el primer caso, y langostino amarillo y langostino colorado, en el segundo estudio, se utilizó la **teoría geoestadística transitiva** que permite la definición de los límites de la distribución del (los) recurso(s) en forma más objetiva e independiente del valor de densidad poblacional de los puntos muestreales incluidos en la definición del polígono de distribución o de los focos de abundancia.

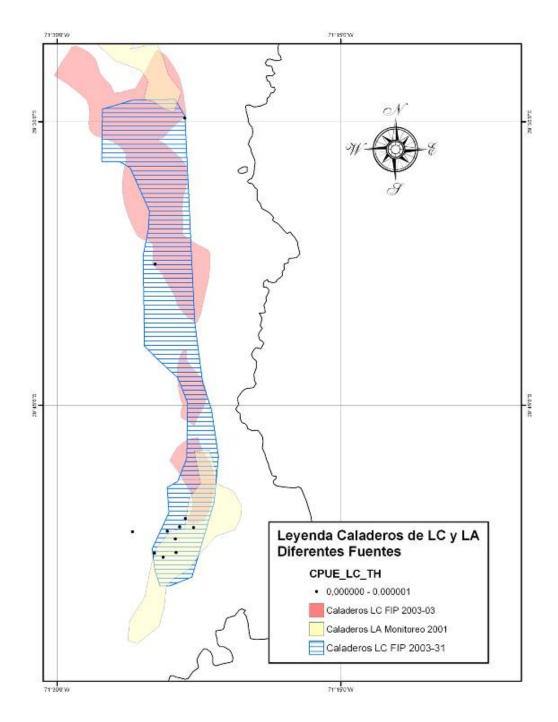


Fig. 80. Posición y forma de los caladeros de langostino colorado de la IV región, definidos durante el estudio FIP 2003-03 (rojo) y FIP 2003-31 (azul). Los puntos negros corresponden a lances negativos del proyecto FIP 2003-31. En amarillo caladeros de langostino amarillo de acuerdo a Acuña *et al.* (2002).

5.4. Estimación de biomasa

5.4.1. Langostino amarillo

Escuela de Ciencias del Mar (2000) en su estudio sobre *Evaluación directa de camarón nailon, langostino amarillo y langostino colorado, año 2000,* utilizaron 7 estimadores diferentes para evaluar la biomasa de la especie y utilizando los 4 estimadores más parecidos, determinaron que entre la III y IV Región existía una biomasa en torno a las 8.120 ton, entre la V y la VIII Región una de 10.700 tons. Canales *et al.* (2002) utilizaron 4 estimadores diferentes para evaluar la biomasa de la especie y determinaron que entre la II y IV Región se encontraba una biomasa en torno a las 5.700 ton, mientras entre la V y VIII Región ésta bordeó las 6.300 tons.

Bahamonde *et al.* (2003) utilizaron 4 estimadores diferentes para evaluar la biomasa de la especie y determinaron que entre la II y IV Región se encontraba una biomasa en torno a las 10.200 ton, mientras entre la V y VIII Región ésta era de alrededor de 7.000 ton. Arana *et al.* (2002) utilizaron 3 estimadores diferentes para evaluar la biomasa de la especie y determinaron que en la IV Región existía una biomasa en torno a las 6.350 tons. En el 2003, Bahamonde *et al.* (2004) utilizaron los mismos 4 estimadores de biomasa usados en el 2002 (Bahamonde *et al.*, 2003) y determinaron que entre la II y IV Región se encontraba una biomasa en torno a las 7.000 ton, mientras entre la V y VIII Región ésta era de alrededor de 6.700 ton (Tabla 87).

En este estudio, la biomasa estimada de langostino amarillo entre la II y IV Regiones fluctuó entre 23.196,7 y 30.621,1 tons, según el método utilizado para la estimación de la densidad local. Al respecto, los valores de biomasa encontrados en el presente estudio son significativamente distintos de los informados por Bahamonde *et al.* (2004).

Sin embargo, lo anterior se debe a las diferencias entre las áreas de distribución del recurso (focos de abundancia) descritas por Bahamonde *et al.* (*op cit*) respecto de lo observado en este estudio, particularmente en la IV Región, donde estos últimos autores sólo identifican tres focos de abundancia, con una superficie conjunta de 935,0 km² (Focos 5, 6 y 7), contra 1.683,8 km² encontrados en este estudio (Focos 15, 16, 17 y 18), tal como se señala en la Tabla 88.

Estimaciones de biomasa (ton) de langostino amarillo (C. johni) entre la II y VIII Región según diferentes autores y metodologías de estimación. Tabla 87.

III-IV Región	Nº Focos	Geoesta- dística.	Razón	Media	Mediana	Finney-Sichel	Finney- Distribuc.	\forall	Bootstrap
Esc. Ciencias del Mar (2000)	13	8.666,0		8.216,9	2.919,7	93.836,5	92.332,9		8.270,4
Canales <i>et al.</i> (2002)	5	5.264,0	4.978,0	6.050,0				6.487,0	
Acuña <i>et al.</i> (2002a)	6	8.426,3	8.357,0	7.334,2			8.914,3		
Acuña <i>et al.</i> (2002b)	8		7.847,3	8.770,1				8.780,1	
Bahamonde et al. (2003)	7	9.394,0	9.371,0	11.177,0				10.930,0	
Bahamonde et al. (2004)	_	6.876,0	6.751,0	7.325,0				7.298,0	
Este estudio	18	24.849,6	27.510,2	23.196,7			30.621,1	17.159,0	

17 1/111 B; 6	NIO 17.00.0	Geoesta-	Dozów	Modio	Madions	Finney-	Distribuc.	Grupos	Doctor
v-viii negioii	IN FOCOS	dística.	Nazon	Media	Medialla	Sichel	Delta	Aleatorios	Doorsnap
Esc. Ciencias del Mar (2000)	8			11.018,7	4.911,9	4.911,9 103.194,2 101.043,6	101.043,6		11.081,2
Canales et al. (2002)	_		5.996,0					6.088,0	
Bahamonde et al. (2003) 4		6.817,0	7.155,0	7.049,0				7.197,0	
Bahamonde et al. (2004)	9	6.837,0	6.318,0	6.725,0				6.825,0	

No obstante, la mayor fuente de diferencia la constituyen las densidades medias (cpu, ton/km²) entre áreas de distribución equivalentes en ambos estudios, siendo altmente significativa la diferencia observada entre el Foco 7 de Bahamonde et al (2004) y la densidad promedio estimada en este estudio en un área equivalente a la anterior (Focos 7 y 8) (Tabla 88). Desafortunadamente, Bahamonde et al. (op cit) no aportan la información suficiente como para replicar su estudio, lo que hace imposible indagar en el origen de las diferencias encontradas entre los estimadores de densidad poblacional.

Tabla 88 Comparación de los estimadores de densidad poblacional (cpua, tons/km²), y área (km²) de los focos de abundancia de langostino amarillo (*C. johni*) entre la II y VIII Región señalados por Bahamonde *et al.* (2004) y los focos detectados en este estudio en posiciones geográficas equivalentes.

Ba	hamode <i>et al</i>	, (2004)			Este estud	lio	
Foco	Area	cpua _(Prom.)	Foco	Area	cpua _(Prom.)	cpua _(Mín.)	cpua _(Máx.)
1	161,3	1,920	2 3	58,6	1,494	0,153	4,409
2	137,1	1,310	5 6	98,8	2,883	0,120	9,813
3	164,7	3,470	9 10 11	78,4	4,727	0,109	24,033
4	297,1	4,260	12 13 14	205,4	6,154	0,109	21,463
5	170,3	10,320	15	681,8	11,146	0,114	38,584
6	27,7	3,130	16	245,6	9,612	0,103	38,825
7	737,0	2,850	17 18	756,4	16,747	0,225	124,942

5.4.2. Langostino colorado

Escuela de Ciencias del Mar (2000) utilizaron 6 estimadores diferentes para evaluar la biomasa de la especie y determinaron que entre la III y IV Región existía una biomasa en torno a las 10.150 tons en la III Región y 802 tons en la IV Región (Subsecretaría de Pesca, 2002). Canales *et al.* (2002) utilizaron 4 estimadores diferentes para evaluar la biomasa de la especie, aunque similares a los aplicados por Escuela de Ciencias del Mar (2000), y determinaron que entre la II y IV Región se encontraba una biomasa en torno a las 17.861 tons en la III Región (y no en la II como aparece en el IT (R. Pesq. N° 99) y 243 ton en la IV Región (Subsecretaría de Pesca, 2002) (Tabla 89).

Bahamonde *et al.* (2002) nuevamente señalan haber utilizado 4 estimadores diferentes para evaluar la biomasa de la especie, determinando que entre la II y IV Región se encontraba una biomasa en torno a las 17.861 ton en la III Región (y no en la II como aparece en el IT (R. Pesq.) N° 99) y 243 ton en la IV Región (Subsecretaría de Pesca, 2002). Arana *et al.* (2002) utilizaron 3 estimadores diferentes para evaluar la biomasa de la especie objetivo y determinaron que en la IV

Región existía una biomasa de langostino colorado en torno a las 4.399,2 tons, aunque en el Informe Técnico de la Subsecretaría de Pesca se entrega un promedio de 3 estimadores de 4.240 (Subsecretaría de Pesca, 2002) (Tabla 89).

Acuña *et al.* (2003), en dos estudios de evaluación directa de langostino colorado entre la II y IV regiones, determinaron la existencia de una biomasa cercana a las 17.500 ton en la zona entre Taltal (II Región) y Lengua de Vaca (IV Región), la que resultó ser un 38% mayor que la obtenida por IFOP (2003, en Subsecretaría de Pesca, 2003) en su evaluación directa del 2003.

Bahamonde *et al.* (2004) en el estudio FIP 2003-31 "*Evaluación directa del langostino colorado y langostino amarillo entre la II y VIII Regiones, año 2003*" calcularon a través de 4 estimadores de la densidad poblacional, los mismos presentados por Bahamonde *et al.* (2003), una biomasa de langostino colorado entre la II y IV Regiones en torno a 12.800 tons, distribuida en seis focos de abundancia. En el citado estudio se detectó seis focos de abundancia entre la II y IV Regiones y 2 entre la V y VIII Regiones.

Por otro lado, Acuña *et al.* (2003), en el Proyecto FIP 2003-03 "Evaluación directa de langostino colorado entre la III y IV Regiones, año 2003" detectaron 14 focos de abundancia que contenían una biomasa de 17.834,9 tons, con un intervalo de confianza entre 17.784,4 y 17.885,5 tons. La estimación de biomasa se ejecutó empleando el enfoque geoestadístico, tal como en el caso de este estudio donde se detectó 13 focos de abundancia y estimó una biomasa total entre la II y IV Región de 13.416,7 tons, e intervalo de confianza de 13.443,3 tons como límite inferior y 13.545,9 tons como límite superior, respectivamente. Lo anterior significa una reducción de la biomasa disponible de langostino colorado en la unidad de pesquería norte de 24,3% respecto del estudio anterior (Tabla 89).

Cabe consignar que la evaluación indirecta de stock realizada por IFOP en el marco del proyecto "Investigación Evaluación y CTP Langostino colorado 2004", financiado por la Subsecretaría de Pesca, realizado mediante un modelo talla-estructurado agregado, tanto espacialmente como entre sexos, y que considera información de estructuras de tallas, desembarques, rendimientos de pesca y biomasas evaluadas en forma directa, además de parámetros de crecimiento y mortalidad natural, entre otros, estimó una biomasa total para esas dos regiones a inicios del 2003 de 19.900 toneladas (límites 17.200 a 23.600 ton), y para comienzos del 2004 proyectó que alcanzaría las

Estimaciones de biomasa (ton) de langostino colorado entre la II y VIII Región según diferentes autores y metodologías de estimación. Tabla 89.

II-IV Región	Nº Focos	Geoesta- dística.	Razón	Media	Finney- Sichel	Distribuc. Delta	Grupos Aleatorios	Bootstrap	Estratificado
Esc. Ciencias del Mar (2000)	3			21.268,9	67.075,4	46.933,5	20.120,7	19.786,4	
Canales <i>et al.</i> (2002)	5	24.744,0	25.152,0	24.971,0			25.832,0		
Bahamonde et al. (2003)	5	15.047,0	14.541,0	14.654,0			14.814,0		
Acuña <i>et al</i> . (2003)	14	17.834,9							17.437,0
Bahamonde et al. (2004)	9	12.432,0	12.431,0	13.403,0			12.929,0		
Este estudio	13	13.416,7	15.064,3	10.031,1		12.957,2			16.147,8

V-VIII Región	Nº Focos	Geoesta- dística.	Razón	Media	Finney- Sichel	Distribuc. Delta	Grupos Aleatorios	Bootstrap	Estratificado
Esc. Ciencias del Mar (2000)	4			5.550,9	1.785,3	8.573,7	5.920,7	5.881,3	
Canales <i>et al.</i> (2002) 2 6	2		5.717,0	6.010,0			5.760,0		
Bahamonde et al. (2003)	2	8.610,0	8.590,0	9.092,0			8.884,0		
Bahamonde <i>et al</i> . (2004)	2	3.537,0	4.139,0	4.122,0			4.204,0		

20.830 toneladas (límites 18.000 a 24.400 ton) (Subsecretaría de Pesca, 2003).

en Chile, existirían entre individuos pertenecientes a distintas especies, lo que se evidenciaría genéticamente con divergencias de 7-Según lo evidencian los resultados de análisis comparativos de secuencias de ADN mitocondrial, a lo largo de la costa de Chile hay diferencias morfológicas de las magnitudes detectadas por Báez (2000, 2002) para individuos de Pleuroncodes de distintas localidades 25% en las secuencias de genes mitocondriales como el 16S y el COI. En el caso de Pleuroncodes para la costa de Chile, hay 0% de divergencia entre los individuos de la I y la VIII Regiones. Para comprender si a lo largo de la costa de América hay más de una una sola especie de Pleuroncodes, que corresponde a Pleuroncodes monodon. Este resultado es interesante, ya que en general, especie, o varios ecotipos, es necesario ampliar el área de muestreo para incluir a ejemplares del Perú y más al norte. Según lo evidencian los resultados de análisis comparativos de secuencias de ADN mitocondrial, a lo largo de la costa de Chile hay una sola especie de *Pleuroncodes*, que corresponde a Pleuroncodes monodon. Este resultado es interesante, ya que en general, diferencias morfológicas de las magnitudes detectadas por Báez (2000, 2002) para individuos de Pleuroncodes de distintas localidades en Chile, existirían entre individuos pertenecientes a distintas especies, lo que se evidenciaría genéticamente con divergencias de 7-25% en las secuencias de genes mitocondriales como el 16S y el COI. En el caso de Pleuroncodes para la costa de Chile, hay 0% de divergencia entre los individuos de la I y la VIII Regiones. Para comprender si a lo largo de la costa de América hay más de una especie, o varios ecotipos, es necesario ampliar el área de muestreo para incluir a ejemplares del Perú y más al norte.

En cuanto a los estudios genéticos sobre el langostino colorado, el uso de marcadores moleculares más finos, como son los microsatélites, permitiría determinar si existe divergencia genética reciente entre ejemplares de localidades geográficas dentro de Chile.

5.5. Conclusiones

- 1. Se llevó a cabo aproximadamente el 85,2% de los lances propuestos, siendo más exitosos los lances efectuados dentro de los caladeros que aquellos de las zonas intercaladeros. En el langostino amarillo la mayor proporción de lances positivos se logró en la IV y V Regiones, destacando particularmente un sector con altas capturas ubicado dentro del ARPA de esta última. En el caso del langostino colorado, la mayor proporción de los lances ejecutados con pesca positiva se observó en la VIII Región, con 51%. En la zona sur, la especie sólo fue capturada en la VII y VIII región, aunque el foco detectado en la primera de estas regiones es bastante reducido.
- 2. El rango de tallas global de langostino amarillo con sexos combinados, detectado en toda el área de estudio correspondió a 11-50 mm LC, mientras los rangos observados por región muestreadas corresponden a 12-43 mm LC en la II Región, 12-48 mm LC en la III Región, 11-50 mm LC en la IV Región, 20-46 mm LC en la V Región, 18-45 mm LC en la VI Región, 14-50 mm LC en la VII Región y 16-48 mm LC en la VIII Región. Las

frecuencias de tallas de las siete regiones en porcentaje acumulado, muestran que la mayor proporción de ejemplares de tallas sobre los 27 mm LC se encuentra en la VI y VIII región y la menor en la II Región.

- 3. El rango de tallas global de langostino colorado con sexos combinados, detectado en toda el área de estudio correspondió a 10-45 mm LC, mientras los rangos observados en las tres regiones muestreadas corresponden a 18-43 mm LC en la II Región, 12-45 mm LC en la III Región, 12-43 mm LC en la IV Región, 12-42 mm LC en la VII Región y 10-37 mm LC en la VIII Región. Las frecuencias de tallas en porcentaje acumulado, muestran que la mayor proporción de ejemplares de tallas sobre los 27 mm LC se encuentra en la IV región y la menor en la VIII Región.
- 4. Se construyó un modelo funcional de la APA con las variables profundidad de calado (Prof, m), longitud cable de cala (LCC, m) y velocidad de operación (Vel, nudos) del tipo lineal, siendo éste el mejor modelo encontrado. La relación entre la APA y la razón LCC/Prof. fue poco significativa en comparación al modelo elegido para cada embarcación. El modelo funcional de la APA quedó representado por la expresión:

$$APA = a \cdot Prof + b \cdot LCC + c \cdot Vel + d$$

- 5. En el área total de estudio se establecieron cinco zonas, denominadas como ZAGs (Zonas de Análisis Geoestadístico) para el análisis de la distribución espacial de langostino amarillo y de tres ZAGs en el caso del langostino colorado. Mediante el enfoque geoestadístico transitivo, utilizando los lances de pesca positivos y negativos (sin captura) para ambas especies, se identificó la presencia de 30 focos de abundancia o caladeros de langostino amarillo y 18 focos de langostino colorado.
- 6. El análisis de variogramas unidireccionales reveló presencia de efecto anisotrópico de la distribución espacial de la densidad poblacional de langostino amarillo en todas las ZAGs. En la ZAG-1, éste se observó en dirección NE-SO y en las ZAGs 2 a 5, en dirección N-S, asociado a la orientación de la plataforma continental y línea de la costa. Para el langostino colorado, éste efecto anisotrópico se observó en dirección N-S en las tres ZAGs

- identificadas. El modelo de variograma teórico que mostró la mejor bondad de ajuste fue el modelo esférico para ambas especies.
- 7. Se aplicaron seis métodos de estimación: (1) enfoque geoestadístico, (2) Distribución Delta log normal, y (3) estrategia de muestreo estratificado. Sin embargo, para efectos comparativos, la estimación de abundancia se llevó a cabo también por los métodos: (4) estimador de razón, (5) media aritmética, y (6) microceldas de estimación geoestadística.
- 8. El enfoque geoestadístico estimó una biomasa total de langostino amarillo entre la II y VIII Regiones de 58.392,3 ton, con intervalo de confianza (IC) entre 58.250,5 y 58.534,1 tons. En el caso del langostino colorado, la biomasa total alcanzó a 22.833,1 ton, con IC: entre 22.726,1 y 22.940,1 ton, con el mismo enfoque. El método de la Distribución Delta lognormal, la biomasa de langostino amarillo fue estimada en 71.121,4 (IC: 63.718,2 77.118,5 ton), 64.560 ton (IC: 60.869,3 68.250,7 ton) mediante el estimador de razón alcanzó, y 47.859,3 ton (IC: 45.422,0 50.297,0 ton) mediante el enfoque estratificado, respectivamente. En el caso del langostino colorado, el método de la Distribución Delta lognormal estimó una biomasa total de 19.815,2 (IC: 14.862,9 25.733,3 ton), 24.207,5 ton (IC: 23.075,4 25.339,5 ton) mediante el estimador de razón, y 23.668,4 ton (IC: 22.414,5 24.922,2 ton) mediante el enfoque estratificado, respectivamente.
- 9. La abundancia total de langostino amarillo (millones de ejemplares) entre la II y VIII Regiones, calculada a partir de la estimación de biomasa por el enfoque geoestadístico, alcanzó a cerca de 2.300 millones de ejemplares, encontrándose el 75,6% de ella entre la III y IV Regiones (1.732,7 millones de ejemplares). En el caso del langostino colorado, la abundancia total (millones de ejemplares) entre la II y VIII Regiones, a partir de la estimación de biomasa por el enfoque geoestadístico, alcanzó a 2.947,1 millones de ejemplares, encontrándose 56,6% de ella entre la II y IV Regiones, y 43,4% entre la VII y VIII Regiones. No se identificó focos de abundancia de langostino colorado entre la V y VI Regiones.
- 10 La fauna acompañante estuvo representada por 31 taxa: 19 peces, 6 crustáceos, 4 moluscos y 2 mixinoídeos, destacando la merluza común, el lenguado de ojos grandes y el

pejerrata *Nezumia pulchella*, los cuales concentraron el 80,51% de la captura total de la fauna acompañante. Las tres especies representan el 14,36% de la captura total de las especies objetivo, lo que es alto considerando que la captura total de la fauna acompañante fue similar al 17,83% de la captura de las especies objetivo. Las especies restantes presentaron una importancia muy baja, sólo 7 superaron el 5% y muchas representan menos del 1% de la captura total de la fauna acompañante.

- Un análisis de clasificación permitió distinguir cuatro grupos de estaciones de muestreo (lances), cada uno de los cuales está conformado por estaciones con similitud superior al 50%. El análisis de ordenación distinguió, con un nivel de significancia moderadamente alto (Stress = p = 0,07), los mismos cuatro grupos de estaciones que el análisis de clasificación anterior. Con esto se definió los cuatro ensambles o grupos de especies, siendo las de mayor importancia relativa *M. gayi, H. macrops y N. pulchella* que se presentaron en todos los grupos y en la mayoría con los valores de importancia relativa más altos. La excepción ocurrió en el grupo III, siendo la especie de mayor importancia relativa la jibia (*Disodicus gigas*).
- Las curvas k-dominancia presentaron una configuración opuesta en la asociación I y IV. En la primera, se observó un predominio de la abundancia en peso por sobre aquella en número. En cambio en la asociación específica IV se observó un predominio de la abundancia en número por sobre aquella en peso. Comparativamente, la asociación I es más k-estratega y la asociación IV es más r-estratega. En I, M. gayi tuvo mayor importancia relativa y en IV, la tuvo N. pulchella. M. gayi es más k-estratega y N. pulchella es más r-estratega, comparando sus tamaños corporales y productividad, P/B=0,39 año-1, P/B=0,70 año-1 (Arancibia & Neira, 2003), respectivamente.
- La situación del stock de langostino colorado y langostino amarillo de las zonas centronorte (II-IV Regiones) y centro-sur (V-VIII Regiones), se evaluó sobre la base del Modelo Coleraine. El análisis estructural se ajusta bien a las diferentes piezas de información, particularmente la estructura de tallas de los cruceros de evaluación como la biomasa explotable. El langostino colorado de la zona centro-norte exhibe una biomasa total

cercana a 22 mil ton a comienzos de 2004. A su vez, se han observado bajas tasas de explotación en el 2003 y 2004, lo que unido a un reclutamiento importante en el 2003 determina condiciones favorables para consolidar un crecimiento de la biomasa del stock. En el caso del langostino colorado del sur, esta especie se caracteriza por la probabilidad latente de fallas importantes en el reclutamiento anual. Pero, en los últimos cuatro años se verifica el ingreso de reclutamientos que están permitiendo una recuperación de la biomasa total, la que aún no se consolida en la fracción explotable.

- 14. La tendencia de la biomasa de langostino colorado y langostino amarillo entre los años 1990 y 2002 utilizando un modelo multiespecífico y series de tiempo de mortalidad por pesca es proyectada correctamente por EwE. Esto implica que junto con la mortalidad por pesca, las relaciones tróficas en la forma de predación también pueden haber jugado un rol importante en la dinámica de la biomasa de estos recursos en el pasado. Además, la mortalidad por predación también podría jugar un rol importante en la recuperación de la biomasa de ambos recursos en el futuro.
- 15. Los análisis genéticos basados en genes mitocondriales muestran que hay una sola especie de *Pleuroncodes* a lo largo de la costa de Chile, y que la forma enana presente en la I y II Regiones corresponde a un ecotipo.

6. TALLER DE DIFUSIÓN

En el Punto 5.6 de los TBR se señala el considerar la ejecución de un taller de difusión del Proyecto con la participación de científicos y técnicos relacionados con el tema, personas del sector extractivo y profesionales involucrados en el manejo de la pesquería.

En respuesta a esta solicitud de la Secretaría Ejecutiva del FIP se realizó la Reunión Técnica solicitada, oportunidad en que se revisaron diversos aspectos del proyecto en conjunto con la presencia de representantes del Instituto de Fomento Pesquero (IFOP), la Universidad Católica de Valparaíso, y representantes del sector pesquero empresarial de la IV y V Regiones, cuya lista de participantes se detalla en la Tabla 90.

Tabla 90. Lista de invitados y participantes (en negrita) al taller técnico de difusión de resultados FIP Nº 2004-11.

NOMBRE	INSTITUCIÓN	EMAIL
Klaus Kunde	Industriales Pesqueros IV Región	pescamar@entelchile.net
Claudio Velásquez	Pesquera Bracpesca S.A.	comercialhym@123.cl
Guillermo Donoso	Pesquera Isladamas S.A.	-
Andrés Quintanilla G.	Pesquera Quinteros S.A.	pescaquinteros@hotmail.com
Víctor Olivares	Pesquera Amankay	pesqueraamankay@tie.cl
Luis Pichott	Consejero FIP	lpichott@friosur.cl
Javier Zaldívar Larraín	Consejero FIP	j.zaldivar@revistaschile.cl
Cristián Canales R.	IFOP Valparaíso	ccanales@ifop.cl
Juan Carlos Quiroz	IFOP Valparaíso	jquiroz@ifop.cl
Roberto Bahamonde F.	IFOP Valparaíso	rbahamond@ifop.cl
Jorge González	IFOP Coquimbo	jegonzalez@ifop.cl
Jorge Garrido	IFOP Coquimbo	jgarrido@ifop.cl
Maria Angela Barbieri	IFOP Valparaíso	mabarbieri@ifop.cl
Alex Cortés H.	Univ. Católica del Norte	acortesh@ucn.cl
Juan Carlos Villarroel	Univ. Católica del Norte	jevillar@uen.el
Ximena Bennett	Univ. Católica del Norte	xbennett@ucn.cl
Cecilia Becker	Univ. Católica del Norte	<u>cbecker@ucn.cl</u>
Felipe Sandoval	Subsecretaría de Pesca	<u>fsandoval@subpesca.cl</u>
Italo Campodónico	Subsecretaría de Pesca	<u>icampodo@subpesca.cl</u>
Eduardo Alzamora	Fondo de Investigación Pesquera	ealzamora@subpesca.cl
Vilma Correa	Subsecretaría de Pesca	vcorrea@subpesca.cl
Alejandro Karstegl	Subsecretaría de Pesca	akarstegl@subpesca.cl
Ruben Pinochet	Fondo de Investigación Pesquera	rpinochet@subpesca.cl
Alejandro Dalsanto	Consejo Zonal de Pesca	adalsanto@sernapesca.cl
Aurora Guerrero C.	Univ. Católica de Valparaíso	bentoderm@ucv.cl
Patricio Arana	Univ. Católica de Valparaíso	<u>parana@ucv.cl</u>
Teófilo Melo	Univ. Católica de Valparaíso	tmelo@ucv.cl
Guillermo Martínez	Univ. Católica de Valparaíso	gmartine@ucv.cl
Gabriel Yany González	Fondo de Investigación Pesquera - Consejero	vriea@ucv.cl
Renato Quiñones	Fondo de Investigación Pesquera - Consejero	rquinone@udec.cl
Roberto Garnham Poblete	Fondo de Investigación Pesquera - Consejero	cona@shoa.cl
Héctor Bacigalupo Falcón	Fondo de Investigación Pesquera - Consejero	estudios@sonapesca.cl
Rodrigo Infante V.	Fondo de Investigación Pesquera - Consejero	rinfante@salmonchile.cl

Al estar aprobado el Informe de Cruceros Sin Observaciones (Carta FIP Nº 684 de 13 de octubre del 2004, que en el párrafo atingente señala "Desde el punto de vista metodológico el informe cumple con lo comprometido en la oferta técnica y no amerita reparos... Presenta desde el punto de vista comparativo una excelente revisión y análisis crítico de los resultados en una perspectiva de las evaluaciones directas realizadas en el pasado en comparación con las desarrolladas por el consultor.", se programó la realización de un Taller de Difusión de los resultados obtenidos entre la II-VIII Regiones, contenido fundamental de dicho documento. En la Fig. 81 se presenta una copia de la invitación enviada 25 representantes de las distintas instituciones gubernamentales, de investigación pesquera y empresarial.

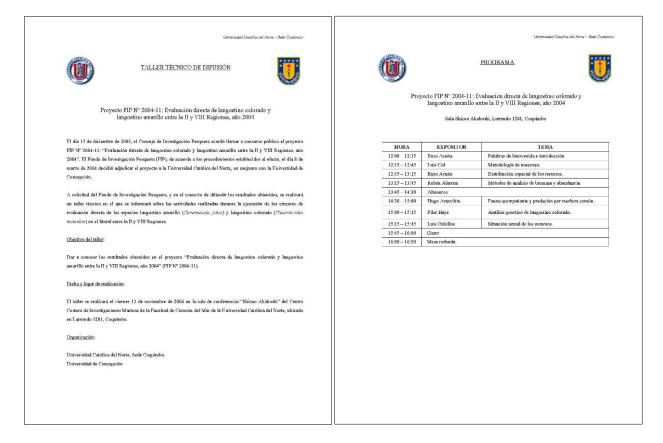


Fig. 81. Invitación utilizada en el taller de difusión de resultados del proyecto FIP 2004-11, realizado en el Coquimbo, el 12 de noviembre de 2004.

Listado de presentaciones.

Para iniciar la sesión de charlas, el jefe del proyecto FIP Nº 2004-11, Sr. Enzo Acuña da las palabras de bienvenida y agradecimiento por la asistencia a los participantes, comenzando a su vez con la introducción al Taller "Evaluación directa de langostino colorado y langostino amarillo entre la II y VIII Regiones, año 2004". Posteriormente, la serie de exposiciones continuó como sigue:

1. Expositor: **Sr. Luis Cid** con el tema "Metodología de muestreo" en la cual se analizó el método de muestreo estratificado, llegando a la conclusión que este "permite reducir los tamaños muestrales y lograr una mayor precisión en la estimación, maximizando el número de lances exitosos".

- 2. Expositor: **Sr. Enzo Acuña** con el tema "Distribución espacial de los recursos" en el cual se expuso los resultados obtenidos en el Objetivo Específico 1: "Determinar la distribución espacial de los recursos langostino amarillo y langostino colorado, en el área de estudio" en toda el área de estudio, considerando Región y Foco de Abundancia. Aquí se entregó información sobre las estructuras de tallas y porcentaje acumulado de las mismas en cada foco de abundancia de las dos especies, destacando especialmente la porción superior a 27 mm LC, considerada como adecuada para su procesamiento.
- 3. Expositor: **Sr. Rubén Alarcón** con el tema "Métodos de análisis de biomasa y abundancia", en el cual se detalló el análisis y resultados obtenidos del Objetivo Específico 2: "Determinar la biomasa vulnerable total (en peso) y la abundancia vulnerable total (en número), según talla y sexo, del langostino amarillo y langostino colorado en el área de estudio, por región y focos de abundancia, según corresponda", analizando a su vez, la importancia de la apertura de punta de alas (APA) en la estimación de abundancia y biomasa. En particular, se destacó el tema de la duración de los lances y el comienzo de los mismos, el que en el caso de este estudio es determinado **"on line"** a través de uno de los sensores del equipo NETMIND, lo que permite trabajar con el tiempo efectivo de arrastre desde que la red está efectivamente en el fondo.
- 4. Expositor: **Sr. Hugo Arancibia** con el tema "Fauna acompañante y predación por merluza común", en el cual se presentó el análisis del Objetivo Específico 4: "Determinar la composición e importancia relativa de las especies que constituyen fauna acompañante de los langostinos amarillo y colorado durante los cruceros de evaluación". Aquí se informó sobre la composición faunística del by-catch, la conformación de asociaciones faunísticas y la presencia en particular del recurso merluza común en el área de estudio.
- 5. Expositor: **Sra. Pilar Haye** con el tema "Análisis genético de langostino colorado", en el cual se presentó el análisis del Objetivo Específico 7: "Analizar la variabilidad y diferenciación genética dentro y entre los morfos de langostino colorado presentes en Chile, y determinar si las distintas formas encontradas corresponden a una única especie polimórfica y/o stocks".

6. El tema propuesto por el expositor, **Sr. Luis Cubillos**, ausente del taller por haber sufrido un accidente a última hora, fue expuesto por el **Sr. Hugo Arancibia**. El tema correspondía al Objetivo Específico 5: "Analizar la situación actual de los recursos en la zona de estudio, considerando los antecedentes de la pesquería y los resultados del proyecto".

Comentarios.

- Los asistentes debatieron ampliamente cada una de las presentaciones técnicas preparadas, las discusiones en la práctica los llevaron a reiterar la sugerencia de solicitar al FIP la realización de un Proyecto Metodológico amplio, que permitiera contrastar, en forma simultánea, las metodologías utilizadas hasta el momento, ya que aún persisten planteamientos encontrados al respecto por existir dos grupos de investigación cuyos enfoques metodológicos, en particular referidos al diseño de muestreo, no son coincidentes.
- A los participantes de este taller les llamó la atención, particularmente a usuarios y ejecutores, la ausencia de los representantes de la Subsecretaría de Pesca y del Fondo de Investigación Pesquera (FIP) y fueron enfáticos en solicitrar que este hecho quedara expresamente destacado y fuera incorporado en los comentarios del taller y en señalar que era algo que no debería repetirse, ya que si se promueven estas instancias de participación y discusión, lo menos que se espera es que las Instituciones interesadas deberían asistir **obligatoriamente**. Esto imposibilitó discutir algunos puntos de vital importancia, en particular para los usuarios y en general para los asistentes.

6. REFERENCIAS BIBLIOGRÁFICAS

- Acuña, E., H. Arancibia, A. Mujica, K. Brokordt & C. Gaymer. 1995. Estudio biológico-pesquero del langostino amarillo (*Cervimunida johni*) en la III y IV Región, mediante el uso de la flota arrastrera con base en Coquimbo. Informe Final Proyecto U. C. del Norte-Sede Coquimbo/Instituto de Investigación Pesquera VIII Región/Empresas Pesqueras de Coquimbo, 107 págs. + 2 anexos.
- Acuña, E & H. Arancibia. 1996. Evaluación directa del stock de camarón nailon (*Heterocarpus reedi*) por el método de área barrida, en la zona de operación de la flota arrastrera de la Regiones II y IV. Informe final Proyecto UCN, INPESCA, Empresas Pesqueras Coquimbo y Caldera. 75 pp.
- Acuña, E., H. Arancibia, A. Mujica, L. Cid & R. Roa. 1997. Análisis de la pesquería y Evaluación indirecta del stock de langostino amarillo en la III y IV Regiones. Informes FIP. FIP/IT Nº 96-08, 153 p.
- Acuña, E., M. Berríos, L. Cid, C. Díaz, J. Moraga, A. Mujica, J. Olivares & R. Roa. 1998. Evaluación directa del stock de langostino amarillo en la III y IV Regiones. Informes FIP. FIP/IT N° 97-25, 140 p.
- Acuña, E., E. Pérez & M.T. González. 2000. Monitoreo de la Pesquería de Crustáceos realizada por la flota de la IV región, 1999. Informe final, 76 pp.
- Acuña, E, M.T. González y E. Pérez. 2001a. Programa de Investigación: Monitoreo de la pesquería de crustáceos realizada por la flota de la IV región, Temporada 2000. Informe Final, 90 pp.
- Acuña, E., E. Pérez y M. González. 2001b. Pesca de langostino colorado *Pleuroncodes monodon* (H. Milne Edwards, 1837) y langostino amarillo *Cervimunida johni* Porter, 1903 por la flota artesanal en el área de reserva de la III Región. Informe Final. Departamento Biología Marina, U. Católica del Norte, Sede Coquimbo, Coquimbo, 44 pp.
- Acuña, E., M. Andrade, A. Bodini y X. Bennett. 2002a. Monitoreo de la pesca de langostino colorado (*Pleuroncodes monodon*) en la IV Región. Informe Final Pesca de Investigación resoluciones Nº 850, 1.022 y 1.795. Depto. Biología Marina. Universidad Católica del Norte Sede Coquimbo, 32 p.
- Acuña, E., H. Arancibia y R. Alarcón. 2002b. Monitoreo y Evaluación de la pesquería de langostino amarillo *Cervimunida johni* Porter, 1903, en la III y IV Región; Noviembre-diciembre 2001. Informe Final, Convenio ARPESCA Depto. Biología Marina. Universidad Católica del Norte Sede Coquimbo, 48 p.
- Acuña, E., G. Conan, L. Cid, R. Alarcón y L. Cubillos. 2003. Evaluación directa de langostino colorado entre la III y IV regiones, año 2003. Informe Final Proyecto FIP Nº 2003-03, 141 pp.

- Aitchison, J. J. & A. C. Brown. 1969. The lognormal distribution, with special reference to its uses in economics. Cambridge University Press, Cambridge, 176 p.
- Alverson, D.L. & W.T. Pereyra. 1969. Demersal fish explorations in the northeastern Pacific Ocean. An evaluation of exploratory fishing methods and analytical approaches to stock size and yield forecasts. J. Fish. Res. Bd. Canada, 26: 1985-2001.
- Arana, P., M. Ahumada y A. Guerrero. 2002. Evaluación directa de langostino colorado (*Pleuroncodes monodon*) en la IV Región. Estad. Doc., Univ. Católica de Valparaíso, 5/2002: 59 p.
- Arancibia H. & S. Neira. 2003. Simulación de cambios en la biomasa de los principales recursos pesqueros de Chile central (V–IX región) bajo el marco de la ley de pesca N° 19.713 y sus posteriores modificaciones. Informe Final. Universidad de Concepción, 53 pp.
- Arancibia, H., S. Neira, V. Christensen, R. Olson, F. Arreguín-Sánchez, L. Cubillos, R. Quiñones, C. Gatica & M. Medina. 2003. Pre-informe Final Proyecto FIP 2001-29 "Enfoque Metodológico para el análisis ecosistémico en la administración de pesquerías de la zona central de Chile".278 pp.
- Baéz, P. 2001. Determinación taxonómica de muestras de langostino colorado recolectadas en aguas frente al norte de Chile. En: Evaluación directa de langostino colorado de la I a IV Regiones, 1999. Barbieri, M.A., C. Canales R., B. Leiva P., R. Bahamonde F., T Peñailillo N., H. Pool P., C. Montenegro S. Informes Técnicos FIP FIP-IT/99-30, Anexo 3.
- Báez, P. 2002. Langostino Colorado: nuevos elementos en un recurso antiguo. Revista Chile Pesquero 129: 33-35.
- Bahamonde, R., C. Canales, B. Leiva & M.A. Barbieri. 2003. Evaluación directa de langostino colorado y langostino amarillo entre la II y VIII Regiones, año 2002. Pre-Informe Final Proyecto FIP N° 2002-06: 217 p. + Figuras y Anexos.
- Bahamonde, R., B. Leiva, C. Canales, M.A. Barbieri & J. Cortes. 2004. Evaluación directa de langostino colorado y langostino amarillo entre la II y VIII Regiones, año 2003. Informe Final Proyecto FIP N° 2003-31: 287 p. + Figuras y Anexos.
- Bax, N. J., 1991. A comparison of the fish biomass flow to fish, fisheries, and marine mammals in six marine ecosystems. ICES Mar. Sci. Symp., 193: 217–224.
- Bax, N. J. 1998. The significance and prediction of predation in marine fisheries. ICES Journal of Marine Science. 55(6): 997-1030.
- Begg, G.A. & J.R. Waldman. 1999. An holistic approach to fish stock identification. Fisheries Research. 43: 35-44.

- Begg, G.A., J.A. Hare & D.D. Sheehan. 1999. The role of life history parameters as indicators of stock structure. Fisheries Research. 43: 141-163.
- Bez, N. 2002. Global fish abundance estimation from regular sampling: the geostatistical transitive method. Can. J. Fish. Aquat. Sci. 59: 1921-1931
- Bez, N. & J. Rivoirard. 2001. Transitive geostatistics to characterize spatial aggregations with diffuse limits: an application on mackerel ichtyoplankton. Fish. Res. 50: 41–58.
- Booke, H.E. 1999. The stock concept revisited: perspectives on its history in fisheries. Fisheries Research. 43: 9-11.
- Bray, J. R. & J. T. Curtis. 1957. An ordination of the upland forest communities of Southern Wisconsin. Ecol Monogr. 27: 325-349.
- Burrough, P. A., R. A. McDonnell. 1998. Principels of Geographic Information Systems, Spatial Informaction and Geoestatistics. Oxford University Press. 333 pp.
- Camin, J.H., and R.R. Sokal. 1965. A method for deducing branching sequences in phylogeny. Evolution. 19: 311-326.
- Canales, C. & B. Espejo. 2002. Informe de avance Proyecto "Investigación CTP Langostino colorado 2002" Diagnóstico actualizado del estado de situación del recurso langostino colorado. 27 pp. + 6 Anexos.
- Canales, C., M.A. Barbieri, R. Bahamonde, B. Leiva, P. Arana, S. Palma y T. Melo. 2002. Evaluación directa de langostino colorado y langostino amarillo entre la II y VIII Regiones, Año 2001. Informes Técnicos FIP. FIP/IT 2001-06: 202 p. + Figs. y Anexos.
- Canales, C., R. Bahamonde, B. Leiva & M.A. Barbieri. 2003. Evaluación directa de langostino colorado y langostino amarillo entre la II y VIII Regiones, año 2002. Pre-Informe Final Proyecto FIP N° 2002-06: 217 p. + Figuras y Anexos.
- Canales, C., Barbieri, M.A., Bahamonde, R., Leiva, B., Arana, P., Guerrero, A., Ahumada, M., Melo, T., Queirolo, D., Hurtado, C., Galvez, P. 2003. Determinación de biomasa y abundancia de los recursos objetivos. En: Evaluación directa langostino colorado y langostino amarillo entre la II y VIII regiones, año 2002. Informe Final FIP 2002-06.
- Carrasco, F. D., V. A. Gallardo & M. Baltasar. 1999. The estructure of the benthic macrofauna collected across a transect at the central Chile shelf and relationships with giant sulfur bacteria *Thioploca* spp. mats. Cah. Biol. Mar. 40: 195-202.
- Chapman, M. G., A. J. Underwood. 1999. Ecological patterns in multivariate assembalges: information and interpretation of negative values in ANOSIM tests. Mar. Ecol. Prog. Ser. 180: 257-265.

- Christensen, V. & D. Pauly. 1992. ECOPATH II. A software for balancing steady state ecosystem models and calculating network characteristics. Ecological Modelling. 61: 169-185.
- Clarke K. R. & R.H. Green (1988). Statistical desing and analysis for a biological effects study. Mar Ecol. Prog. Ser., 92: 205-219.
- Clarke, K. R. & R. M. Warwick. 1994. Changes in marine communities: an approach to statistical analysis and interpretation. Plymouth: Plymouth Marine Laboratory. 144 pp.
- Clifford, H. T. & W. Stephenson. 1975. An introduction to numerical classification. Academic Press, Inc., London, 229 pp.
- Cochran, W.G. 1977. Sampling Techniques. 3rd. Ed. John Wiley and Sons, New York. 428 pp.
- Cohen, M.D., y G.S. Fishman. 1980. Modeling growth-time and weight-length relationships in a single year-class fishery with examples on North Carolina pink and brown shrimp. Can. J. Fish. Aquat. Sci. 37: 1000-1011.
- Cressie, N. 1991. Statistics for spatial data. John Wiley and Sons, Inc. New York, Chichester, Toronto, Brisbane, Singapore, 900 pp.
- Cressie, N.A.C. 1993. Statistics for spatial data. Wiley & Sons, New York. 900 pp.
- Deriso, R.B. y A. Parma. 1988. Dynamics of age and size for a stochastic population model. Can. J. Fish. Aquat. Sci. 45: 1054-1068.
- Deutsch, C.V. & A.G. Journel. 1998. GSLIB: Geostatistical Software Library and User's Guide. 2nd Ed. Oxford University Press, New York. 369 pp.
- Efron, B. y Tibshirani, R.J. 1986. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science. 1(1): 54-77.
- Escuela de Ciencias del Mar. 1999. Evaluación directa del stock de langostino amarillo, por el método de área de barrido, mediante la ejecución de un crucero de investigación pesquera. Estud. Doc., Univ. Católica Valparaíso. 33/99: 1-132.
- Escuela de Ciencias del Mar. 2000. Evaluación directa de camarón nailon, langostino amarillo y langostino colorado, Año 2000. Informes FIP. FIP/IT N° 2000-05: 315 pp.
- FAO (Food and Agriculture Organization of the United Nations). 1972. Catalogue of fishing gear designs. Fishing news books Ltd., Farnham, Surrey, England. 160 pp.
- FAO. 1996. FAO Fishing Technology Service. Fishing operations. FAO Technical Guidelines for Responsible Fisheries. No. 1. Rome, FAO. 1996. 26p. 6 annexes.

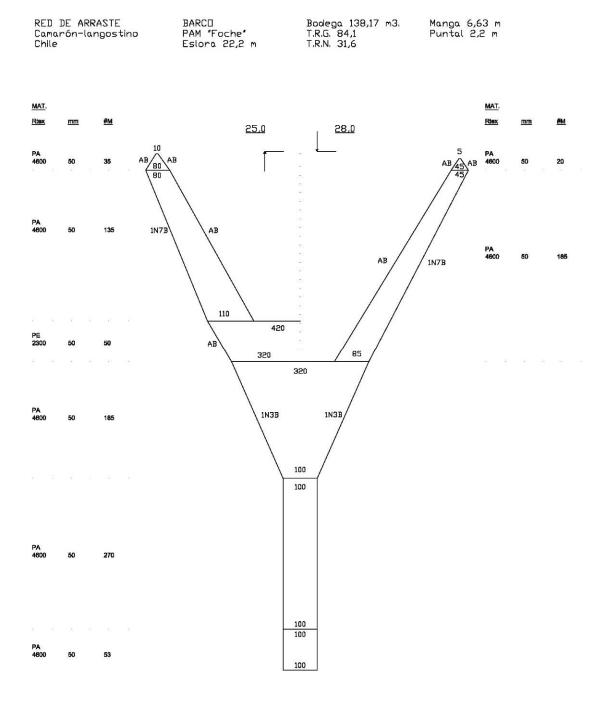
- Fennessy, S. T., C. Villacastin & J. G. Field. 1994. Distribution and seasonality of icthyofauna associated with commercial prawn trawl catches on the Tugela Bank of Natal, South Africa. Fish. Res. 20: 263-282.
- Fournier, D.A., J.R. Sibert, J. Majkowski & J. Hampton. 1990. MULTIFAN a likelihood-based method for estimating growth parameters and age composition from multiple length frequency data sets illustrated using data for southern bluefin tuna (*Thunnus maccoyii*). Can J. Fish. Aquat. Sci. 47: 301-317.
- Fournier, D.A, J. Hampton, y J.R. Sibert. 1998. MULTIFAN-CL: a length-based, age-structured model for fisheries stock assessment, with applications to South Pacific albacore, *Thunnus alalunga*. Can. J. Fish. Aquat. Sci. 55: 1-12.
- Francis, R.I.C.C. 1992. Use of fish analysis to assess fishery management strategies: a case study using orange roughy (*Hoplostethus atlanticus*) on the Chatham Rise, New Zealand. Can. J. Fish. Aquat. Sci. 49: 922-930.
- Fu, C., T.J. Quinn II, y M. Adkison. 1999. Retrospective projection using Monte Carlo simulation: an application of a length-based model to Kachemak Bay pink shrimp. Ecosystem Approaches for Fisheries Management, University of Alaska Sea Grant College Program, AK-SG-99-01, Fairbanks. pp. 59-77.
- Gelman, A., J.B. Carlin, H.S. Stern & D.B. Rubin. 1995. Bayesian data analysis. Chapman & Hall, New York.
- Hilborn, R. y M. Liermann. 1988. Standing on the shoulders of giants: learning from experience in fisheries. Rev. Fish Biol. Fisheries 8: 1-11.
- Hilborn, R., M. Maunder, A. Parma, B. Ernst, J. Payne, y P. Starr. 2000. Coleraine: a generalized age structured stock assessment model. 55 pp.
- Hobbs, R.J. 1997. Future landscapes and the future of landscape ecology. Landscape and Urban Planning 37. 1-9 pp.
- Isaaks, E.H. & R.M. Srivastava. 1989. An Introduction to Applied Geostatistics. Oxford University Press, New York. 561 p.
- Journel, A.G. & C.J. Huijbregts. 1978. Mining geostatistics. Academic Press, London. 600 pp.
- Kraufvelin, P. 1999. Baltic hard bottom mesocosms unplugged: replicability, repeatability and ecological realism examined by non-parametric multivariate techniques. J. Exp. Mar. Biol. Ecol., 240: 229-258.
- Lambshead, P., H. Platt, K. Shaw. 1983. The detection of difference among assemblages of marine benthic species based on an assessment of dominance and diversity. J. Nat. Hist. 17: 859-874.

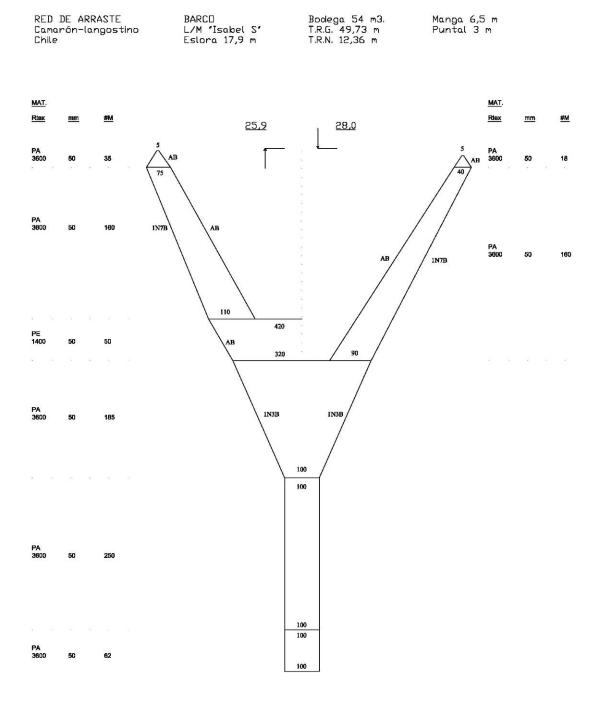
- Land, C.E. 1975. Tables of confidence limits for linear functions of the normal mean and variance. Sel. Tables Math. Stat. 3:385-419.
- Mace, P., y I.J. Doonan. 1988. A generalized bioeconomic simulation model for fish population dynamics. NZ Fish. Assess. Res. Doc. 88/4.
- Manly, B.F.J. 1997. Randomization, Bootstrap and Monte Carlo Methods in Biology. 2^a edición, Chapman & Hall. 399 pp.
- McConnaughey, R.A. & P.A. Conquest. 1993. Trawl survey estimation using a comparative approach based on lognormal theory. Fish. Bull. (U.S.) 91: 107-118.
- Morrow, C.C., J.P. Thorpe & B.E. Picton. 1992. Genetic divergence and cryptic speciation in two morphs of the common subtidal nudibranch *Doto coronata* (Opistobranchia: Dendronotacea: Dotoidae) from the northern Irish Sea. Marine Ecology Progress Series 84: 53-61.
- Oliverio, M. 1994. Developmental v/s genetic variation in two Mediterranean rissoid gastropods complexes. Journal of Molluscan Studies. 60: 461-465.
- Otter Research Ltd. 1999. AD Model Builder documentation on line. http://otter-rsch.com/admodel.htm
- Palma, S. & P. Arana. 1997. Aspectos reproductivos del langostino colorado (*Pleuroncodes monodon* H. Milne Edwards, 1837) frente a la costa de Concepción, Chile. Invest. Mar., Valparaíso. 25: 203-221.
- Parsons, K.E. & R.D. Ward. 1994. Electrophoretic and morphological examination of *Austrocochlea constricta* (Gastropoda: Trochidae): A species complex. Australian Journal Marine and Freshwater Research 45: 1065-1085.
- Pavez, P., T. Peñailillo, S. Palma, N. Silva, H. Miranda & I. Giakoni. 1994. Evaluación directa del stock de langostino amarillo en la zona centro-norte. Informes FIP. FIP/IT N° 93-06, 132 p. + Anexos.
- Pennington, M. 1983. Efficient estimators of abundance, for fish and plankton surveys. Biometrics 39: 281-286.
- Pennington, M. 1986. Some statistical techniques for estimating abundance indices from trawl surveys. Fish. Bull. 84: 519-525.
- Petitgas, P. 1993. Geostatistics for fish stock assessments: A review and an acoustic application. ICES J. Mar. Sci. 50 (3): 285-298.
- Petitgas, P. 1996. Geostatistics and their applications to fisheries survey data. In: Megrey, A., and E. Moskness (Eds.) Computers in Fisheries Research. Chapman & Hall, London. pp. 113-142

- Petitgas, P. & T. Lafont. 1997. EVA2: Estimation variance. Version 2. A geostatistical software on Windows 95 for the precision of fish stock assessment surveys. ICES CM 97/Y: 22. 22 pp.
- Pinkas, L., Oliphant, M. S., and Iverson, I. L. K. 1971. Foods habits of albacore, bluefin tuna, and bonito in California waters. California Fish and Game, Fish Bulletin: 112: 1-105.
- Quinn II, T.J., C.T. Turnbull y C. Fu. 1998. A length-based population model for hard-to-age invertebrate populations. In: F. Funk, T.J. Quinn II, J.N. Ianelli, J.E. Powers, J.F. Schweigert, P.J. Sullivan, y C.-I. Zhang (eds.), Fishery stock assessment models. University of Alaska Sea Grant, AK-SG-98-01, Fairbanks, pp. 531-556.
- Quinn II, T.J & R.B. Deriso. 1999. Quantitative Fish Dynamics. Oxford University Press, New York. 542 pp.
- Restrepo, V.R. & R.A. Watson. 1991. An approach to modeling crustacean egg-bearing fractions as a function of size and season. Can. J. Fish. Aquat. Sci., 48: 1431-1436.
- Roa, R. & R. Bahamonde. 1993. Growth and expansion of an exploited population of the squat lobster (*Pleuroncodes monodon*) after 3 years without harvesting. Fish. Res. 18: 305-319.
- Roa, R. & F. Tapia. 2000. Cohorts in space: geostatistical mapping of the age structure of the squat lobster (*Pleuroncodes monodon*) population off central Chile. Marine Ecology Progress Series. 196: 239-251.
- Roa, R., F. Tapia, L. Cid, R. Quiñones, B. Ernst, D. Figueroa, H. Arancibia, R. Galleguillos & M. Retamal. 1997a. Evaluación directa del stock de langostino colorado en la zona centrosur. Informes FIP, FIP/IT N° 96-23, 139 pp.
- Roa, R., R. Quiñones, V.A. Gallardo, B. Ernst, I. Payá, I. Campodónico & V. Alegría. 1997b. "Distribución espacial de la estructura poblacional del langostino colorado *Pleuroncodes monodon* en la zona del cañon del Bio-Bío". Informe Final Proyecto FONDECYT-1950090.
- Roa, R., L. Cid, F. Tapia, R. Quiñones, H. Arancibia, D. Figueroa & I. Lépez. 1998. Evaluación directa del stock de langostino amarillo en el litoral de la V a VIII Regiones. Informes FIP, FIP/IT N° 97-23, 123 pp.
- Roa, R., F. Tapia, L. Cid, I. Lépez, C. Diaz & H. Arancibia. 1998. Evaluación directa de camarón nailon entre la II y VIII Regiones. Informes FIP, FIP/IT N° 98-03, 138 pp.
- Saiki, R., D. H. Gelfand, S. Stoffel, S.J. Scharf, R. Higuchi, G.T. Horn, K.B. Mullis, y H.A. Erlich. 1988. Primer-directed enzymatic amplification of DNA with thermostable DNA polymerase. Science 239: 487-491.

- Sanjuan, A., M. Pérez-Losada & E. Rolán. 1997. Allozyme evidence for cryptic speciation in sympatric populations of Nassarius spp. (Mollusca: Gastropoda). Journal of Marine Biology Associated U.K. 77: 773-784.
- Seber, G.A.F. y C.J. Wild.1989. Nonlinear Regression. John Wiley & Sons.
- Sokal, R. R. & F. J. Rohlf. 1979. Biometry. W. H. Freeman and Co., San Francisco, California, 859 pp.
- Sparre, P. & S.C. Venema. 1995. Introducción a la evaluación de recursos pesqueros tropicales. Parte 1. Manual. FAO Documento Técnico de Pesca. Nº 306.1 Rev.1. 440 pp.
- Subsecretaría de Pesca. 2003. Cuota Global Anual de Captura de langostino colorado entre la I y la IV Región, año 2004. Informe Técnico (R. Pesq.) N° 99, 14 p. + Anexo.
- Sullivan, P. J., H. L. Lai, and V. F. Gallucci. 1990. A catch-at-length analysis that incorporates a stochastic model of growth. Can. J. Fish. Aquat. Sci. 47: 184-198.
- Swofford, D. L. 2000. PAUP*: Phylogenetic Analysis Using Parsimony (* and other methods). Test version 4.0B8A, Sinauer Associates, Sunderland, Massachusetts.
- Thompson, S.K. 1992. Sampling. John Wiley and Sons, New York. 343 pp.
- Velasco, A. and M. Wolf. 1999. Ictiofauna juvenil marino-estuarina de fondos blandos frente a la costa Pacífica de Colombia: comparación de la composición por especies de juveniles y adultos. En Resúmenes V Simposio Colombiano de Ictiología. Com. Reg. de Cien. y Tecnol. Amazonía, Leticia. 21-22 pp.
- Véliz, D., C. Guisado, F.M. Winkler. 2001. Morphological, reproductive, and genetic variability among three populations of *Crucibulum quiriquinae* (Gastropoda: Calyptaeidae) in northern Chile. Mar. Biol. 139: 527-534.
- Véliz, D., F.M. Winkler & C. Guisado. 2003. Developmental and genetic evidence for the existence of three morphologically cryptic species of *Crepidula* in northern Chile.. Marine Biology 143: 131-142
- Waldman, J.R. 1999. The importante of comparative studies in stock analysis. Fisheries Research 43: 237-246.
- Walters, C., V. Christensen & D. Pauly. 1997. Structuring dynamic models of exploited ecosystems from trophic mass-balance assessments. Reviews in Fish Biology and Fisheries, 7: 139-172.
- Warwick, R. M. 1986. A new method for detecting pollution effects on marine macrobenthic communities. Mar. Biol. 92: 557-562.

- Warwick, RM; Clarke, KR. 1993. Comparing the severity of disturbance: A meta-analysis of marine macrobenthic community data. Mar. Ecol. Prog. Ser. 92(3): 221-231.
- Warwick, R. M., A. J. McEvoy & S. F. Thrush. 1997. The influence of *Atrina zelandica* Gray on meiobenthic nematode diversity and community structure. J. Exp. Mar. Biol. Ecol., 214: 231-247.
- Wilkinson, L. 1988. SYSTAT: The system for statistic. SYSTAT Inc., Evanston, IL.
- Wolff, M. 1996. "Demersal assemblages along the Pacific coast of Costa Rica: a quantitative and multivariate assessment based on the Victor Hensen expedition (1993/1994)". Rev. Biol. Trop. 44(Suppl.3): 187-214.
- Zaslavskaya, N.I. 1995. Allozyme comparison of four littorinid species morphologically similar to *Littorina sitkana*. Hydrobiologia 309: 123-128.

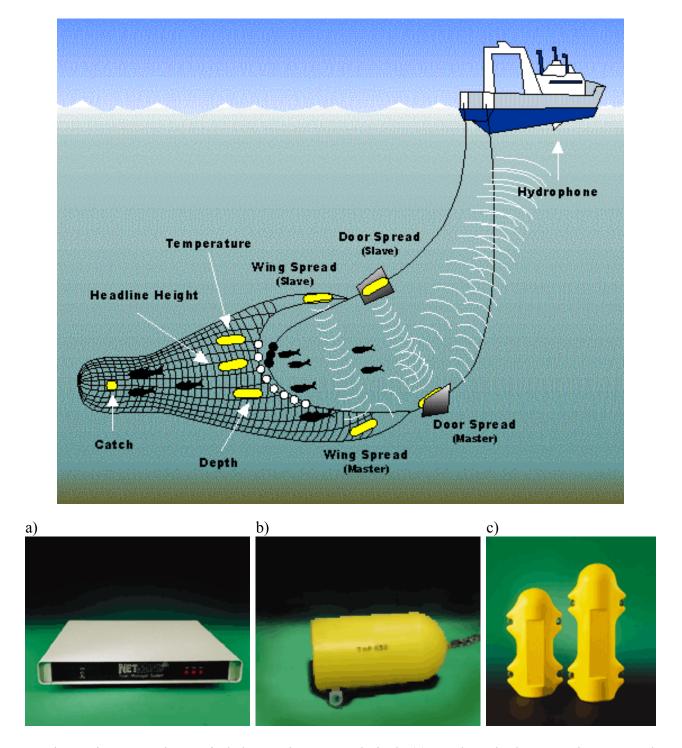

7. Anexos


ANEXOS

Anexo 1. Características técnicas de las embarcaciones y planos de las redes utilizadas.

ANEXO 1

CARACTERÍSTICAS TÉCNICAS EMBARCACIONES Y PLANOS DE LAS REDES UTILIZADAS.



Anexo 2. Sistema NETMIND para medir APA

ANEXO 2

SISTEMA NETMIND PARA MEDIR APA

Equipo Wing Spread Netmind de North Star Technical. (a) Deck Unit de conección entre el hidrófono y el PC; (b) hidrófono de remolque; (c) Sensores de abertura de alas.

Anexo 3. Registros de posición, distancia lineal recorrida (Km), captura de especies objetivo (Kg), abertura de punta de alas (m), área barrida (Km²) y CPUA (ton/Km²).

ANEXO 3

REGISTROS DE POSICIÓN,
DISTANCIA LINEAL RECORRIDA,
CAPTURA DE ESPECIES OBJETIVO,
ABERTURA DE PUNTA DE ALAS,
ÁREA BARRIDA Y CPUA

Anexo 3.1. Registros de posición media del lance, distancia lineal recorrida (DR, Km), captura de especie objetivo (Kg), abertura de punta de alas (APA, m), área barrida (AB, Km²) y CPUA (ton/Km²).

La	ntitud	Lo	ngitud	DR	APA	AB	C. je	ohni	P. moi	nodon
(°)	Min.	(°)	Min.	(Km)	(m)	(Km ²)	Capt.	CPUA	Capt.	CPUA
25	13,480	70	32,905	0,926	11,722	0,01086	0,0	0,000	0,0	0,000
25	14,565	70	32,285	0,926	11,452	0,01060	0,0	0,000	0,0	0,000
25	15,945	70	32,180	0,926	11,182	0,01035	0,0	0,000	0,0	0,000
25	18,815	70	32,385	0,926	11,369	0,01053	0,0	0,000	0,0	0,000
25	20,295	70	31,500	1,049	11,266	0,01182	0,0	0,000	90,0	7,612
25	20,475	70	32,625	0,926	10,912	0,01010	0,0	0,000	0,0	0,000
25	33,875	70	43,290	0,988	11,639	0,01150	0,0	0,000	0,0	0,000
25	34,775	70	42,880	0,926	11,452	0,01060	0,0	0,000	0,0	0,000
25	37,445	70	44,990	0,926	11,722	0,01086	0,0	0,000	0,0	0,000
25	38,070	70	43,760	0,926	11,099	0,01028	0,0	0,000	0,0	0,000
25	38,665	70	45,145	0,926	11,806	0,01093	0,0	0,000	954,0	87,263
25	39,290	70	45,810	1,049	11,722	0,01230	0,0	0,000	0,0	0,000
25	39,790	70	44,890	0,988	11,536	0,01139	0,0	0,000	846,0	74,246
25	41,350	70	44,910	0,988	11,182	0,01105	0,0	0,000	0,0	0,000
25	42,265	70	45,480	2,840	11,182	0,03175	0,0	0,000	18,0	0,567
25	42,900	70	44,630	0,926	11,182	0,01035	0,0	0,000	18,0	1,738
25	43,865	70	44,230	0,926	10,558	0,00978	0,0	0,000	0,0	0,000
25	45,415	70	46,545	0,988	11,182	0,01105	0,0	0,000	0,0	0,000
25	47,105	70	47,435	0,926	11,099	0,01028	0,0	0,000	9,0	0,876
25	49,680	70	47,630	0,679	11,266	0,00765	0,0	0,000	56,0	7,320
25	49,835	70	48,365	0,988	11,369	0,01123	0,0	0,000	0,0	0,000
25	50,675	70	46,915	1,235	10,539	0,01301	0,0	0,000	0,0	0,000
25	51,545	70	47,335	0,926	11,099	0,01028	9,0	0,876	126,0	12,260
25	53,110	70	47,320	0,926	11,452	0,01060	111,7	10,531	95,3	8,988
25	53,930	70	47,570	1,049	11,266	0,01182	0,0	0,000	0,0	0,000
25	55,090	70	46,500	1,049	10,912	0,01145	0,0	0,000	9,0	0,786
25	56,505	70	46,965	0,926	11,182	0,01035	0,0	0,000	540,0	52,150
25	57,075	70	46,405	0,926	11,182	0,01035	0,0	0,000	612,0	59,103
25	58,160	70	44,800	0,926	10,912	0,01010	0,0	0,000	72,0	7,125
25	58,935	70	44,520	0,926	10,912	0,01010	0,0	0,000	54,0	5,344
26	0,935	70	43,810	0,988	10,912	0,01078	0,0	0,000	36,0	3,340
26	2,200	70	45,210	0,617	11,536	0,00712	0,0	0,000	18,0	2,528
26	4,005	70	46,285	1,017	11,444	0,01163	0,0	0,000	14,8	1,276
26	4,605	70	45,610	1,005	11,335	0,01139	0,0	0,000	72,0	6,320
26	5,660	70	44,525	1,119	11,267	0,01261	0,0	0,000	126,0	9,990
26	5,755	70	43,955	0,926	10,642	0,00985	0,0	0,000	225,0	22,832
26	7,095	70	43,760	0,988	10,726	0,01059	0,0	0,000	27,0	2,549
26	8,000	70	46,445	0,988	11,369	0,01123	10,9	0,966	0,0	0,000
26	8,055	70	44,755	0,926	10,726	0,00993	0,0	0,000	81,0	8,155
26	9,170	70	46,425	1,111	11,099	0,01233	14,7	1,194	0,0	0,000
26	9,270	70	45,835	0,926	11,266	0,01043	44,2	4,235	63,8	6,118
26	10,460	70	44,750	1,096	10,370	0,01136	0,0	0,000	36,0	3,168
26	14,065	70	45,990	1,049	10,558	0,01108	0,0	0,000	72,0	6,498
26	14,335	70	47,785	1,049	11,452	0,01202	0,0	0,000	0,0	0,000

26	15,215	70	48,955	1,049	11,369	0,01193	0,0	0,000	0,0	0,000
26	15,630	70	48,300	0,988	11,099	0,01096	0,0	0,000	9,0	0,821
26	16,655	70	47,445	0,926	10,912	0,01010	0,0	0,000	18,0	1,781
26	17,740	70	46,915	0,988	10,893	0,01076	0,0	0,000	9,0	0,836
26	18,730	70	47,190	1,049	10,642	0,01117	0,0	0,000	72,0	6,447
26	19,480	70	47,905	0,988	10,912	0,01078	0,0	0,000	9,0	0,835
26	20,205	70	49,685	0,864	11,452	0,00990	2,3	0,227	2,3	0,227
26	22,635	70	49,750	0,926	10,912	0,01010	2,3	0,223	54,0	5,344
26	24,050	70	50,875	1,049	11,452	0,01202	9,0	0,749	0,0	0,000
26	25,070	70	49,645	0,864	11,182	0,00966	9,0	0,931	27,0	2,794
26	25,975	70	49,365	1,049	10,912	0,01145	4,5	0,393	18,0	1,572
26	26,990	70	50,400	1,049	11,099	0,01165	54,0	4,636	0,0	0,000
26	27,630	70	48,625	1,049	10,726	0,01126	0,0	0,000	126,0	11,194
26	29,660	70	49,595	1,235	11,182	0,01381	28,3	2,052	25,7	1,859
26	29,845	70	49,095	0,988	10,912	0,01078	19,1	1,772	183,4	17,016
26	30,315	70	48,730	0,926	10,996	0,01018	0,0	0,000	270,0	26,517
26	30,595	70	48,440	0,974	11,087	0,01080	0,0	0,000	180,0	16,667
26	32,400	70	49,805	0,988	11,452	0,01131	0,0	0,000	0,0	0,000
26	32,860	70	47,260	0,988	11,080	0,01094	0,0	0,000	774,0	70,726
26	34,995	70	47,640	0,988	10,726	0,01059	0,0	0,000	396,0	37,379
26	37,015	70	48,510	0,988	11,099	0,01096	10,0	0,909	28,3	2,581
26	37,965	70	47,710	0,988	10,720	0,01059	0,0	0,000	900,0	84,996
26	38,645	70	48,875	1,049	11,536	0,01211	0,0	0,000	0,0	0,000
26	39,130	70	48,185	0,926	11,350	0,01051	0,0	0,000	666,0	63,369
26	40,135	70	47,615	0,988	10,642	0,01051	0,0	0,000	612,0	58,221
26	41,670	70	48,765	1,296	10,642	0,01380	0,0	0,000	990,0	71,757
26	42,575	70	49,495	0,988	11,099	0,01096	0,0	0,000	18,4	1,682
26	43,430	70	49,075	0,926	10,912	0,01010	108,0	10,688	126,0	12,469
26	43,505	70	49,485	0,988	11,369	0,01123	4,6	0,408	0,0	0,000
26	44,555	70	49,780	1,296	11,182	0,01450	26,7	1,840	45,3	3,127
26	45,855	70	51,305	1,049	11,369	0,01193	0,0	0,000	0,0	0,000
26	47,165	70	52,460	1,049	11,369	0,01193	28,2	2,360	0,0	0,000
26	47,500	70	51,245	1,049	10,829	0,01136	54,0	4,752	72,0	6,336
26	47,660	70	53,825	0,679	11,369	0,00772	45,0	5,829	27,0	3,497
26	48,760	70	53,255	0,988	11,182	0,01105	54,0	4,889	36,0	3,259
26	48,935	70	52,230	1,785	11,575	0,02066	104,0	5,034	40,0	1,936
26	50,330	70	53,680	0,944	11,531	0,01089	13,9	1,272	0,0	0,000
26	51,785	70	54,000	1,028	11,220	0,01154	51,4	4,457	48,6	4,209
26	52,655	70	53,000	0,417	11,361	0,00473	0,0	0,000	15,0	3,170
26	54,354	70	55,075	0,823	11,013	0,00907	0,0	0,000	0,0	0,000
26	55,640	70	53,610	0,880	10,943	0,00963	0,0	0,000	32,0	3,324
26	56,170	70	54,480	0,880	11,250	0,00990	0,0	0,000	18,0	1,819
26	57,565	70	54,181	0,926	10,912	0,01010	18,3	1,806	0,0	0,000
26	57,780	70	53,430	0,926	10,642	0,00985	0,0	0,000	0,0	0,000
26	58,128	70	52,966	0,926	10,893	0,01009	0,0	0,000	17,2	1,700
26	59,771	70	54,887	0,926	10,912	0,01010	0,0	0,000	0,0	0,000
27	0,108	70	53,641	0,926	10,709	0,00992	0,0	0,000	91,0	9,172
27	0,284	70	54,441	0,926	10,996	0,01018	19,6	1,920	0,0	0,000
27	2,742	70	56,028	0,926	10,829	0,01003	18,1	1,805	0,0	0,000
27	3,102	70	55,935	0,926	10,558	0,00978	0,0	0,000	0,0	0,000
1	,	1	,		,	•	,		,	

27											
27	27	4,347	70	57,541	0,926	10,912	0,01010	34,8	3,444	0,0	0,000
27	27	5,371	70	57,599	0,926	10,642	0,00985	35,4	3,587	0,0	0,000
27	27	6,865	71	0,044	0,926	10,912	0,01010	17,2	1,702	0,0	0,000
27	27	7,407	70	59,676	0,926	10,810	0,01001	15,8	1,573	20,0	1,994
27	27	7,900	71	0,278	0,926	10,912	0,01010	37,3	3,688	0,0	0,000
27	27	8,183	71	0,077	0,926	10,726	0,00993	104,5	10,523	0,0	0,000
13,683 71	27	10,226	71	0,156	2,222	10,996	0,02444	0,0	0,000	0,0	0,000
27	27	10,871	71	0,297	0,926	10,893	0,01009	0,0	0,000	64,3	6,371
227 22,182 71 1,926 0,926 11,266 0,01043 51,6 4,946 0,0 0,000	27	13,683	71	0,185	0,926	11,080	0,01026	36,9	3,597	0,0	0,000
27 23,971 71 1,559 0,926 10,996 0,01018 187,1 18,376 248,3 24,381 27 24,993 71 0,563 0,926 10,623 0,00984 0,0 0,000 0,0 0,000 27 25,375 71 2,020 0,926 11,369 0,01053 0,0 0,000 0,0 0,000 28 27 27,366 71 1,885 0,864 11,974 0,01035 0,0 0,000 0,0 0,000 27 27,366 71 1,885 0,864 11,974 0,01035 0,0 0,000 0,0 0,000 27 27,386 71 0,789 0,926 10,224 0,00947 7,1 0,749 4,5 0,474 27 28,527 71 2,022 0,988 11,993 0,01185 0,0 0,000 0,0 0,000 27 29,344 71 2,600 0,926 11,722 0,01086 0,0 0,000 0,0 0,000 27 30,840 71 1,675 0,926 11,369 0,01053 0,0 0,000 0,0 0,000 27 33,343 71 0,853 0,926 11,266 0,01043 0,0 0,000 0,0 0,000 27 33,343 71 0,853 0,926 11,266 0,01043 0,0 0,000 0,0 0,000 27 33,343 71 2,377 0,926 11,366 0,01043 0,0 0,000 728,0 74,460 27 36,826 71 3,010 0,926 11,182 0,01035 0,0 0,000 728,0 74,460 27 36,322 71 2,973 0,926 11,169 0,01010 37,3 3,686 76,3 7,554 27 40,076 71 4,995 0,926 11,1639 0,01078 0,0 0,000 0,0 0,000 27 38,322 71 2,973 0,926 11,1639 0,01078 0,0 0,000 0,0 0,000 27 38,327 71 1,349 0,926 11,182 0,01035 25,5,5 24,675 0,0 0,000 27 38,224 71 10,260 0,926 11,639 0,01078 0,0 0,000 0,0 0,000 28 0,133 71 11,257 0,926 11,639 0,01078 0,0 0,000 0,0 0,000 28 5,321 71 13,941 0,926 10,623 0,0094 0,0 0,000 0,0 0,000 28 5,321 71 13,940 0,926 11,639 0,01078 0,0 0,000 0,0 0,000 28 5,447 71 1,449 0,926 10,623 0,0094 0,0 0,000 0,0 0,000 28 5,321 71 13,941 0,926 10,623 0,0094 0,0 0,000 0,000 0,000 28 3,466 71 13,951 0,926 11,720 0,01037 22,5 2,535 0,0 0,000 28	27	16,894	71	0,879	0,432	11,266	0,00487		3,769	0,0	0,000
27											0,000
27 25,375 71 2,020 0,926 11,369 0,01053 0,0 0,000 0,0 0,000 27 26,148 71 2,488 0,926 11,993 0,01111 0,0 0,000 0,0 0,000 27 27,988 71 0,789 0,926 10,224 0,00947 7,1 0,749 4,5 0,474 27 27,988 71 2,022 0,988 11,993 0,01185 0,0 0,000 0,0 0,000 27 29,344 71 2,600 0,926 11,722 0,01086 0,0 0,000 0,0 0,000 27 30,840 71 1,675 0,926 11,266 0,01033 0,0 0,000 0,0 0,000 27 32,620 71 0,119 0,926 11,566 0,01043 0,0 0,000 0,0 0,000 27 34,369 71 1,749 0,926 11,536 0,01688 0,	27	23,971	71	1,559	0,926	10,996	0,01018	187,1	18,376	248,3	24,381
27 26,148 71 2,488 0,926 11,993 0,01111 0,0 0,000 0,0 0,000 27 27,366 71 1,885 0,864 11,974 0,01035 0,0 0,000 0,0 0,000 27 27,988 71 0,789 0,926 10,224 0,00947 7,1 0,749 4,5 0,474 27 28,527 71 2,022 0,988 11,993 0,01185 0,0 0,000 0,0 0,000 27 29,344 71 2,600 0,926 11,722 0,01086 0,0 0,000 0,0 0,000 27 30,840 71 1,675 0,926 11,266 0,01053 0,0 0,000 0,0 0,000 27 32,260 71 0,119 0,926 11,266 0,01043 0,0 0,000 0,0 0,000 27 34,369 71 1,194 0,926 11,266 0,01043 0,	27	24,993	71	0,563	0,926	10,623	0,00984	0,0	0,000	0,0	0,000
27 27,366 71 1,885 0,864 11,974 0,01035 0,0 0,000 0,0 0,000 27 27,988 71 0,789 0,926 10,224 0,00947 7,1 0,749 4,5 0,474 27 28,527 71 2,020 0,988 11,993 0,01185 0,0 0,000 0,0 0,000 27 30,840 71 1,675 0,926 11,369 0,01053 0,0 0,000 0,0 0,000 27 32,260 71 0,119 0,926 11,266 0,01043 0,0 0,000 0,0 0,000 27 33,343 71 1,749 0,926 11,536 0,01043 0,0 0,000 0,0 0,000 27 34,669 71 1,194 0,926 11,536 0,01043 0,0 0,000 728,0 74,460 27 36,826 71 3,010 0,926 11,266 0,01035 <td< td=""><td></td><td>25,375</td><td></td><td>2,020</td><td>0,926</td><td></td><td>0,01053</td><td>0,0</td><td>0,000</td><td>0,0</td><td>0,000</td></td<>		25,375		2,020	0,926		0,01053	0,0	0,000	0,0	0,000
27 27,988 71 0,789 0,926 10,224 0,00947 7,1 0,749 4,5 0,474 27 28,527 71 2,022 0,988 11,993 0,01185 0,0 0,000 0,0 0,000 27 29,344 71 2,600 0,926 11,722 0,01086 0,0 0,000 0,0 0,000 27 30,840 71 1,675 0,926 11,722 0,01033 0,0 0,000 0,00 0,000 27 32,260 71 0,119 0,926 10,912 0,01010 0,0 0,000 19,3 1,910 27 34,369 71 1,749 0,926 11,566 0,01043 0,0 0,000 0,000 20,000 27 34,369 71 1,749 0,926 11,536 0,01068 0,0 0,000 0,000 27 38,527 71 1,94 0,926 11,536 0,0098 0,0 0,000		26,148	71		0,926		0,01111	0,0	0,000	0,0	0,000
27 28,527 71 2,022 0,988 11,993 0,01185 0,0 0,000 0,0 0,000 27 29,344 71 2,600 0,926 11,722 0,01086 0,0 0,000 0,0 0,000 27 30,840 71 1,675 0,926 11,369 0,01053 0,0 0,000 19,3 1,910 27 32,260 71 0,119 0,926 11,266 0,01043 0,0 0,000 0,0 0,000 27 34,369 71 1,749 0,926 11,266 0,01043 0,0 0,000 0,0 0,000 27 34,369 71 1,749 0,926 11,536 0,01068 0,0 0,000 0,0 0,000 27 35,627 71 1,194 0,926 10,558 0,00978 0,0 0,000 728,0 74,460 27 36,826 71 3,010 0,926 11,266 0,01035 <t< td=""><td></td><td>27,366</td><td></td><td>1,885</td><td></td><td></td><td>0,01035</td><td></td><td>0,000</td><td></td><td>0,000</td></t<>		27,366		1,885			0,01035		0,000		0,000
27 29,344 71 2,600 0,926 11,722 0,01086 0,0 0,000 0,0 0,000 27 30,840 71 1,675 0,926 11,369 0,01053 0,0 0,000 0,0 0,000 27 32,260 71 0,119 0,926 11,266 0,01043 0,0 0,000 0,0 0,000 27 33,343 71 0,853 0,926 11,256 0,01043 0,0 0,000 0,0 0,000 27 34,369 71 1,194 0,926 11,536 0,01068 0,0 0,000 0,00 0,000 27 36,826 71 3,010 0,926 11,266 0,01043 0,0 0,000 58,5 5,608 27 36,826 71 3,010 0,926 11,182 0,01035 0,0 0,000 0,00 0,000 27 38,322 71 4,995 0,926 11,639 0,01078 <td< td=""><td></td><td>-</td><td>71</td><td></td><td></td><td></td><td></td><td>7,1</td><td>0,749</td><td>4,5</td><td></td></td<>		-	71					7,1	0,749	4,5	
27 30,840 71 1,675 0,926 11,369 0,01053 0,0 0,000 0,0 0,000 27 32,260 71 0,119 0,926 10,912 0,01010 0,0 0,000 19,3 1,910 27 33,343 71 0,853 0,926 11,266 0,01043 0,0 0,000 0,0 0,000 27 34,369 71 1,749 0,926 11,536 0,01068 0,0 0,000 728,0 74,460 27 35,627 71 1,194 0,926 10,558 0,00978 0,0 0,000 728,0 74,460 27 36,826 71 3,010 0,926 11,182 0,01035 0,0 0,000 58,5 5,608 27 36,826 71 3,010 0,926 11,812 0,01035 0,0 0,000 0,0 0,000 27 36,826 71 4,995 0,926 11,639 0,01078		28,527					0,01185			0,0	
27 32,260 71 0,119 0,926 10,912 0,01010 0,0 0,000 19,3 1,910 27 33,343 71 0,853 0,926 11,266 0,01043 0,0 0,000 0,0 0,000 27 34,369 71 1,749 0,926 11,536 0,01068 0,0 0,000 0,0 0,000 27 35,627 71 1,194 0,926 11,536 0,01043 0,0 0,000 728,0 74,460 27 36,179 71 2,377 0,926 11,526 0,01035 0,0 0,000 58,5 5,608 27 36,826 71 3,010 0,926 11,182 0,01035 0,0 0,000 0,0 0,000 27 36,826 71 4,995 0,926 11,639 0,01078 0,0 0,000 0,0 0,000 27 44,270 71 6,668 0,926 11,639 0,01078 <								0,0			
27 33,343 71 0,853 0,926 11,266 0,01043 0,0 0,000 0,0 0,000 27 34,369 71 1,749 0,926 11,536 0,01068 0,0 0,000 0,0 0,000 27 35,627 71 1,194 0,926 11,558 0,00978 0,0 0,000 728,0 74,460 27 36,179 71 2,377 0,926 11,266 0,01035 0,0 0,000 0,0 0,000 27 36,826 71 3,010 0,926 11,182 0,01035 0,0 0,000 0,0 0,000 27 36,826 71 3,010 0,926 11,639 0,01078 0,0 0,000 0,0 0,000 27 44,270 71 6,668 0,926 11,639 0,01078 0,0 0,000 0,0 0,000 27 57,358 71 10,343 0,926 10,623 0,0094 <td< td=""><td></td><td></td><td>71</td><td></td><td></td><td></td><td></td><td>0,0</td><td>0,000</td><td></td><td></td></td<>			71					0,0	0,000		
27 34,369 71 1,749 0,926 11,536 0,01068 0,0 0,000 0,000 728,0 74,460 27 35,627 71 1,194 0,926 10,558 0,00978 0,0 0,000 728,0 74,460 27 36,826 71 3,010 0,926 11,182 0,01035 0,0 0,000 0,000 0,000 27 38,322 71 2,973 0,926 11,182 0,01010 37,3 3,686 76,3 7,554 27 40,076 71 4,995 0,926 11,639 0,01078 0,0 0,000 0,000 27 44,270 71 6,668 0,926 11,182 0,01078 0,0 0,000 0,000 27 45,092 71 7,920 0,926 11,639 0,01078 0,0 0,000 0,0 0,000 27 57,358 71 10,343 0,926 10,539 0,0076 0,0		32,260		0,119	0,926	10,912	0,01010	0,0	0,000	19,3	
27 35,627 71 1,194 0,926 10,558 0,00978 0,0 0,000 728,0 74,460 27 36,179 71 2,377 0,926 11,266 0,01043 0,0 0,000 58,5 5,608 27 36,826 71 3,010 0,926 11,182 0,01035 0,0 0,000 0,0 0,000 27 38,322 71 2,973 0,926 10,912 0,01010 37,3 3,686 76,3 7,554 27 40,076 71 4,995 0,926 11,639 0,01078 0,0 0,000 0,00 0,000 27 44,270 71 6,668 0,926 11,639 0,01078 0,0 0,000 0,000 27 45,092 71 7,920 0,926 10,539 0,0076 0,0 0,000 0,0 0,000 27 57,358 71 10,343 0,926 10,623 0,00984 0,0		33,343	71	0,853	0,926	11,266	0,01043	0,0	0,000	0,0	0,000
27 36,179 71 2,377 0,926 11,266 0,01043 0,0 0,000 58,5 5,608 27 36,826 71 3,010 0,926 11,182 0,01035 0,0 0,000 0,000 0,000 27 38,322 71 2,973 0,926 10,912 0,01010 37,3 3,686 76,3 7,554 27 40,076 71 4,995 0,926 11,639 0,01078 0,0 0,000 0,00 0,000 27 44,270 71 6,668 0,926 11,639 0,01078 0,0 0,000 0,00 0,000 27 45,092 71 7,920 0,926 10,539 0,0076 0,0 0,000 0,00 0,00 27 57,358 71 10,343 0,926 10,623 0,00984 0,0 0,000 0,0 0,000 27 59,267 71 11,354 0,926 11,620 0,01076	27	34,369	71	1,749	0,926	11,536	0,01068	0,0	0,000	0,0	0,000
27 36,826 71 3,010 0,926 11,182 0,01035 0,0 0,000 0,0 0,000 27 38,322 71 2,973 0,926 10,912 0,01010 37,3 3,686 76,3 7,554 27 40,076 71 4,995 0,926 11,639 0,01078 0,0 0,000 0,00 0,000 27 44,270 71 6,668 0,926 11,182 0,01035 255,5 24,675 0,0 0,000 27 45,092 71 7,920 0,926 11,639 0,01078 0,0 0,000 0,000 0,000 27 57,358 71 10,343 0,926 10,539 0,00976 0,0 0,000 0,000 0,000 27 58,224 71 10,260 0,926 11,620 0,01076 0,0 0,000 0,000 0,000 28 0,133 71 11,257 0,803 10,558 0,00847			71			10,558	-	0,0		-	
27 38,322 71 2,973 0,926 10,912 0,01010 37,3 3,686 76,3 7,554 27 40,076 71 4,995 0,926 11,639 0,01078 0,0 0,000 0,0 0,000 27 44,270 71 6,668 0,926 11,182 0,01035 255,5 24,675 0,0 0,000 27 45,092 71 7,920 0,926 11,639 0,01078 0,0 0,000 0,000 0,000 27 57,358 71 10,343 0,926 10,639 0,00976 0,0 0,000 0,000 27 58,224 71 10,260 0,926 10,623 0,00984 0,0 0,000 0,000 28 0,133 71 11,557 0,803 10,558 0,00847 0,0 0,000 125,5 14,805 28 0,486 71 12,152 0,247 12,076 0,00288 6,4 2,146	27	-	71	2,377			0,01043	0,0	0,000	58,5	5,608
27 40,076 71 4,995 0,926 11,639 0,01078 0,0 0,000 0,0 0,000 27 44,270 71 6,668 0,926 11,182 0,01035 255,5 24,675 0,0 0,000 27 45,092 71 7,920 0,926 11,639 0,01078 0,0 0,000 0,000 0,000 27 57,358 71 10,260 0,926 10,623 0,0094 0,0 0,000 0,000 0,000 27 58,224 71 10,260 0,926 11,620 0,01076 0,0 0,000 0,000 28 0,133 71 11,257 0,803 10,558 0,00847 0,0 0,000 125,5 14,805 28 0,486 71 12,152 0,247 12,076 0,00298 6,4 2,146 0,0 0,000 28 2,374 71 11,433 0,926 11,722 0,01086 0,0											
27 44,270 71 6,668 0,926 11,182 0,01035 255,5 24,675 0,0 0,000 27 45,092 71 7,920 0,926 11,639 0,01078 0,0 0,000 0,000 0,000 27 57,358 71 10,343 0,926 10,539 0,00976 0,0 0,000 0,000 0,000 27 58,224 71 10,260 0,926 10,623 0,00984 0,0 0,000 0,000 0,000 28 0,133 71 11,257 0,803 10,558 0,00847 0,0 0,000 125,5 14,805 28 0,486 71 12,152 0,247 12,076 0,00298 6,4 2,146 0,0 0,000 28 2,374 71 11,433 0,926 11,722 0,01086 0,0 0,000 0,000 28 5,321 71 14,942 0,926 11,792 0,01035 33,6								37,3		76,3	
27 45,092 71 7,920 0,926 11,639 0,01078 0,0 0,000 0,0 0,000 27 57,358 71 10,343 0,926 10,539 0,00976 0,0 0,000 0,000 0,000 27 58,224 71 10,260 0,926 10,623 0,00984 0,0 0,000 0,00 0,000 28 0,133 71 11,257 0,803 10,558 0,00847 0,0 0,000 125,5 14,805 28 0,486 71 12,152 0,247 12,076 0,00298 6,4 2,146 0,0 0,000 28 2,374 71 11,433 0,926 10,623 0,00984 25,9 2,635 0,0 0,000 28 3,304 71 13,961 0,926 11,722 0,01086 0,0 0,000 0,0 0,000 28 5,321 71 14,942 0,926 10,707 0,00991											
27 57,358 71 10,343 0,926 10,539 0,00976 0,0 0,000 0,0 0,000 27 58,224 71 10,260 0,926 10,623 0,00984 0,0 0,000 0,000 0,000 27 59,267 71 11,354 0,926 11,620 0,01076 0,0 0,000 0,000 0,000 28 0,133 71 11,257 0,803 10,558 0,00847 0,0 0,000 125,5 14,805 28 0,486 71 12,152 0,247 12,076 0,00298 6,4 2,146 0,0 0,000 28 2,374 71 11,433 0,926 10,623 0,00984 25,9 2,635 0,0 0,000 28 3,304 71 13,961 0,926 11,722 0,01086 0,0 0,000 0,000 0,000 28 5,321 71 14,942 0,926 11,793 0,01111										-	
27 58,224 71 10,260 0,926 10,623 0,00984 0,0 0,000 0,0 0,000 27 59,267 71 11,354 0,926 11,620 0,01076 0,0 0,000 0,00 0,000 28 0,133 71 11,257 0,803 10,558 0,00847 0,0 0,000 125,5 14,805 28 0,486 71 12,152 0,247 12,076 0,00298 6,4 2,146 0,0 0,000 28 2,374 71 11,433 0,926 10,623 0,00984 25,9 2,635 0,0 0,000 28 3,304 71 13,961 0,926 11,722 0,01086 0,0 0,000 0,000 0,000 28 5,321 71 14,942 0,926 11,993 0,01111 0,7 0,059 0,0 0,000 28 5,447 71 14,673 0,926 11,182 0,01035											
27 59,267 71 11,354 0,926 11,620 0,01076 0,0 0,000 0,0 0,000 28 0,133 71 11,257 0,803 10,558 0,00847 0,0 0,000 125,5 14,805 28 0,486 71 12,152 0,247 12,076 0,00298 6,4 2,146 0,0 0,000 28 2,374 71 11,433 0,926 10,623 0,00984 25,9 2,635 0,0 0,000 28 3,304 71 13,961 0,926 11,722 0,01086 0,0 0,000 0,000 0,000 28 5,321 71 14,942 0,926 11,993 0,01111 0,7 0,059 0,0 0,000 28 5,447 71 12,447 0,926 10,707 0,00991 0,0 0,000 0,000 28 6,507 71 14,673 0,926 10,707 0,00991 0,0											
28 0,133 71 11,257 0,803 10,558 0,00847 0,0 0,000 125,5 14,805 28 0,486 71 12,152 0,247 12,076 0,00298 6,4 2,146 0,0 0,000 28 2,374 71 11,433 0,926 10,623 0,00984 25,9 2,635 0,0 0,000 28 3,304 71 13,961 0,926 11,722 0,01086 0,0 0,000 0,000 0,000 28 5,321 71 14,942 0,926 11,993 0,01111 0,7 0,059 0,0 0,000 28 5,447 71 12,447 0,926 10,707 0,00991 0,0 0,000 0,0 0,000 28 6,507 71 14,673 0,926 11,782 0,01035 33,6 3,246 0,0 0,000 28 8,439 71 13,393 0,926 10,707 0,00991											
28 0,486 71 12,152 0,247 12,076 0,00298 6,4 2,146 0,0 0,000 28 2,374 71 11,433 0,926 10,623 0,00984 25,9 2,635 0,0 0,000 28 3,304 71 13,961 0,926 11,722 0,01086 0,0 0,000 0,0 0,000 28 5,321 71 14,942 0,926 11,793 0,01111 0,7 0,059 0,0 0,000 28 5,447 71 12,447 0,926 10,707 0,00991 0,0 0,000 0,0 0,000 28 6,507 71 14,673 0,926 11,182 0,01035 33,6 3,246 0,0 0,000 28 8,439 71 13,393 0,926 10,707 0,00991 0,0 0,000 0,000 28 9,446 71 14,148 0,926 10,707 0,00991 0,0					,						
28 2,374 71 11,433 0,926 10,623 0,00984 25,9 2,635 0,0 0,000 28 3,304 71 13,961 0,926 11,722 0,01086 0,0 0,000 0,000 0,000 28 5,321 71 14,942 0,926 11,993 0,01111 0,7 0,059 0,0 0,000 28 5,447 71 12,447 0,926 10,707 0,00991 0,0 0,000 0,000 0,000 28 6,507 71 14,673 0,926 11,182 0,01035 33,6 3,246 0,0 0,000 28 8,439 71 13,393 0,926 10,707 0,00991 0,0 0,000 0,000 28 9,446 71 14,148 0,926 10,707 0,00991 0,0 0,000 5,5 0,555 28 9,530 71 16,310 0,185 11,639 0,00216 0,0											
28 3,304 71 13,961 0,926 11,722 0,01086 0,0 0,000 0,0 0,000 28 5,321 71 14,942 0,926 11,993 0,01111 0,7 0,059 0,0 0,000 28 5,447 71 12,447 0,926 10,707 0,00991 0,0 0,000 0,000 0,000 28 6,507 71 14,673 0,926 11,182 0,01035 33,6 3,246 0,0 0,000 28 8,439 71 13,393 0,926 10,707 0,00991 0,0 0,000 0,000 28 9,446 71 14,148 0,926 10,707 0,00991 0,0 0,000 5,5 0,555 28 9,530 71 16,310 0,185 11,639 0,00216 0,0 0,000 0,00 0,000 28 10,993 71 15,577 0,926 11,444 0,01060 7,5 <											
28 5,321 71 14,942 0,926 11,993 0,01111 0,7 0,059 0,0 0,000 28 5,447 71 12,447 0,926 10,707 0,00991 0,0 0,000 0,000 0,000 28 6,507 71 14,673 0,926 11,182 0,01035 33,6 3,246 0,0 0,000 28 8,439 71 13,393 0,926 10,707 0,00991 0,0 0,000 0,000 0,000 28 9,446 71 14,148 0,926 10,707 0,00991 0,0 0,000 5,5 0,555 28 9,530 71 16,310 0,185 11,639 0,00216 0,0 0,000 0,000 0,000 28 10,993 71 15,991 0,926 11,444 0,01060 7,5 0,707 0,0 0,000 28 13,030 71 15,577 0,926 11,929 0,01105											
28 5,447 71 12,447 0,926 10,707 0,00991 0,0 0,000 0,0 0,000 28 6,507 71 14,673 0,926 11,182 0,01035 33,6 3,246 0,0 0,000 28 8,439 71 13,393 0,926 10,707 0,00991 0,0 0,000 0,000 0,000 28 9,446 71 14,148 0,926 10,707 0,00991 0,0 0,000 5,5 0,555 28 9,530 71 16,310 0,185 11,639 0,00216 0,0 0,000 0,000 0,000 28 10,993 71 15,991 0,926 11,444 0,01060 7,5 0,707 0,0 0,000 28 13,030 71 15,577 0,926 11,929 0,01105 25,7 2,328 0,0 0,000 28 14,420 71 15,350 0,926 11,201 0,01037											0,000
28 6,507 71 14,673 0,926 11,182 0,01035 33,6 3,246 0,0 0,000 28 8,439 71 13,393 0,926 10,707 0,00991 0,0 0,000 0,0 0,000 28 9,446 71 14,148 0,926 10,707 0,00991 0,0 0,000 5,5 0,555 28 9,530 71 16,310 0,185 11,639 0,00216 0,0 0,000 0,000 0,000 28 10,993 71 15,991 0,926 11,444 0,01060 7,5 0,707 0,0 0,000 28 13,030 71 15,577 0,926 11,929 0,01105 25,7 2,328 0,0 0,000 28 14,420 71 15,350 0,926 11,201 0,01037 227,5 21,934 0,0 0,000 28 28,575 71 19,050 0,926 10,977 0,01017											
28 8,439 71 13,393 0,926 10,707 0,00991 0,0 0,000 0,0 0,000 28 9,446 71 14,148 0,926 10,707 0,00991 0,0 0,000 5,5 0,555 28 9,530 71 16,310 0,185 11,639 0,00216 0,0 0,000 0,000 0,000 28 10,993 71 15,991 0,926 11,444 0,01060 7,5 0,707 0,0 0,000 28 13,030 71 15,577 0,926 11,929 0,01105 25,7 2,328 0,0 0,000 28 14,420 71 15,350 0,926 11,201 0,01037 227,5 21,934 0,0 0,000 28 28,575 71 19,050 0,926 10,977 0,01017 72,6 7,142 0,0 0,000 28 30,190 71 19,365 0,926 10,977 0,01017											
28 9,446 71 14,148 0,926 10,707 0,00991 0,0 0,000 5,5 0,555 28 9,530 71 16,310 0,185 11,639 0,00216 0,0 0,000 0,000 0,000 28 10,993 71 15,991 0,926 11,444 0,01060 7,5 0,707 0,0 0,000 28 13,030 71 15,577 0,926 11,929 0,01105 25,7 2,328 0,0 0,000 28 14,420 71 15,350 0,926 11,201 0,01037 227,5 21,934 0,0 0,000 28 28,575 71 19,050 0,926 10,977 0,01017 72,6 7,142 0,0 0,000 28 30,190 71 19,365 0,926 10,977 0,01017 218,5 21,491 0,0 0,000 28 34,660 71 21,560 0,926 11,220 0,01039 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td>							,				
28 9,530 71 16,310 0,185 11,639 0,00216 0,0 0,000 0,000 0,000 28 10,993 71 15,991 0,926 11,444 0,01060 7,5 0,707 0,0 0,000 28 13,030 71 15,577 0,926 11,929 0,01105 25,7 2,328 0,0 0,000 28 14,420 71 15,350 0,926 11,201 0,01037 227,5 21,934 0,0 0,000 28 28,575 71 19,050 0,926 10,977 0,01017 72,6 7,142 0,0 0,000 28 30,190 71 19,365 0,926 10,977 0,01017 218,5 21,491 0,0 0,000 28 34,660 71 21,560 0,926 11,220 0,01039 2,3 0,218 0,0 0,000											
28 10,993 71 15,991 0,926 11,444 0,01060 7,5 0,707 0,0 0,000 28 13,030 71 15,577 0,926 11,929 0,01105 25,7 2,328 0,0 0,000 28 14,420 71 15,350 0,926 11,201 0,01037 227,5 21,934 0,0 0,000 28 28,575 71 19,050 0,926 10,977 0,01017 72,6 7,142 0,0 0,000 28 30,190 71 19,365 0,926 10,977 0,01017 218,5 21,491 0,0 0,000 28 34,660 71 21,560 0,926 11,220 0,01039 2,3 0,218 0,0 0,000											
28 13,030 71 15,577 0,926 11,929 0,01105 25,7 2,328 0,0 0,000 28 14,420 71 15,350 0,926 11,201 0,01037 227,5 21,934 0,0 0,000 28 28,575 71 19,050 0,926 10,977 0,01017 72,6 7,142 0,0 0,000 28 30,190 71 19,365 0,926 10,977 0,01017 218,5 21,491 0,0 0,000 28 34,660 71 21,560 0,926 11,220 0,01039 2,3 0,218 0,0 0,000											
28 14,420 71 15,350 0,926 11,201 0,01037 227,5 21,934 0,0 0,000 28 28,575 71 19,050 0,926 10,977 0,01017 72,6 7,142 0,0 0,000 28 30,190 71 19,365 0,926 10,977 0,01017 218,5 21,491 0,0 0,000 28 34,660 71 21,560 0,926 11,220 0,01039 2,3 0,218 0,0 0,000											
28 28,575 71 19,050 0,926 10,977 0,01017 72,6 7,142 0,0 0,000 28 30,190 71 19,365 0,926 10,977 0,01017 218,5 21,491 0,0 0,000 28 34,660 71 21,560 0,926 11,220 0,01039 2,3 0,218 0,0 0,000											
28 30,190 71 19,365 0,926 10,977 0,01017 218,5 21,491 0,0 0,000 28 34,660 71 21,560 0,926 11,220 0,01039 2,3 0,218 0,0 0,000											
28 34,660 71 21,560 0,926 11,220 0,01039 2,3 0,218 0,0 0,000											
28 36,280 71 21,575 0,926 11,444 0,01060 15,4 1,452 0,0 0,000											
	28	36,280	71	21,575	0,926	11,444	0,01060	15,4	1,452	0,0	0,000

28 39,800 71 21,455 0,494 10,959 0,00541 13,1 2,424 0,0 0,000 28 40,810 71 22,410 0,926 10,959 0,01015 178,8 17,619 0,0 0,000 28 41,810 71 26,200 0,926 11,481 0,01063 0,0 0,000 0,0 0,000 28 42,905 71 24,045 0,926 11,183 0,01036 78,6 7,591 0,0 0,000 28 43,755 71 25,210 0,926 10,959 0,01015 146,9 14,473 0,0 0,000 28 45,785 71 24,170 0,926 11,164 0,01034 18,8 1,822 0,0 0,000 28 46,860 71 28,549 0,926 11,687 0,01082 7,7 0,708 0,0 0,000 28 47,510 71 28,515 1,778 10,400 0,0184 <th></th>											
28 40,810 71 22,410 0,926 10,959 0,01015 178,8 17,619 0,0 0,000 28 41,810 71 26,200 0,926 11,481 0,0103 0,0 0,000 0,0 0,000 28 43,755 71 25,210 0,926 10,959 0,01015 146,9 14,473 0,0 0,000 28 45,785 71 24,170 0,926 11,646 0,0103 18,8 1,822 0,0 0,000 28 46,640 71 28,590 0,926 11,687 0,01082 7,7 0,708 0,0 0,000 28 47,510 71 29,610 0,926 11,687 0,01082 7,7 0,708 0,0 0,000 28 47,510 71 28,515 1,778 10,400 0,0182 54,0 4,990 0,0 0,000 28 46,255 71 30,880 0,926 11,687 0,01082	28	38,150	71	22,360	0,926	11,444	0,01060	0,0	0,000	59,7	5,635
28	28	39,800	71	21,455	0,494	10,959	0,00541	13,1	2,424	0,0	0,000
28	28	40,810	71	22,410	0,926	10,959	0,01015	178,8	17,619	0,0	0,000
28 43,755 71 25,210 0,926 10,959 0,01015 146,91 14,473 0,0 0,000 28 46,740 71 25,345 0,926 11,164 0,01034 18,8 1,822 0,0 0,000 28 46,740 71 25,345 0,926 11,687 0,01082 7,7 0,708 0,0 0,000 28 46,860 71 28,590 0,926 11,705 0,01084 0,0 0,000 0,000 28 48,205 71 28,515 1,778 10,400 0,01849 38,5 2,082 0,0 0,000 28 49,140 71 30,880 0,926 11,697 0,01015 84,5 8,324 0,0 0,000 28 50,675 71 31,355 0,926 11,464 0,0106 21,6 2,338 0,0 0,000 28 56,105 71 33,610 0,926 11,463 0,01061 0,5	28	41,810	71	26,200	0,926	11,481	0,01063	0,0	0,000	0,0	0,000
28 45,785 71 24,170 0,926 11,164 0,01034 18,8 1,822 0,0 0,000 28 46,740 71 25,345 0,926 10,940 0,01031 55,3 5,459 0,926 0,000 28 46,860 71 28,850 0,926 11,705 0,01084 0,0 0,000 0,0 0,000 28 47,510 71 29,610 0,926 11,687 0,01082 5,40 4,990 0,0 0,00 28 49,215 71 29,245 0,926 11,687 0,01082 54,0 4,990 0,0 0,00 28 51,675 71 31,835 0,926 11,444 0,01060 21,6 2,038 0,0 0,00 28 51,835 71 31,835 0,926 11,444 0,01061 0,5 0,047 0,0 0,000 28 56,105 71 33,610 0,926 11,463 0,01061	28	42,905	71	24,045	0,926	11,183	0,01036	78,6	7,591	0,0	0,000
28 46,740 71 25,345 0,926 10,940 0,01013 55,3 5,459 0,0 0,000 28 46,860 71 28,590 0,926 11,687 0,01082 7,7 0,708 0,0 0,000 0,0 0,000 28 48,205 71 28,515 1,778 10,400 0,01849 38,5 2,082 0,0 0,000 28 49,140 71 30,880 0,926 11,687 0,01082 54,0 4,990 0,0 0,000 28 49,215 71 29,245 0,926 11,687 0,0105 84,5 8,324 0,0 0,000 28 50,675 71 31,835 0,926 11,463 0,0106 21,6 2,038 0,0 0,0 0,000 28 56,105 71 33,631 0,926 11,464 0,0106 15 0,047 0,0 0,000 29 6,215 71 34,035 0	28	43,755	71	25,210	0,926	10,959	0,01015	146,9	14,473	0,0	0,000
28 46,860 71 28,590 0,926 11,687 0,01082 7,7 0,708 0,0 0,000 28 47,510 71 29,610 0,926 11,705 0,01084 0,0 0,000 0,000 0,000 28 49,140 71 30,880 0,926 11,687 0,01082 54,0 4,990 0,0 0,000 28 49,215 71 29,245 0,926 10,959 0,01015 84,5 8,324 0,0 0,000 28 50,675 71 31,835 0,926 11,444 0,0106 21,6 2,038 0,0 0,000 28 56,105 71 32,700 0,926 11,407 0,01061 0,5 0,047 0,0 0,000 29 5,510 71 33,610 0,926 11,407 0,01061 0,5 0,047 0,0 0,000 29 8,995 71 33,610 0,926 11,407 0,01052	28	45,785	71	24,170	0,926	11,164	0,01034	18,8	1,822	0,0	0,000
28 47,510 71 29,610 0,926 11,705 0,01084 0,0 0,000 0,00 0,000 28 48,205 71 28,515 1,778 10,400 0,01849 38,5 2,082 0,0 0,000 28 49,140 71 30,880 0,926 11,687 0,01082 54,0 4,990 0,0 0,000 28 50,675 71 31,835 0,926 11,687 0,01015 84,5 8,324 0,0 0,000 28 50,675 71 31,835 0,926 11,444 0,01060 21,6 2,038 0,0 0,000 28 56,105 71 32,700 0,926 11,447 0,01056 169,7 16,069 0,0 0,000 29 5,510 71 34,035 0,926 11,477 0,0107 275,1 27,060 0,0 0,000 29 9,230 71 34,445 0,926 10,977 0,0107	28	46,740	71	25,345	0,926	10,940	0,01013	55,3	5,459	0,0	0,000
28 48,205 71 28,515 1,778 10,400 0,01849 38,5 2,082 0,0 0,000 28 49,140 71 30,880 0,926 11,687 0,01082 54,0 4,990 0,0 0,000 28 50,675 71 31,835 0,926 11,944 0,01060 21,6 2,038 0,0 0,000 28 51,835 71 31,920 1,042 12,100 0,01261 36,5 2,897 0,0 0,000 28 56,105 71 33,610 0,926 11,407 0,01061 0,5 0,047 0,0 0,000 29 5,510 71 33,610 0,926 10,977 0,0107 275,1 27,060 0,0 0,000 29 5,230 71 34,343 0,926 10,977 0,0107 275,1 27,060 0,0 0,000 29 1,959 71 34,489 0,926 11,277 0,0107	28	46,860	71	28,590	0,926	11,687	0,01082	7,7	0,708	0,0	0,000
28 49,140 71 30,880 0,926 11,687 0,01082 54,0 4,990 0,0 0,000 28 49,215 71 29,245 0,926 10,959 0,01015 84,5 8,324 0,0 0,000 28 50,675 71 31,835 0,926 11,444 0,01060 21,6 2,038 0,0 0,000 28 56,105 71 31,920 1,042 12,100 0,01261 36,5 2,897 0,0 0,000 29 5,510 71 33,710 0,926 11,443 0,01061 0,5 0,047 0,0 0,000 29 5,510 71 33,715 1,142 10,733 0,0127 175,1 27,060 0,0 0,000 29 9,230 71 34,445 0,926 10,977 0,0107 480,8 47,299 0,0 0,000 29 11,640 71 34,525 0,926 11,4125 0,0105	28	47,510	71	29,610	0,926	11,705	0,01084	0,0	0,000	0,0	0,000
28 49,215 71 29,245 0,926 10,959 0,01015 84,5 8,324 0,0 0,000 28 50,675 71 31,835 0,926 11,444 0,01060 21,6 2,038 0,0 0,000 28 56,105 71 32,700 0,926 11,463 0,0161 0,5 0,947 0,0 0,000 29 5,510 71 33,610 0,926 11,407 0,01056 169,7 16,069 0,0 0,000 29 5,510 71 34,035 0,926 10,977 0,01017 275,1 27,060 0,0 0,000 29 8,995 71 34,445 0,926 10,977 0,01017 275,8 14,337 0,0 0,000 29 9,230 71 34,690 1,049 11,668 0,01225 237,6 19,406 0,0 0,000 29 13,580 71 34,525 0,926 11,425 0,0108 <td>28</td> <td>48,205</td> <td>71</td> <td>28,515</td> <td>1,778</td> <td>10,400</td> <td>0,01849</td> <td>38,5</td> <td></td> <td>0,0</td> <td>0,000</td>	28	48,205	71	28,515	1,778	10,400	0,01849	38,5		0,0	0,000
28 50,675 71 31,835 0,926 11,444 0,01060 21,6 2,038 0,0 0,000 28 51,835 71 31,920 1,042 12,100 0,01261 36,5 2,897 0,0 0,000 28 56,105 71 33,610 0,926 11,467 0,01056 169,77 16,069 0,0 0,000 29 5,510 71 34,035 0,926 10,977 0,01056 169,77 16,069 0,0 0,000 29 6,215 71 34,035 0,926 10,977 0,01017 275,1 27,060 0,0 0,000 29 9,230 71 34,445 0,926 11,977 0,01017 480,8 47,299 0,0 0,000 29 1,540 71 34,690 1,041 11,668 0,01258 359,5 33,978 0,0 0,000 29 13,580 71 35,970 0,926 11,463 0,01	28	49,140	71	30,880	0,926	11,687	0,01082	54,0	4,990	0,0	0,000
28 51,835 71 31,920 1,042 12,100 0,01261 36,5 2,897 0,0 0,000 28 56,105 71 32,700 0,926 11,463 0,01061 0,5 0,047 0,0 0,000 29 5,510 71 33,610 0,926 11,407 0,01056 169,7 16,069 0,0 0,000 29 5,510 71 34,035 0,926 10,977 0,0107 275,1 12,060 0,0 0,000 29 8,995 71 33,715 1,142 10,733 0,0126 175,8 14,337 0,0 0,000 29 9,230 71 34,485 0,926 11,677 0,01017 480,8 47,299 0,0 0,000 29 13,580 71 35,970 0,926 11,425 0,01025 33,978 0,0 0,000 29 14,175 71 35,780 0,951 11,472 0,01037 36,8 <td>28</td> <td>49,215</td> <td>71</td> <td>29,245</td> <td>0,926</td> <td>10,959</td> <td>0,01015</td> <td>84,5</td> <td>8,324</td> <td>0,0</td> <td>0,000</td>	28	49,215	71	29,245	0,926	10,959	0,01015	84,5	8,324	0,0	0,000
28 56,105 71 32,700 0,926 11,463 0,01061 0,5 0,047 0,0 0,000 29 5,510 71 33,610 0,926 11,407 0,01056 169,7 16,069 0,0 0,000 29 8,995 71 34,035 0,926 10,977 0,01017 275,1 27,060 0,0 0,000 29 9,930 71 34,445 0,926 10,977 0,01017 480,8 47,299 0,0 0,000 29 9,995 71 34,690 1,049 11,668 0,01225 237,6 19,406 0,0 0,000 29 11,640 71 34,525 0,926 11,425 0,01088 359,5 33,978 0,0 0,00 29 11,540 71 34,790 0,926 11,201 0,0103 32,8 3,348 131,4 12,669 29 17,711 71 35,428 0,926 11,201 0,1037		50,675	71	31,835	0,926	11,444	0,01060	21,6	2,038	0,0	0,000
29 5,510 71 33,610 0,926 11,407 0,01056 169,7 16,069 0,0 0,000 29 6,215 71 34,035 0,926 10,977 0,01017 275,1 27,060 0,0 0,000 29 8,995 71 33,715 1,142 10,733 0,01226 175,8 14,337 0,0 0,000 29 9,230 71 34,445 0,926 10,977 0,01017 480,8 47,299 0,0 0,000 29 9,995 71 34,690 1,049 11,668 0,01225 237,6 19,406 0,0 0,000 29 11,640 71 34,525 0,926 11,463 0,01061 32,2 3,036 0,0 0,000 29 13,580 71 35,770 0,926 13,199 0,01222 0,0 0,000 0,000 29 14,175 71 33,780 0,926 11,201 0,01037 36,8	28	51,835	71	31,920	1,042	12,100	0,01261	36,5	2,897	0,0	0,000
29 6,215 71 34,035 0,926 10,977 0,01017 275,1 27,060 0,0 0,000 29 8,995 71 33,715 1,142 10,733 0,01226 175,8 14,337 0,0 0,000 29 9,230 71 34,445 0,926 10,977 0,01017 480,8 47,299 0,0 0,000 29 11,640 71 34,690 1,049 11,668 0,01255 33,978 0,0 0,000 29 11,640 71 34,752 0,926 11,425 0,01058 359,5 33,978 0,0 0,000 29 13,580 71 35,970 0,926 11,463 0,01061 32,2 3,036 0,0 0,000 29 14,175 71 33,775 0,926 13,199 0,01222 0,0 0,000 0,0 0,000 29 14,711 71 35,387 0,926 11,401 0,01037 36,8	28	56,105	71	32,700	0,926	11,463	0,01061	0,5	0,047	0,0	0,000
29 8,995 71 33,715 1,142 10,733 0,01226 175,8 14,337 0,0 0,000 29 9,230 71 34,445 0,926 10,977 0,01017 480,8 47,299 0,0 0,000 29 9,995 71 34,690 1,049 11,668 0,01225 237,6 19,406 0,0 0,000 29 11,640 71 34,525 0,926 11,463 0,01061 32,2 3,036 0,0 0,000 29 13,580 71 35,970 0,926 11,463 0,01061 32,2 3,036 0,0 0,000 29 14,175 71 33,790 0,926 11,201 0,01027 0,0 0,000 0,00 0,00 29 15,825 71 34,790 0,926 11,201 0,01037 36,8 3,548 131,4 12,669 29 17,711 71 35,482 0,926 11,201 0,0103<		5,510	71	33,610	0,926	11,407	0,01056	169,7	16,069	0,0	0,000
29 9,230 71 34,445 0,926 10,977 0,01017 480,8 47,299 0,0 0,000 29 9,995 71 34,690 1,049 11,668 0,01225 237,6 19,406 0,0 0,000 29 11,640 71 34,525 0,926 11,425 0,01061 32,2 3,036 0,0 0,000 29 14,175 71 35,970 0,926 11,401 0,01037 36,8 3,548 131,4 12,669 29 17,711 71 35,870 0,926 11,201 0,01037 36,8 3,548 131,4 12,669 29 17,711 71 35,870 0,951 11,472 0,01037 36,8 3,548 131,4 12,669 29 17,711 71 35,428 0,926 11,407 0,01056 61,1 5,784 42,4 4,013 29 19,320 71 37,045 0,880 11,225	29	6,215	71	34,035	0,926	10,977	0,01017	275,1	27,060	0,0	0,000
29 9,995 71 34,690 1,049 11,668 0,01225 237,6 19,406 0,0 0,000 29 11,640 71 34,525 0,926 11,425 0,01058 359,5 33,978 0,0 0,000 29 13,580 71 35,970 0,926 11,463 0,01061 32,2 3,036 0,0 0,000 29 14,175 71 33,775 0,926 13,199 0,0122 0,0 0,000 0,000 0,000 29 15,825 71 34,790 0,926 11,201 0,01037 36,8 3,548 131,4 12,669 29 17,711 71 35,428 0,926 11,407 0,01056 61,1 5,784 42,4 4,013 29 19,320 71 37,045 0,880 11,225 0,00987 12,2 1,240 49,0 49,59 29 19,550 71 32,220 0,926 10,940 0,01	29	8,995	71	33,715	1,142	10,733	-	175,8	14,337	0,0	0,000
29 11,640 71 34,525 0,926 11,425 0,01058 359,5 33,978 0,0 0,000 29 13,580 71 35,970 0,926 11,463 0,01061 32,2 3,036 0,0 0,000 29 14,175 71 33,775 0,926 13,199 0,01222 0,0 0,000 0,00 0,000 29 15,825 71 34,790 0,926 11,201 0,01037 36,8 3,548 131,4 12,669 29 17,711 71 35,870 0,951 11,472 0,01091 224,2 20,555 0,000 29 18,370 71 35,428 0,926 11,407 0,01056 61,1 5,784 42,4 40,13 29 19,320 71 37,045 0,880 11,225 0,00987 12,2 1,240 49,0 4,959 29 19,550 71 35,212 0,926 10,940 0,0103	29	9,230	71	34,445	0,926	10,977	0,01017	•	47,299	0,0	0,000
29 13,580 71 35,970 0,926 11,463 0,01061 32,2 3,036 0,0 0,000 29 14,175 71 33,775 0,926 13,199 0,01222 0,0 0,000 0,0 0,000 29 15,825 71 34,790 0,926 11,201 0,01037 36,8 3,548 131,4 12,669 29 17,711 71 35,870 0,951 11,472 0,01091 224,2 20,555 0,0 0,000 29 18,370 71 35,428 0,926 11,407 0,01056 61,1 5,784 42,4 40,13 29 19,550 71 32,125 0,938 10,926 0,00087 12,2 1,240 49,0 4,959 29 19,550 71 32,125 0,938 10,926 0,01025 0,0 0,000 0,0 0,000 29 20,960 71 35,035 1,102 11,682 0,0128<		9,995	71	34,690	1,049	11,668	0,01225	237,6	19,406	0,0	0,000
29 14,175 71 33,775 0,926 13,199 0,01222 0,0 0,000 0,0 0,000 29 15,825 71 34,790 0,926 11,201 0,01037 36,8 3,548 131,4 12,669 29 17,711 71 35,870 0,951 11,472 0,01091 224,2 20,555 0,0 0,000 29 18,370 71 35,428 0,926 11,407 0,01056 61,1 5,784 42,4 4,013 29 19,320 71 37,045 0,880 11,225 0,00987 12,2 1,240 49,0 4,959 29 19,550 71 32,125 0,938 10,926 0,01025 0,0 0,000 0,0 0,00 29 20,200 71 35,035 1,102 11,682 0,01287 198,0 15,381 0,0 0,000 29 21,215 71 25,400 0,926 10,940 0,0117		11,640	71	34,525	0,926	11,425	0,01058	359,5	33,978	0,0	0,000
29 15,825 71 34,790 0,926 11,201 0,01037 36,8 3,548 131,4 12,669 29 17,711 71 35,870 0,951 11,472 0,01091 224,2 20,555 0,0 0,000 29 18,370 71 35,428 0,926 11,407 0,01056 61,1 5,784 42,4 4,013 29 19,320 71 37,045 0,880 11,225 0,00987 12,2 1,240 49,0 4,959 29 19,550 71 32,125 0,938 10,926 0,01025 0,0 0,000 0,0 0,000 29 20,200 71 35,035 1,102 11,682 0,01013 21,7 2,140 0,0 0,000 29 21,215 71 25,040 0,926 10,942 0,01011 108,5 10,729 0,0 0,000 29 21,855 71 28,480 1,049 11,164 0,01			71	35,970	0,926		0,01061	32,2	3,036	0,0	0,000
29 17,711 71 35,870 0,951 11,472 0,01091 224,2 20,555 0,0 0,000 29 18,370 71 35,428 0,926 11,407 0,01056 61,1 5,784 42,4 4,013 29 19,320 71 37,045 0,880 11,225 0,00987 12,2 1,240 49,0 4,959 29 19,550 71 32,125 0,938 10,926 0,01025 0,0 0,000 0,0 0,000 29 20,200 71 32,220 0,926 10,940 0,01013 21,7 2,140 0,0 0,000 29 20,960 71 35,035 1,102 11,682 0,01287 198,0 15,381 0,0 0,000 29 21,215 71 25,040 0,926 10,922 0,01011 108,5 10,729 0,0 0,000 29 22,345 71 34,055 0,926 10,940 0,010		14,175	71	33,775			0,01222				0,000
29 18,370 71 35,428 0,926 11,407 0,01056 61,1 5,784 42,4 4,013 29 19,320 71 37,045 0,880 11,225 0,00987 12,2 1,240 49,0 4,959 29 19,550 71 32,125 0,938 10,926 0,01025 0,0 0,000 0,0 0,000 29 20,200 71 32,220 0,926 10,940 0,01013 21,7 2,140 0,0 0,000 29 20,960 71 35,035 1,102 11,682 0,01287 198,0 15,381 0,0 0,000 29 21,215 71 25,040 0,926 10,922 0,01011 108,5 10,729 0,0 0,000 29 21,855 71 28,480 1,049 11,164 0,01172 514,8 43,938 0,0 0,000 29 22,345 71 30,355 0,926 10,940 0,010		15,825	71	34,790	0,926	11,201	0,01037	36,8	3,548	131,4	12,669
29 19,320 71 37,045 0,880 11,225 0,00987 12,2 1,240 49,0 4,959 29 19,550 71 32,125 0,938 10,926 0,01025 0,0 0,000 0,0 0,000 29 20,200 71 32,220 0,926 10,940 0,01013 21,7 2,140 0,0 0,000 29 20,960 71 35,035 1,102 11,682 0,01287 198,0 15,381 0,0 0,000 29 21,215 71 25,040 0,926 10,922 0,01011 108,5 10,729 0,0 0,000 29 21,855 71 28,480 1,049 11,164 0,01172 514,8 43,938 0,0 0,000 29 22,290 71 34,055 0,926 10,940 0,01013 194,2 19,170 0,0 0,000 29 22,345 71 30,235 0,972 11,421 0,01				-					-	,	0,000
29 19,550 71 32,125 0,938 10,926 0,01025 0,0 0,000 0,0 0,000 29 20,200 71 32,220 0,926 10,940 0,01013 21,7 2,140 0,0 0,000 29 20,960 71 35,035 1,102 11,682 0,01287 198,0 15,381 0,0 0,000 29 21,215 71 25,040 0,926 10,922 0,01011 108,5 10,729 0,0 0,000 29 21,855 71 28,480 1,049 11,164 0,01172 514,8 43,938 0,0 0,000 29 22,290 71 34,055 0,926 10,940 0,01013 194,2 19,170 0,0 0,000 29 22,345 71 30,235 0,972 11,421 0,01110 10,8 0,971 0,0 0,000 29 22,580 71 24,590 0,938 11,150 0,010									-		4,013
29 20,200 71 32,220 0,926 10,940 0,01013 21,7 2,140 0,0 0,000 29 20,960 71 35,035 1,102 11,682 0,01287 198,0 15,381 0,0 0,000 29 21,215 71 25,040 0,926 10,922 0,01011 108,5 10,729 0,0 0,000 29 21,855 71 28,480 1,049 11,164 0,01172 514,8 43,938 0,0 0,000 29 22,290 71 34,055 0,926 10,940 0,01013 194,2 19,170 0,0 0,000 29 22,345 71 30,235 0,972 11,421 0,01110 10,8 0,971 0,0 0,000 29 22,580 71 28,940 0,926 11,407 0,01056 259,0 24,523 0,0 0,000 29 23,700 71 27,140 0,926 11,183 0,											
29 20,960 71 35,035 1,102 11,682 0,01287 198,0 15,381 0,0 0,000 29 21,215 71 25,040 0,926 10,922 0,01011 108,5 10,729 0,0 0,000 29 21,855 71 28,480 1,049 11,164 0,01172 514,8 43,938 0,0 0,000 29 22,290 71 34,055 0,926 10,940 0,01013 194,2 19,170 0,0 0,000 29 22,345 71 30,235 0,972 11,421 0,01110 10,8 0,971 0,0 0,000 29 22,580 71 28,940 0,926 11,407 0,01056 259,0 24,523 0,0 0,000 29 23,025 71 24,590 0,938 11,150 0,01046 259,7 24,822 0,0 0,000 29 23,700 71 27,140 0,926 11,407							,				
29 21,215 71 25,040 0,926 10,922 0,01011 108,5 10,729 0,0 0,000 29 21,855 71 28,480 1,049 11,164 0,01172 514,8 43,938 0,0 0,000 29 22,290 71 34,055 0,926 10,940 0,01013 194,2 19,170 0,0 0,000 29 22,345 71 30,235 0,972 11,421 0,01110 10,8 0,971 0,0 0,000 29 22,580 71 28,940 0,926 11,407 0,01056 259,0 24,523 0,0 0,000 29 23,025 71 24,590 0,938 11,150 0,01046 259,7 24,822 0,0 0,000 29 23,700 71 27,140 0,926 11,183 0,01036 265,0 25,591 0,0 0,000 29 23,800 71 23,470 0,926 11,407				-					-		
29 21,855 71 28,480 1,049 11,164 0,01172 514,8 43,938 0,0 0,000 29 22,290 71 34,055 0,926 10,940 0,01013 194,2 19,170 0,0 0,000 29 22,345 71 30,235 0,972 11,421 0,0110 10,8 0,971 0,0 0,000 29 22,580 71 28,940 0,926 11,407 0,01056 259,0 24,523 0,0 0,000 29 23,025 71 24,590 0,938 11,150 0,01046 259,7 24,822 0,0 0,000 29 23,700 71 27,140 0,926 11,183 0,01036 265,0 25,591 0,0 0,000 29 23,780 71 31,435 0,926 11,407 0,01056 153,7 14,553 0,0 0,000 29 23,800 71 23,470 0,926 11,407 0											
29 22,290 71 34,055 0,926 10,940 0,01013 194,2 19,170 0,0 0,000 29 22,345 71 30,235 0,972 11,421 0,01110 10,8 0,971 0,0 0,000 29 22,580 71 28,940 0,926 11,407 0,01056 259,0 24,523 0,0 0,000 29 23,025 71 24,590 0,938 11,150 0,01046 259,7 24,822 0,0 0,000 29 23,700 71 27,140 0,926 11,183 0,01036 265,0 25,591 0,0 0,000 29 23,780 71 31,435 0,926 11,407 0,01056 153,7 14,553 0,0 0,000 29 23,800 71 23,470 0,926 10,959 0,01015 137,6 13,556 0,0 0,000 29 24,635 71 34,350 0,926 10,959				-					,		
29 22,345 71 30,235 0,972 11,421 0,01110 10,8 0,971 0,0 0,000 29 22,580 71 28,940 0,926 11,407 0,01056 259,0 24,523 0,0 0,000 29 23,025 71 24,590 0,938 11,150 0,01046 259,7 24,822 0,0 0,000 29 23,700 71 27,140 0,926 11,183 0,01036 265,0 25,591 0,0 0,000 29 23,780 71 31,435 0,926 11,407 0,01056 153,7 14,553 0,0 0,000 29 23,800 71 23,470 0,926 11,164 0,01034 257,6 24,918 0,0 0,000 29 24,635 71 34,350 0,926 10,959 0,01015 137,6 13,556 0,0 0,000 29 24,635 71 30,370 0,988 11,892				-					-		
29 22,580 71 28,940 0,926 11,407 0,01056 259,0 24,523 0,0 0,000 29 23,025 71 24,590 0,938 11,150 0,01046 259,7 24,822 0,0 0,000 29 23,700 71 27,140 0,926 11,183 0,01036 265,0 25,591 0,0 0,000 29 23,780 71 31,435 0,926 11,407 0,01056 153,7 14,553 0,0 0,000 29 23,800 71 23,470 0,926 11,164 0,01034 257,6 24,918 0,0 0,000 29 24,575 71 34,350 0,926 10,959 0,01015 137,6 13,556 0,0 0,000 29 24,635 71 30,370 0,988 11,892 0,01175 75,1 6,394 14,9 1,270 29 24,810 71 24,630 0,926 10,940 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
29 23,025 71 24,590 0,938 11,150 0,01046 259,7 24,822 0,0 0,000 29 23,700 71 27,140 0,926 11,183 0,01036 265,0 25,591 0,0 0,000 29 23,780 71 31,435 0,926 11,407 0,01056 153,7 14,553 0,0 0,000 29 23,800 71 23,470 0,926 11,164 0,01034 257,6 24,918 0,0 0,000 29 24,575 71 34,350 0,926 10,959 0,01015 137,6 13,556 0,0 0,000 29 24,635 71 30,370 0,988 11,892 0,01175 75,1 6,394 14,9 1,270 29 24,810 71 24,630 0,926 10,940 0,01013 350,9 34,639 0,0 0,000 29 25,215 71 26,070 0,988 11,183 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
29 23,700 71 27,140 0,926 11,183 0,01036 265,0 25,591 0,0 0,000 29 23,780 71 31,435 0,926 11,407 0,01056 153,7 14,553 0,0 0,000 29 23,800 71 23,470 0,926 11,164 0,01034 257,6 24,918 0,0 0,000 29 24,575 71 34,350 0,926 10,959 0,01015 137,6 13,556 0,0 0,000 29 24,635 71 30,370 0,988 11,892 0,01175 75,1 6,394 14,9 1,270 29 24,810 71 24,630 0,926 10,940 0,01013 350,9 34,639 0,0 0,000 29 25,215 71 26,070 0,988 11,183 0,01105 237,6 21,511 0,0 0,000 29 25,285 71 28,020 0,988 11,425 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>,</td><td></td><td></td><td></td><td></td></td<>							,				
29 23,780 71 31,435 0,926 11,407 0,01056 153,7 14,553 0,0 0,000 29 23,800 71 23,470 0,926 11,164 0,01034 257,6 24,918 0,0 0,000 29 24,575 71 34,350 0,926 10,959 0,01015 137,6 13,556 0,0 0,000 29 24,635 71 30,370 0,988 11,892 0,01175 75,1 6,394 14,9 1,270 29 24,810 71 24,630 0,926 10,940 0,01013 350,9 34,639 0,0 0,000 29 25,215 71 26,070 0,988 11,183 0,01105 237,6 21,511 0,0 0,000 29 25,285 71 28,020 0,988 11,425 0,01129 105,5 9,352 16,9 1,497 29 25,360 71 31,895 0,988 11,444 <td< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>				-							
29 23,800 71 23,470 0,926 11,164 0,01034 257,6 24,918 0,0 0,000 29 24,575 71 34,350 0,926 10,959 0,01015 137,6 13,556 0,0 0,000 29 24,635 71 30,370 0,988 11,892 0,01175 75,1 6,394 14,9 1,270 29 24,810 71 24,630 0,926 10,940 0,01013 350,9 34,639 0,0 0,000 29 25,215 71 26,070 0,988 11,183 0,01105 237,6 21,511 0,0 0,000 29 25,285 71 28,020 0,988 11,425 0,01129 105,5 9,352 16,9 1,497 29 25,360 71 31,895 0,988 11,444 0,01130 15,3 1,356 10,9 0,963 29 25,790 71 23,545 0,833 11,136 0,00928 177,1 19,086 19,5 2,098 29 26,065											
29 24,575 71 34,350 0,926 10,959 0,01015 137,6 13,556 0,0 0,000 29 24,635 71 30,370 0,988 11,892 0,01175 75,1 6,394 14,9 1,270 29 24,810 71 24,630 0,926 10,940 0,01013 350,9 34,639 0,0 0,000 29 25,215 71 26,070 0,988 11,183 0,01105 237,6 21,511 0,0 0,000 29 25,285 71 28,020 0,988 11,425 0,01129 105,5 9,352 16,9 1,497 29 25,360 71 31,895 0,988 11,444 0,01130 15,3 1,356 10,9 0,963 29 25,790 71 23,545 0,833 11,136 0,00928 177,1 19,086 19,5 2,098 29 26,065 71 27,120 0,926 11,183 0,01036 124,7 12,042 5,5 0,528 29 26,245									-		
29 24,635 71 30,370 0,988 11,892 0,01175 75,1 6,394 14,9 1,270 29 24,810 71 24,630 0,926 10,940 0,01013 350,9 34,639 0,0 0,000 29 25,215 71 26,070 0,988 11,183 0,01105 237,6 21,511 0,0 0,000 29 25,285 71 28,020 0,988 11,425 0,01129 105,5 9,352 16,9 1,497 29 25,360 71 31,895 0,988 11,444 0,01130 15,3 1,356 10,9 0,963 29 25,790 71 23,545 0,833 11,136 0,00928 177,1 19,086 19,5 2,098 29 26,065 71 27,120 0,926 11,183 0,01036 124,7 12,042 5,5 0,528 29 26,245 71 33,995 1,111 11,668 0,01297 306,4 23,631 0,0 0,000											
29 24,810 71 24,630 0,926 10,940 0,01013 350,9 34,639 0,0 0,000 29 25,215 71 26,070 0,988 11,183 0,01105 237,6 21,511 0,0 0,000 29 25,285 71 28,020 0,988 11,425 0,01129 105,5 9,352 16,9 1,497 29 25,360 71 31,895 0,988 11,444 0,01130 15,3 1,356 10,9 0,963 29 25,790 71 23,545 0,833 11,136 0,00928 177,1 19,086 19,5 2,098 29 26,065 71 27,120 0,926 11,183 0,01036 124,7 12,042 5,5 0,528 29 26,245 71 33,995 1,111 11,668 0,01297 306,4 23,631 0,0 0,000				-							
29 25,215 71 26,070 0,988 11,183 0,01105 237,6 21,511 0,0 0,000 29 25,285 71 28,020 0,988 11,425 0,01129 105,5 9,352 16,9 1,497 29 25,360 71 31,895 0,988 11,444 0,01130 15,3 1,356 10,9 0,963 29 25,790 71 23,545 0,833 11,136 0,00928 177,1 19,086 19,5 2,098 29 26,065 71 27,120 0,926 11,183 0,01036 124,7 12,042 5,5 0,528 29 26,245 71 33,995 1,111 11,668 0,01297 306,4 23,631 0,0 0,000											
29 25,285 71 28,020 0,988 11,425 0,01129 105,5 9,352 16,9 1,497 29 25,360 71 31,895 0,988 11,444 0,01130 15,3 1,356 10,9 0,963 29 25,790 71 23,545 0,833 11,136 0,00928 177,1 19,086 19,5 2,098 29 26,065 71 27,120 0,926 11,183 0,01036 124,7 12,042 5,5 0,528 29 26,245 71 33,995 1,111 11,668 0,01297 306,4 23,631 0,0 0,000											
29 25,360 71 31,895 0,988 11,444 0,01130 15,3 1,356 10,9 0,963 29 25,790 71 23,545 0,833 11,136 0,00928 177,1 19,086 19,5 2,098 29 26,065 71 27,120 0,926 11,183 0,01036 124,7 12,042 5,5 0,528 29 26,245 71 33,995 1,111 11,668 0,01297 306,4 23,631 0,0 0,000									-		
29 25,790 71 23,545 0,833 11,136 0,00928 177,1 19,086 19,5 2,098 29 26,065 71 27,120 0,926 11,183 0,01036 124,7 12,042 5,5 0,528 29 26,245 71 33,995 1,111 11,668 0,01297 306,4 23,631 0,0 0,000											
29 26,065 71 27,120 0,926 11,183 0,01036 124,7 12,042 5,5 0,528 29 26,245 71 33,995 1,111 11,668 0,01297 306,4 23,631 0,0 0,000									-		
29 26,245 71 33,995 1,111 11,668 0,01297 306,4 23,631 0,0 0,000											
									-		
29				-							
	29	26,355	71	30,405	0,926	11,444	0,01060	17,7	1,673	0,0	0,000

29	26,680	71	23,890	1,049	11,164	0,01172	15,7	1,338	4,6	0,395
29	27,025	71	32,205	0,926	11,911	0,01103	5,2	0,470	0,0	0,000
29	27,785	71	27,490	0,926	11,425	0,01058	140,6	13,287	28,1	2,657
29	27,820	71	30,210	1,111	11,687	0,01299	20,9	1,606	0,0	0,000
29	27,850	71	34,555	0,926	11,929	0,01105	14,2	1,282	0,0	0,000
29	28,260	71	22,750	1,181	11,200	0,01322	0,0	0,000	0,0	0,000
29	28,665	71	28,855	0,988	11,444	0,01130	18,8	1,659	4,9	0,437
29	29,250	71	24,980	1,296	11,425	0,01481	129,5	8,740	248,6	16,780
29	29,395	71	29,080	1,111	11,444	0,01272	6,8	0,537	2,7	0,212
29	29,470	71	24,070	1,062	12,146	0,01290	113,3	8,782	372,7	28,887
29	29,570	71	31,335	0,864	11,705	0,01012	0,0	0,000	0,0	0,000
29	29,595	71	26,785	1,173	11,668	0,01369	20,9	1,524	17,4	1,271
29	30,195	71	22,735	0,833	11,200	0,00933	72,0	7,714	0,0	0,000
29	30,390	71	28,080	0,988	11,444	0,01130	1,6	0,140	0,7	0,063
29	30,520	71	29,110	0,741	11,911	0,00882	0,6	0,062	0,0	0,000
29	31,215	71	22,805	1,003	12,661	0,01270	279,0	21,966	0,0	0,000
29	31,315	71	25,085	1,111	11,668	0,01297	0,0	0,000	252,0	19,436
29	32,160	71	25,130	0,841	10,876	0,00915	36,5	3,984	89,6	9,789
29	32,809	71	27,655	0,906	10,806	0,00979	11,0	1,122	6,1	0,618
29	33,520	71	23,845	0,945	11,671	0,01102	270,0	24,493	0,0	0,000
29	34,235	71	22,810	1,087	11,390	0,01237	144,0	11,637	0,0	0,000
29	34,765	71	25,145	0,935	11,080	0,01036	0,0	0,000	16,2	1,561
29	34,769	71	25,564	3,768	10,609	0,03998	0,0	0,000	1170,0	29,266
29	35,225	71	26,250	0,722	12,333	0,00890	1,8	0,206	2,2	0,251
29	36,365	71	24,010	0,988	11,201	0,01106	168,9	15,264	569,1	51,439
29	36,680	71	26,460	0,938	11,120	0,01043	0,0	0,000	0,0	0,000
29	36,775	71	22,912	0,916	10,235	0,00937	383,6	40,919	102,4	10,927
29	37,418	71	23,895	1,003	10,517	0,01055	13,0	1,228	133,2	12,626
29	38,326	71	21,841	1,024	11,118	0,01138	180,0	15,818	0,0	0,000
29	38,425	71	22,880	1,144	11,866	0,01357	0,0	0,000	612,0	45,098
29	39,890	71	24,440	0,838	11,690	0,00980	21,5	2,190	0,0	0,000
29	40,340	71	21,845	1,088	11,064	0,01204	306,0	25,425	0,0	0,000
29	40,775	71	23,075	0,984	11,627	0,01144	21,0	1,835	11,7	1,020
29	40,860	71	22,137	5,620	10,422	0,05857	0,0	0,000	1836,0	31,348
29	41,205	71	22,925	1,031	10,362	0,01068	13,5	1,264	74,3	6,954
29	41,255	71	21,875	1,063	11,448	0,01217	141,5	11,627	200,5	16,471
29	41,565	71	21,532	4,958	10,506	0,05209	0,0	0,000	1530,0	29,371
29	41,607	71	22,108	3,768	10,422	0,03928	0,0	0,000	1404,0	35,748
29	41,701	71	22,164	4,694	10,776	0,05058	0,0	0,000	1404,0	27,757
29	41,792	71	22,114	4,165	10,422	0,04341	0,0	0,000	972,0	22,391
29	42,023	71	22,380	3,504	10,609	0,03717	0,0	0,000	1224,0	32,928
29	42,041	71	26,979	19,834	11,744	0,23293	0,0	0,000	0,0	0,000
29	42,110	71	22,225	4,297	10,609	0,04559	0,0	0,000	828,0	18,162
29	42,240	71	21,915	0,765	11,714	0,00896	67,6	7,546	292,4	32,628
29	42,286	71	22,192	3,768	10,692	0,04029	0,0	0,000	882,0	21,890
29	42,448	71	22,224	3,967	10,692	0,04241	0,0	0,000	1602,0	37,771
29	42,448	71	22,241	5,091	10,692	0,05443	0,0	0,000	1003,4	18,435
29	42,468	71	22,222	4,297	10,692	0,04595	0,0	0,000	1224,0	26,639
29	42,557	71	22,240	4,760	10,692	0,05090	0,0	0,000	1116,0	21,927
29	42,689	71	23,249	0,926	11,220	0,01039	13,7	1,321	13,1	1,264
				-		•	· ·	· · · · ·		

29	43,595	71	23,918	0,926	11,687	0,01082	0,0	0,000	47,9	4,425
29	44,555	71	22,110	2,167	11,176	0,02422	0,0	0,000	79,3	3,274
29	45,460	71	23,613	0,926	11,463	0,01061	0,0	0,000	5,9	0,556
29	45,510	71	22,037	6,016	11,203	0,06740	0,0	0,000	1173,8	17,416
29	45,732	71	22,018	7,934	11,203	0,08888	0,0	0,000	3087,0	34,733
29	45,848	71	21,888	7,272	11,203	0,08147	0,0	0,000	2198,6	26,986
29	45,914	71	22,100	8,595	11,203	0,09629	0,0	0,000	1476,0	15,329
29	46,204	71	21,937	4,892	11,203	0,05481	0,0	0,000	990,0	18,063
29	46,410	71	23,963	1,065	10,100	0,01076	0,0	0,000	1,5	0,135
29	46,435	71	22,108	7,272	11,203	0,08147	0,0	0,000	1350,0	16,570
29	46,725	71	22,500	9,917	11,221	0,11128	0,0	0,000	1482,6	13,323
29	46,919	71	22,278	0,926	10,959	0,01015	0,0	0,000	563,0	55,479
29	47,465	71	22,365	0,688	11,661	0,00803	0,0	0,000	594,0	74,013
29	47,727	71	21,973	7,867	11,427	0,08990	0,0	0,000	1404,0	15,617
29	47,770	71	21,115	0,741	11,388	0,00844	0,0	0,000	0,0	0,000
29	47,797	71	21,688	7,008	10,152	0,07115	0,0	0,000	1116,0	15,686
29	47,983	71	23,072	7,735	11,445	0,08853	0,0	0,000	1032,3	11,660
29	48,009	71	22,006	5,950	10,609	0,06312	0,0	0,000	810,0	12,832
29	48,070	71	23,159	7,471	11,221	0,08383	101,1	1,206	851,9	10,162
29	48,137	71	21,703	5,157	10,422	0,05375	0,0	0,000	1242,0	23,109
29	48,180	71	22,677	7,272	12,379	0,09002	0,0	0,000	491,4	5,459
29	48,240	71	22,800	3,570	11,445	0,04086	0,0	0,000	630,0	15,418
29	48,263	71	21,618	4,297	10,338	0,04443	0,0	0,000	846,0	19,042
29	48,451	71	21,765	4,165	11,427	0,04759	0,0	0,000	720,0	15,128
29	48,939	71	21,618	8,793	13,685	0,12033	0,0	0,000	1422,0	11,817
29	48,993	71	22,297	0,988	11,425	0,01129	0,0	0,000	103,7	9,192
29	50,932	71	22,089	0,926	10,977	0,01017	222,2	21,861	46,8	4,602
29	51,749	71	25,345	1,420	11,201	0,01590	302,6	19,027	44,1	2,775
29	53,025	71	25,165	0,787	11,528	0,00907	0,0	0,000	9,0	0,992
29	53,220	71	24,500	0,859	11,758	0,01010	168,9	16,729	0,0	0,000
29	53,485	71	24,920	0,689	12,156	0,00838	128,0	15,274	0,0	0,000
29	54,230	71	22,510	1,065	9,000	0,00958	0,0	0,000	0,0	0,000
29	54,455	71	26,506	9,256	11,949	0,11060	0,0	0,000	0,0	0,000
29	55,065	71	24,665	0,821	11,442	0,00939	180,0	19,162	0,0	0,000
29	55,505	71	27,075	13,223	11,949	0,15800		0,000	0,0	0,000
29	56,610	71	25,385	0,774	11,493	0,00890	354,9	39,881	0,0	0,000
29	58,090	71	25,790	0,701	12,410	0,00870	157,5	18,109	0,0	0,000
30	1,050	71	26,905	0,675	12,335	0,00833	14,3	1,713	7,7	0,928
30	1,070	71	27,750 27,315	0,711	11,563	0,00822 0,01056	4,4	0,529	37,2	4,526
30	3,025	71	-	0,926	11,407		26,6	2,521	18,4	1,739
30	3,287	71	29,259	10,446	11,949	0,12482 0,00885	23,4	0,188	27,7	0,222
30	4,085 4,213	71 71	29,325 28,350	0,755 0,926	11,723 11,425	0,00883	0,3 33,2	0,032 3,139	0,1 87,2	0,008 8,237
30	4,650	71	27,465	0,926	11,423	0,01038	73,8	7,130	238,2	23,000
30	6,249	71	29,644	0,926	10,064	0,01036	22,7	2,508	11,5	1,269
30	7,751	71	28,385	1,014	10,004	0,00908	104,3	9,553	56,7	5,192
30	7,731	71	29,593	0,926	11,407	0,01092	130,0	12,307	0,0	0,000
30	8,002	71	33,980	0,920	12,050	0,01036	0,0	0,000	0,0	0,000
30	8,803	71	33,295	0,949	11,687	0,01144	9,0	0,832	13,2	1,220
30	8,976	71	31,765	0,920	11,087	0,01082	71,0	6,762	0,0	0,000
30	0,9/0	/ 1	51,/03	0,734	11,240	0,01030	/1,0	0,702	0,0	0,000

30	9,348	71	34,983	1,375	12,060	0,01658	0,0	0,000	0,0	0,000
30	9,870	71	30,019	0,926	11,407	0,01056	81,8	7,739	380,3	35,999
30	10,514	71	34,534	1,259	10,870	0,01369	27,7	2,025	0,0	0,000
30	10,926	71	30,825	1,014	10,146	0,01029	150,0	14,575	0,0	0,000
30	11,186	71	32,238	0,974	9,703	0,00945	65,0	6,879	0,0	0,000
30	11,729	71	36,554	0,802	11,300	0,00906	82,1	9,062	0,0	0,000
30	11,994	71	32,088	1,042	10,994	0,01145	198,0	17,288	0,0	0,000
30	12,366	71	35,952	1,059	9,700	0,01027	113,6	11,062	0,0	0,000
30	12,664	71	32,550	1,042	10,109	0,01054	132,0	12,526	0,0	0,000
30	12,769	71	33,747	0,926	11,631	0,01077	67,0	6,217	43,0	3,996
30	12,986	71	31,065	0,833	9,200	0,00767	0,0	0,000	0,0	0,000
30	13,284	71	35,605	0,964	10,541	0,01016	154,0	15,153	0,0	0,000
30	13,407	71	33,653	0,990	10,202	0,01010	83,1	8,231	92,9	9,199
30	22,925	71	43,760	0,926	11,444	0,01060	0,0	0,000	0,0	0,000
30	23,594	71	43,776	0,926	11,201	0,01037	42,7	4,120	0,0	0,000
30	24,714	71	44,179	0,926	11,444	0,01060	27,8	2,623	0,0	0,000
30	26,344	71	44,589	0,926	11,911	0,01103	39,0	3,536	0,0	0,000
30	26,461	71	43,946	0,926	11,425	0,01058	292,5	27,647	0,0	0,000
30	39,671	71	45,580	0,926	11,201	0,01037	11,5	1,113	0,0	0,000
30	44,506	71	45,406	0,926	11,425	0,01058	36,4	3,440	0,0	0,000
30	48,202	71	45,609	0,926	11,425	0,01058	86,0	8,131	0,0	0,000
30	53,037	71	44,403	0,926	11,444	0,01060	122,9	11,595	33,9	3,198
30	56,061	71	44,376	1,543	11,911	0,01838	97,5	5,301	33,8	1,838
31	2,202	71	44,463	0,926	11,220	0,01039	171,4	16,497	0,0	0,000
31	3,494	71	43,618	0,926	11,183	0,01036	18,5	1,787	0,0	0,000
31	7,233	71	44,981	0,926	11,444	0,01060	10,1	0,952	0,0	0,000
31	8,976	71	43,981	0,926	10,753	0,00996	81,1	8,144	0,0	0,000
31	10,244	71	44,859	0,926	12,638	0,01170	0,0	0,000	0,0	0,000
31	11,493	71	43,924	0,833	13,245	0,01104	8,6	0,781	0,0	0,000
31	12,628	71	42,816	0,926	11,892	0,01101	129,5	11,760	0,0	0,000
31	13,517	71	43,388	0,630	11,700	0,00738	5,9	0,804	0,0	0,000
31	13,951	71	41,814	1,111	11,425	0,01270	166,5	13,114	0,0	0,000
31	16,152	71	42,601	0,994	11,442	0,01137	18,0	1,583	0,0	0,000
31	19,560	71	42,030	0,898	11,547	0,01037	54,0	5,209	0,0	0,000
31	22,956	71	39,948	0,617	11,649	0,00719	175,2	24,365	0,0	0,000
31	24,593	71	39,051	0,926	11,649	0,01079	160,1	14,845	0,0	0,000
31	25,416	71	40,043	0,926	11,444	0,01060	82,6	7,790	0,0	0,000
31	27,200	71	40,498	1,049	11,911	0,01250	7,1	0,567	0,0	0,000
31	27,250	71	38,628	0,849	11,738	0,00997	42,2	4,233	0,0	0,000
31	28,936	71	37,812	1,076	11,981	0,01289	216,0	16,760	0,0	0,000
31	30,029	71	38,628	1,510	12,344	0,01864	392,4	21,054	0,0	0,000
31	31,084	71	39,611	0,988	11,668	0,01152	140,7	12,211	0,0	0,000
31	32,994	71	40,657	0,907	12,217	0,01108	28,5	2,571	0,0	0,000
31	35,873	71	41,109	0,855	11,277	0,00964	65,3	6,772	0,0	0,000
31	38,089	71	41,085	0,952	11,470	0,01092	1188,0	108,752	0,0	0,000
31	38,140	71	40,077	1,010	10,824	0,01094	54,0	4,938	0,0	0,000
31	39,485	71	40,669	9,075	11,649	0,10572	2358,0	22,305	0,0	0,000
31	40,103	71	40,519	1,158	11,667	0,01350	324,0	23,993	0,0	0,000
31	41,294	71 71	40,554 39,206	1,009 7,537	11,997 11,221	0,01211 0,08458	180,0 3942,0	14,863 46,609	0,0	0,000
31	43,299									

31	43,765	71	40,001	8,198	11,221	0,09199	1044,0	11,349	0,0	0,000
31	44,733	71	39,836	8,462	11,464	0,09701	450,0	4,638	0,0	0,000
31	44,881	71	40,094	0,980	12,633	0,01237	89,2	7,204	0,0	0,000
31	45,063	71	39,750	8,727	11,688	0,10200	1566,0	15,353	0,0	0,000
31	45,975	71	39,352	7,801	11,221	0,08754	1512,0	17,272	0,0	0,000
31	46,041	71	39,277	8,132	11,221	0,09125	2088,0	22,882	0,0	0,000
31	46,234	71	39,236	0,670	12,324	0,00826	1054,5	127,716	0,0	0,000
31	47,254	71	39,277	7,140	11,221	0,08012	1872,0	23,364	0,0	0,000
31	48,233	71	39,326	0,669	11,925	0,00798	166,5	20,869	0,0	0,000
31	50,150	71	39,664	0,390	11,440	0,00446	39,3	8,808	0,0	0,000
31	51,117	71	41,085	0,859	11,744	0,01009	9,0	0,892	0,0	0,000
31	51,830	71	40,451	0,127	12,133	0,00154	28,8	18,750	0,0	0,000
31	53,635	71	40,507	0,942	10,911	0,01028	333,5	32,443	0,0	0,000
31	54,474	71	39,376	0,992	10,673	0,01058	144,0	13,605	0,0	0,000
31	55,352	71	40,564	1,204	10,538	0,01269	37,0	2,913	0,0	0,000
31	55,581	71	39,366	0,992	10,673	0,01058	252,0	23,808	0,0	0,000
31	56,300	71	38,487	0,992	10,673	0,01058	216,0	20,407	0,0	0,000
31	57,489	71	39,245	0,992	10,673	0,01058	288,0	27,209	0,0	0,000
31	58,482	71	38,538	0,992	10,673	0,01058	396,0	37,413	0,0	0,000
31	59,331	71	38,681	0,787	11,288	0,00888	13,8	1,549	0,0	0,000
31	59,418	71	37,560	0,992	10,673	0,01058	378,0	35,712	0,0	0,000
31	59,866	71	37,745	0,992	10,673	0,01058	306,0	28,910	0,0	0,000
32	1,110	71	38,129	0,265	12,400	0,00329	198,0	60,217	0,0	0,000
32	2,051	71	37,501	0,992	10,673	0,01058	198,0	18,706	0,0	0,000
32	2,499	71	38,424	0,992	10,673	0,01058	360,0	34,012	0,0	0,000
32	3,379	71	36,516	0,992	10,673	0,01058	342,0	32,311	0,0	0,000
32	3,544	71	38,535	0,992	10,673	0,01058	450,0	42,515	0,0	0,000
32	4,463	71	36,481	0,992	10,319	0,01023	540,0	52,766	0,0	0,000
32	6,216	71	36,384	0,992	10,319	0,01023	144,0	14,071	0,0	0,000
32	6,240	71	37,609	0,992	10,673	0,01058	432,0	40,814	0,0	0,000
32	6,768	71	39,489	0,900	11,600	0,01044	1,6	0,148	0,0	0,000
32	7,361	71	37,508	0,992	10,673	0,01058	306,0	28,910	0,0	0,000
32	8,156	71	37,452	0,521	9,650	0,00503	154,1	30,664	0,0	0,000
32	8,818	71	37,361	3,334	11,425	0,03809	2088,0	54,821	0,0	0,000
32	9,240	71	37,329	0,888	10,756	0,00955	846,0	88,550	0,0	0,000
32	11,103	71	37,657	0,992	10,673	0,01058	414,0	39,113	0,0	0,000
32	11,223	71	39,420	0,880	11,673	0,01027	0,7	0,069	0,0	0,000
32	11,751	71	38,855	0,880	11,673	0,01027	0,0	0,000	0,0	0,000
32	12,141	71	37,402	0,992	10,673	0,01058	270,0	25,509	0,0	0,000
32	12,811	71	36,183	0,992	10,422	0,01034	414,0	40,056	0,0	0,000
32	13,726	71	39,310	0,880	12,158	0,01070	0,0	0,000	0,0	0,000
32	13,806	71	34,729	0,992	10,738	0,01065	414,0	38,878	0,0	0,000
32	14,075	71	35,396	0,992	11,092	0,01100	234,0	21,274	0,0	0,000
32	14,811	71	37,901	0,880	11,915	0,01048	0,0	0,000	0,0	0,000
32	15,256	71	33,618	0,992	10,319	0,01023	126,0	12,312	0,0	0,000
32	15,276	71	34,614	0,992	10,673	0,01058	342,0	32,311	0,0	0,000
32	15,627	71	35,297	0,992	10,692	0,01060	486,0	45,834	0,0	0,000
32	16,582	71	33,558	0,992	10,692	0,01060	396,0	37,347	0,0	0,000
32	16,585	71	37,350	0,926	12,862	0,01191	0,0	0,000	0,0	0,000
32	17,318	71	36,725	0,926	11,463	0,01061	18,0	1,696	0,0	0,000
								·		

32											
32	32	17,676	71	33,820	0,992	10,319	0,01023	360,0	35,178	0,0	0,000
32 19,849 71 32,880 0,992 10,319 0,01023 576,0 56,284 0,0 0,000 32 19,863 71 33,641 0,992 10,319 0,01023 468,0 45,731 0,0 0,000 32 20,515 71 35,540 0,880 11,411 0,01004 55,7 5,548 0,0 0,000 32 20,616 71 32,890 0,992 10,319 0,01023 396,0 38,695 0,0 0,000 32 21,685 71 33,528 0,992 10,319 0,01023 342,0 33,419 0,0 0,000 32 21,685 71 33,528 0,992 10,319 0,01023 342,0 33,419 0,0 0,000 32 23,133 71 35,949 0,880 11,635 0,01025 152,0 14,823 0,0 0,000 32 23,133 71 35,758 0,880 11,411 0,01004 70,6 7,033 0,0 0,000 32 24,304 71 35,758 0,880 11,411 0,01004 414,0 41,241 0,0 0,000 32 24,784 71 37,548 0,880 11,637 0,01027 9,0 0,876 0,0 0,000 32 26,900 71 38,049 0,880 11,637 0,01027 9,0 0,876 0,0 0,000 32 26,900 71 38,049 0,880 11,634 0,01025 251,4 24,524 0,0 0,000 32 27,549 71 36,609 0,880 11,411 0,0104 376,3 37,489 0,0 0,000 32 27,549 71 36,609 0,880 11,411 0,0104 376,3 37,489 0,0 0,000 32 27,549 71 36,527 0,880 11,411 0,0104 376,3 37,489 0,0 0,000 32 27,549 71 36,543 0,762 11,411 0,0004 376,3 37,489 0,0 0,000 32 23,30,240 71 36,543 0,762 11,411 0,0004 376,3 37,489 0,0 0,000 32 33,489 71 38,949 0,880 11,635 0,01092 162,0 14,838 0,0 0,000 32 33,882 71 38,949 0,880 11,635 0,01092 162,0 14,838 0,0 0,000 32 33,882 71 38,949 0,880 11,430 0,0105 33,6 33,46 0,0 0,000 32 37,326 71 38,840 0,1000 37,148 37,489 0,0 0,000 32 37,326 71 38,840 0,000 31,410 0,000 37,489 0,000 0,000 32 33,482 71 38,840 0,000 38,860 34,444 71 38,274 1,190 11,473 0,01074 55,5 5,165 0,0 0,000 32 34,692 71 38,181 1,038 10,335 0,00107 79,0 79,0	32	17,854	71	32,693	0,992	10,319	0,01023	324,0	31,660	0,0	0,000
32	32	18,437	71	36,370	0,880	11,449	0,01007	0,0	0,000	0,0	0,000
32	32	19,849	71	32,880	0,992	10,319	0,01023	576,0	56,284	0,0	0,000
32	32	19,863	71	33,641	0,992	10,319	0,01023	468,0	45,731	0,0	0,000
32	32	20,361	71	36,825	0,833	11,658	0,00972	0,0	0,000	0,0	0,000
32 21,153 71 35,212 0,938 11,635 0,01092 45,3 4,145 0,0 0,000 32 21,685 71 33,528 0,992 10,319 0,01023 342,0 33,419 0,0 0,000 32 23,133 71 35,949 0,880 11,634 0,01025 152,0 14,823 0,0 0,000 32 23,234 71 35,363 0,880 11,411 0,01004 70,6 7,033 0,0 0,000 32 24,784 71 37,548 0,880 11,411 0,01004 414,0 41,241 0,0 0,000 32 24,784 71 37,548 0,880 11,673 0,01027 9,0 0,876 0,0 0,000 32 24,784 71 37,548 0,880 11,634 0,01025 251,4 24,524 0,0 0,000 32 26,900 71 38,049 0,880 11,634 0,01025 251,4 24,524 0,0 0,000 32 27,549 71 36,669 0,880 11,915 0,01048 18,0 1,717 0,0 0,000 32 27,805 71 38,276 0,880 11,915 0,01048 27,0 2,576 0,0 0,000 32 29,341 71 37,388 0,880 11,915 0,01048 27,0 2,576 0,0 0,000 32 30,240 71 36,543 0,762 11,411 0,00870 37,9 4,357 0,0 0,000 32 30,819 71 38,490 0,880 11,634 0,01005 33,6 3,346 0,0 0,000 32 33,364 71 38,738 0,880 11,635 0,01027 18,4 1,793 0,0 0,000 32 33,364 71 38,738 0,880 11,630 0,01027 18,4 1,793 0,0 0,000 32 33,364 71 38,490 0,880 11,630 0,01025 87,1 8,664 0,0 0,000 32 33,364 71 36,744 0,938 11,635 0,01027 18,4 1,793 0,0 0,000 32 33,364 71 38,868 0,880 11,630 0,01025 87,1 8,664 0,0 0,000 32 33,640 71 36,690 1,143 10,642 0,01216 345,1 28,377 0,0 0,000 32 33,640 71 36,990 1,143 10,642 0,01216 345,1 28,377 0,0 0,000 32 33,640 71 36,990 1,143 10,642 0,01216 345,1 28,377 0,0 0,000 32 33,640 71 38,814 0,708 11,519 0,00816 7,9 0,971 0,0 0,000 32 33,620 71 38,840 0,088 11,673 0,01027 18,4 1,793 0,0 0,000 32 33,620 71 38,841 0,708 11,519 0,00816 7,9 0,971 0,0 0,000 32 34,692 71 38,814 0,708 11,519 0,00816 7,9 0,971 0,0 0,000 32 34,692 71 38,814 0,708 11,519 0,00816 7,9 0,971 0,0 0,000 32 34,692 71 38,814 0,708 11,519 0,00816 7,9 0,971 0,0 0,000 32 42,489 71 41,44 1,14 1,14 1,14 1,14 1,14 1,14	32	20,515	71	35,540	0,880	11,411	0,01004	55,7	5,548	0,0	0,000
32 21,685 71 33,528 0,992 10,319 0,01023 342,0 33,419 0,0 0,000 32 23,133 71 35,949 0,880 11,654 0,01025 152,0 14,823 0,0 0,000 32 24,304 71 35,758 0,880 11,411 0,01004 70,6 7,033 0,0 0,000 32 24,304 71 35,758 0,880 11,411 0,01004 414,0 41,241 0,0 0,000 32 24,784 71 37,548 0,880 11,673 0,01027 9,0 0,876 0,0 0,000 32 26,261 71 36,790 0,880 11,654 0,01025 251,4 24,524 0,0 0,000 32 26,261 71 36,790 0,880 11,654 0,01025 251,4 24,524 0,0 0,000 32 27,549 71 36,609 0,880 11,915 0,01048 18,0 1,717 0,0 0,000 32 27,805 71 38,276 0,880 11,915 0,01048 18,0 1,717 0,0 0,000 32 27,805 71 38,276 0,880 11,915 0,01048 27,0 2,576 0,0 0,000 32 29,341 71 37,388 0,880 11,430 0,01005 33,6 3,346 0,0 0,000 32 30,819 71 38,490 0,880 11,673 0,01027 18,4 1,793 0,0 0,000 32 33,63 3,449 0,880 11,673 0,01027 18,4 1,793 0,0 0,000 32 33,819 71 38,490 0,880 11,673 0,01027 18,4 1,793 0,0 0,000 32 33,63 3,181 71 36,574 0,938 11,635 0,01092 162,0 14,838 0,0 0,000 32 33,640 71 36,549 0,880 11,673 0,01027 18,4 1,793 0,0 0,000 32 33,640 71 36,590 1,143 10,642 0,0127 18,4 1,793 0,0 0,000 32 33,640 71 36,990 1,143 10,642 0,01216 345,1 28,377 0,0 0,000 32 33,640 71 36,990 1,143 10,642 0,01216 345,1 28,377 0,0 0,000 32 33,640 71 36,990 1,143 10,642 0,01216 345,1 28,377 0,0 0,000 32 33,640 71 36,990 1,143 10,642 0,01216 345,1 28,377 0,0 0,000 32 33,627 1 38,814 0,708 11,519 0,00816 7.9 0,971 0,0 0,000 32 33,627 1 38,814 0,708 11,519 0,00816 7.9 0,971 0,0 0,000 32 37,326 71 38,420 1,057 10,269 0,01086 216,3 19,925 0,0 0,000 32 34,026 71 38,430 1,035 10,354 0,01072 792,0 73,895 0,0 0,000 32 34,044 71 36,24 1,14 1,14 1,14 1,14 1,14 1,14 1,14 1	32	20,616	71	32,890	0,992	10,319	0,01023	396,0	38,695	0,0	0,000
32 23,133 71 35,949 0,880 11,654 0,01025 152,0 14,823 0,0 0,000 32 23,234 71 35,363 0,880 11,411 0,01004 70,6 7,033 0,0 0,000 32 24,784 71 37,548 0,880 11,411 0,01004 414,0 41,241 0,0 0,000 32 24,784 71 37,548 0,880 11,673 0,01027 9,0 0,876 0,0 0,000 32 26,261 71 36,790 0,880 11,654 0,01025 251,4 24,524 0,0 0,000 32 26,900 71 38,049 0,880 11,654 0,01025 251,4 24,524 0,0 0,000 32 27,549 71 36,609 0,880 11,915 0,01048 18,0 1,717 0,0 0,000 32 27,549 71 36,609 0,880 11,915 0,01048 27,0 2,576 0,0 0,000 32 27,805 71 38,276 0,880 11,915 0,01048 27,0 2,576 0,0 0,000 32 29,341 71 37,388 0,880 11,410 0,01004 376,3 37,489 0,0 0,000 32 30,240 71 36,543 0,762 11,411 0,00870 37,9 4,357 0,0 0,000 32 31,181 71 36,174 0,938 11,635 0,01092 162,0 14,838 0,0 0,000 32 33,3640 71 38,849 0,880 11,430 0,01005 87,1 8,664 0,0 0,000 32 33,3640 71 38,910 0,880 11,430 0,01005 87,1 8,664 0,0 0,000 32 33,3640 71 38,910 1,143 0,00105 87,1 8,664 0,0 0,000 32 33,3640 71 38,910 0,880 11,430 0,01005 87,1 8,664 0,0 0,000 32 33,3640 71 38,910 0,880 11,430 0,01005 87,1 8,664 0,0 0,000 32 37,326 71 38,131 1,035 10,354 0,01072 792,0 73,895 0,0 0,000 32 35,229 71 38,131 1,035 10,354 0,01072 792,0 73,895 0,0 0,000 32 37,326 71 38,420 1,057 10,269 0,01086 216,3 19,925 0,0 0,000 32 37,326 71 38,420 1,057 10,269 0,01086 216,3 19,925 0,0 0,000 32 40,262 71 38,131 1,035 10,354 0,01072 792,0 73,895 0,0 0,000 32 40,645 71 40,443 0,992 12,882 0,01278 0,0 0,000 0,0 0,0 0,0 0,0 0,0 0,0 0,0	32	21,153	71	35,212	0,938	11,635	0,01092	45,3	4,145	0,0	0,000
32 23,234 71 35,363 0,880 11,411 0,01004 70,6 7,033 0,0 0,000 32 24,304 71 35,758 0,880 11,673 0,01027 9,0 0,876 0,0 0,000 32 26,661 71 36,790 0,880 11,673 0,01025 251,4 24,524 0,0 0,000 32 26,900 71 38,049 0,880 11,675 0,01048 18,0 1,717 0,0 0,000 32 27,549 71 36,609 0,880 11,915 0,01048 18,0 1,717 0,0 0,000 32 27,341 71 37,388 0,880 11,411 0,01048 27,0 2,576 0,0 0,000 32 30,341 71 36,543 0,762 11,411 0,00870 37,9 4,357 0,0 0,000 32 30,417 13,8680 0,880 11,673 0,01027 18,4<	32	21,685	71	33,528	0,992	10,319	0,01023	342,0	33,419	0,0	0,000
32 24,304 71 35,758 0,880 11,411 0,01004 414,0 41,241 0,0 0,000 32 24,784 71 37,548 0,880 11,673 0,01027 9,0 0,876 0,0 0,000 32 26,261 71 36,790 0,880 11,654 0,01025 251,4 24,524 0,0 0,000 32 27,549 71 36,609 0,880 11,915 0,01048 18,0 1,717 0,0 0,000 32 27,805 71 38,276 0,880 11,915 0,01048 27,0 2,576 0,0 0,000 32 29,341 71 36,543 0,762 11,411 0,00870 37,9 4,357 0,0 0,000 32 30,819 71 36,543 0,762 11,411 0,00870 37,9 4,357 0,0 0,000 32 31,181 71 36,174 0,938 11,635 0,01092 162,0 14,838 0,0 0,000 32 33,364 71 36,543 0,762 11,413 0,01027 18,4 1,793 0,0 0,000 32 33,364 71 36,930 1,1430 0,01005 87,1 8,664 0,0 0,000 32 33,460 71 36,930 1,1431 0,1005 37,9 4,357 0,0 0,000 32 33,460 71 36,990 1,143 10,642 0,01216 345,1 28,377 0,0 0,000 32 35,229 71 38,131 1,035 10,354 0,01072 792,0 73,895 0,0 0,000 32 35,229 71 38,131 1,035 10,354 0,1072 792,0 73,895 0,0 0,000 32 37,326 71 38,420 1,057 10,269 0,01086 216,3 19,925 0,0 0,000 32 39,482 71 39,105 0,914 11,743 0,01074 55,5 5,165 0,0 0,000 32 40,262 71 38,274 1,190 11,427 0,01360 414,0 30,445 0,0 0,000 32 42,802 71 38,581 1,088 11,733 0,01078 55,5 5,165 0,0 0,000 32 40,645 71 38,274 1,190 11,427 0,01360 414,0 30,445 0,0 0,000 32 42,802 71 38,581 0,963 11,560 0,01178 252,0 21,389 0,0 0,000 32 49,848 71 41,962 0,992 13,051 0,1125 47,5 3,879 0,0 0,000 32 49,848 71 41,962 0,992 13,051 0,1125 47,5 3,890 0,0 0,000 32 49,848 71 41,962 0,992 13,051 0,01277 166,5 13,044 0,0 0,000 32 49,848 71 41,962 0,992 13,051 0,01278 43,43 38,516 0,0 0,000 32 54,087 71 42,132	32	23,133	71	35,949	0,880	11,654	0,01025	152,0	14,823	0,0	0,000
32 24,784 71 37,548 0,880 11,673 0,01027 9,0 0,876 0,0 0,000	32	23,234	71	35,363	0,880	11,411	0,01004	70,6	7,033	0,0	0,000
32 26,261 71 36,790 0,880 11,654 0,01025 251,4 24,524 0,0 0,000 32 26,900 71 38,049 0,880 11,915 0,01048 18,0 1,717 0,0 0,000 32 27,895 71 38,276 0,880 11,915 0,01048 27,0 2,576 0,0 0,000 32 27,805 71 38,276 0,880 11,915 0,01048 27,0 2,576 0,0 0,000 32 27,805 71 38,276 0,880 11,430 0,01005 33,6 3,346 0,0 0,000 32 30,240 71 36,543 0,762 11,411 0,00870 37,9 4,357 0,0 0,000 32 31,181 71 38,690 0,880 11,673 0,01027 18,4 1,793 0,0 0,000 32 32,62 71 38,080 0,880 11,430 0,01025 <td>32</td> <td>24,304</td> <td>71</td> <td>35,758</td> <td>0,880</td> <td>11,411</td> <td>0,01004</td> <td>414,0</td> <td>41,241</td> <td>0,0</td> <td>0,000</td>	32	24,304	71	35,758	0,880	11,411	0,01004	414,0	41,241	0,0	0,000
32 26,900 71 38,049 0,880 11,915 0,01048 18,0 1,717 0,0 0,000 32 27,549 71 36,609 0,880 11,411 0,01048 27,0 2,576 0,0 0,00 32 29,341 71 37,388 0,880 11,410 0,01005 33,6 3,346 0,0 0,000 32 39,240 71 36,543 0,762 11,411 0,00870 37,9 4,357 0,0 0,000 32 30,819 71 38,490 0,880 11,673 0,01027 18,4 1,793 0,0 0,000 32 31,181 71 36,174 0,938 11,635 0,01092 162,0 14,838 0,0 0,000 32 33,640 71 38,968 0,880 11,430 0,01005 87,1 8,664 0,0 0,000 32 34,692 71 38,814 0,708 11,519 0,0816		24,784	71	37,548	0,880		0,01027	9,0	0,876	0,0	0,000
32 27,549 71 36,609 0,880 11,411 0,01004 376,3 37,489 0,0 0,000	32	26,261	71	36,790	0,880	11,654	0,01025	251,4	24,524	0,0	0,000
32 27,805 71 38,276 0,880 11,915 0,01048 27,0 2,576 0,0 0,000 32 29,341 71 37,388 0,880 11,430 0,01005 33,6 3,346 0,0 0,000 32 30,240 71 36,543 0,762 11,411 0,00870 37,9 4,357 0,0 0,000 32 30,819 71 38,490 0,880 11,673 0,01027 18,4 1,793 0,0 0,000 32 31,181 71 36,174 0,938 11,635 0,01092 162,0 14,838 0,0 0,000 32 32,362 71 38,968 0,880 11,430 0,01005 87,1 8,664 0,0 0,000 32 34,692 71 38,814 0,708 11,519 0,00816 7,9 0,971 0,0 0,000 32 36,132 71 38,420 1,057 10,269 0,0102	32	26,900	71	38,049	0,880	11,915	0,01048	18,0	1,717	0,0	0,000
32 29,341 71 37,388 0,880 11,430 0,01005 33,6 3,346 0,0 0,000 32 30,240 71 36,543 0,762 11,411 0,00870 37,9 4,357 0,0 0,000 32 30,819 71 38,490 0,880 11,673 0,01027 18,4 1,793 0,0 0,000 32 31,181 71 36,174 0,938 11,635 0,01092 162,0 14,838 0,0 0,000 32 33,640 71 36,6990 1,143 10,642 0,01216 345,1 28,377 0,0 0,000 32 34,692 71 38,814 0,708 11,519 0,00816 7,9 0,971 0,0 0,000 32 36,132 71 37,340 0,868 10,676 0,00926 450,0 48,578 0,0 0,000 32 37,425 71 37,193 0,880 9,600 0,00845		27,549	71	36,609	0,880		0,01004	376,3	37,489	0,0	0,000
32 30,240 71 36,543 0,762 11,411 0,00870 37,9 4,357 0,0 0,000 32 30,819 71 38,490 0,880 11,673 0,01027 18,4 1,793 0,0 0,000 32 31,181 71 36,174 0,938 11,635 0,01092 162,0 14,838 0,0 0,000 32 32,3640 71 38,068 0,880 11,430 0,01005 87,1 8,664 0,0 0,000 32 33,640 71 36,990 1,143 10,642 0,01216 345,1 28,377 0,0 0,000 32 34,692 71 38,814 0,708 11,519 0,00816 7,9 0,971 0,0 0,000 32 35,229 71 38,131 1,035 10,354 0,01072 792,0 73,895 0,0 0,000 32 36,132 71 37,340 0,868 10,676 0,00926 450,0 48,578 0,0 0,000 32 37,326 71 38,420 1,057 10,269 0,01086 216,3 19,925 0,0 0,000 32 37,326 71 38,420 1,057 10,269 0,01086 216,3 19,925 0,0 0,000 32 40,645 71 40,443 0,992 12,882 0,01278 0,0 0,000 0,0 32 40,645 71 40,443 0,992 12,882 0,01278 0,0 0,000 0,0 0,0 0,000 32 41,044 71 38,274 1,190 11,427 0,01360 414,0 30,445 0,0 0,000 32 42,458 71 39,473 0,917 9,880 0,00906 0,0 0,000 0,0 0,0 0,000 32 42,458 71 39,473 0,917 9,880 0,00906 0,0 0,000 0,0 0,0 0,000 32 42,458 71 39,473 0,917 9,880 0,00906 0,0 0,000 0,0 0,0 0,000 32 42,458 71 39,473 0,917 9,880 0,00906 0,0 0,000 0,0 0,000 32 42,458 71 39,473 0,917 9,880 1,0025 44,00 3,445 0,0 0,000 32 42,458 71 39,473 0,917 9,880 1,0025 44,00 3,445 0,0 0,000 32 42,458 71 39,473 0,917 9,880 0,00906 0,0 0,000 0,0 0,000 32 42,458 71 39,473 0,917 9,880 0,00906 0,0 0,000 0,0 0,000 32 42,458 71 39,473 0,917 9,880 0,00906 0,0 0,000 0,0 0,000 32 42,458 71 39,473 0,917 9,880 1,0025 47,5 3,879 0,0 0,000 32 44,802 71 38,581 1,088 11,733 0,01277 166,5 13,044 0,0 0,000 32 44,802 71 39,855 0,963 11,560 0,01113 275,1 24,710 0,0 0,000 32 48,847 71 41,218 1,028 11,459 0,01178 378,0 32,077 0,0 0,000 32 48,847 71 41,128 1,028 11,459 0,01178 378,0 32,077 0,0 0,000 32 49,941 71 40,019 1,019 10,505 0,01070 198,0 18,505 0,0 0,000 32 52,250 71 40,019 1,019 10,505 0,01070 198,0 18,505 0,0 0,000 32 52,458 71 43,938 0,995 9,725 0,00968 155,2 16,035 0,0 0,000 32 54,498 71 44,1128 1,126 10,396 0,01171 360,0 30,753 0,0 0,000 32 54,424 71 41,119 0,863 9,779 0,00844 198,0 23,458 0,0 0,000 32 54,409 71 42,573 1,222 9,200 0,01125 1	32	27,805	71	38,276	0,880	11,915	0,01048	27,0	2,576	0,0	0,000
32 30,819 71 38,490 0,880 11,673 0,01027 18,4 1,793 0,0 0,000 32 31,181 71 36,174 0,938 11,635 0,01092 162,0 14,838 0,0 0,000 32 32,362 71 38,068 0,880 11,430 0,01005 87,1 8,664 0,0 0,000 32 33,640 71 36,999 1,143 10,642 0,0116 345,1 28,377 0,0 0,000 32 34,692 71 38,814 0,708 11,519 0,00816 7,9 0,971 0,0 0,000 32 35,229 71 38,814 1,035 10,354 0,01072 792,0 73,895 0,0 0,000 32 35,229 71 38,814 1,057 10,269 0,01086 216,3 19,925 0,0 0,000 32 37,326 71 38,420 1,057 10,269 0,014<	32	29,341	71	37,388	0,880	11,430	0,01005	33,6	3,346	0,0	0,000
32 31,181 71 36,174 0,938 11,635 0,01092 162,0 14,838 0,0 0,000 32 32,362 71 38,068 0,880 11,430 0,01005 87,1 8,664 0,0 0,000 32 33,640 71 36,990 1,143 10,642 0,01216 345,1 28,377 0,0 0,000 32 34,692 71 38,814 0,708 11,519 0,00816 7,9 0,971 0,0 0,000 32 35,229 71 38,131 1,035 10,364 0,01072 792,0 73,895 0,0 0,000 32 37,326 71 38,420 1,057 10,269 0,01086 216,3 19,925 0,0 0,000 32 37,326 71 37,193 0,880 9,600 0,00845 72,0 8,526 0,0 0,000 32 40,645 71 30,443 0,992 12,882 0,0128	32	30,240	71	36,543	0,762	11,411	0,00870	37,9	4,357	0,0	0,000
32 32,362 71 38,068 0,880 11,430 0,01005 87,1 8,664 0,0 0,000 32 33,640 71 36,990 1,143 10,642 0,01216 345,1 28,377 0,0 0,000 32 34,692 71 38,814 0,708 11,519 0,00816 7,9 0,971 0,0 0,000 32 35,229 71 38,131 1,035 10,354 0,01072 792,0 73,895 0,0 0,000 32 36,132 71 37,340 0,868 10,676 0,00926 450,0 48,578 0,0 0,000 32 37,326 71 38,420 1,057 10,269 0,01086 216,3 19,925 0,0 0,000 32 39,482 71 37,193 0,880 9,600 0,00845 72,0 8,526 0,0 0,000 32 40,645 71 40,443 0,992 12,882 0,0127	32	30,819	71	38,490	0,880	11,673	0,01027	18,4	1,793	0,0	0,000
32 33,640 71 36,990 1,143 10,642 0,01216 345,1 28,377 0,0 0,000 32 34,692 71 38,814 0,708 11,519 0,00816 7,9 0,971 0,0 0,000 32 35,229 71 38,131 1,035 10,354 0,01072 792,0 73,895 0,0 0,000 32 36,132 71 37,340 0,868 10,676 0,00926 450,0 48,578 0,0 0,000 32 37,326 71 38,420 1,057 10,269 0,01086 216,3 19,925 0,0 0,000 32 39,482 71 37,193 0,880 9,600 0,00845 72,0 8,526 0,0 0,000 32 40,262 71 37,193 0,880 9,600 0,00845 72,0 8,526 0,0 0,000 32 41,044 71 38,274 1,190 11,427 0,01360	32	31,181	71	36,174	0,938	11,635	0,01092	162,0	14,838	0,0	0,000
32 34,692 71 38,814 0,708 11,519 0,00816 7,9 0,971 0,0 0,000 32 35,229 71 38,131 1,035 10,354 0,01072 792,0 73,895 0,0 0,000 32 36,132 71 37,340 0,868 10,676 0,00926 450,0 48,578 0,0 0,000 32 37,326 71 38,420 1,057 10,269 0,01086 216,3 19,925 0,0 0,000 32 39,482 71 39,105 0,914 11,743 0,01074 55,5 5,165 0,0 0,000 32 40,645 71 40,443 0,992 12,882 0,01278 0,0 0,000 0,0 0,00 32 41,044 71 38,274 1,190 11,427 0,01360 414,0 30,445 0,0 0,000 32 42,882 71 38,581 1,088 11,733 0,0127<	32	32,362	71	38,068	0,880	11,430	0,01005	87,1	8,664	0,0	0,000
32 35,229 71 38,131 1,035 10,354 0,01072 792,0 73,895 0,0 0,000 32 36,132 71 37,340 0,868 10,676 0,00926 450,0 48,578 0,0 0,000 32 37,326 71 38,420 1,057 10,269 0,01086 216,3 19,925 0,0 0,000 32 39,482 71 39,105 0,914 11,743 0,01074 55,5 5,165 0,0 0,000 32 40,262 71 37,193 0,880 9,600 0,00845 72,0 8,526 0,0 0,000 32 40,645 71 40,443 0,992 12,882 0,01278 0,0 0,000 0,0 0,00 32 41,044 71 38,281 1,981 11,373 0,01277 166,5 13,044 0,0 0,000 32 42,802 71 38,581 1,081 11,260 0,01123	32	33,640	71	36,990	1,143	10,642		345,1	28,377	0,0	0,000
32 36,132 71 37,340 0,868 10,676 0,00926 450,0 48,578 0,0 0,000 32 37,326 71 38,420 1,057 10,269 0,01086 216,3 19,925 0,0 0,000 32 39,482 71 39,105 0,914 11,743 0,01074 55,5 5,165 0,0 0,000 32 40,262 71 37,193 0,880 9,600 0,00845 72,0 8,526 0,0 0,000 32 40,645 71 40,443 0,992 12,882 0,01278 0,0 0,000 0,0 0,000 32 41,044 71 38,581 1,190 11,427 0,01360 414,0 30,445 0,0 0,000 32 42,488 71 39,473 0,917 9,880 0,00906 0,0 0,000 0,00 0,00 32 43,738 71 38,881 1,088 11,733 0,01277 <td>32</td> <td>34,692</td> <td>71</td> <td>38,814</td> <td>0,708</td> <td>11,519</td> <td>0,00816</td> <td>7,9</td> <td>0,971</td> <td>0,0</td> <td>0,000</td>	32	34,692	71	38,814	0,708	11,519	0,00816	7,9	0,971	0,0	0,000
32 37,326 71 38,420 1,057 10,269 0,01086 216,3 19,925 0,0 0,000 32 39,482 71 39,105 0,914 11,743 0,01074 55,5 5,165 0,0 0,000 32 40,262 71 37,193 0,880 9,600 0,00845 72,0 8,526 0,0 0,000 32 40,645 71 40,443 0,992 12,882 0,01278 0,0 0,000 0,000 32 41,044 71 38,274 1,190 11,427 0,01360 414,0 30,445 0,0 0,000 32 42,458 71 39,473 0,917 9,880 0,00906 0,0 0,000 0,000 32 42,802 71 38,581 1,088 11,733 0,01277 166,5 13,044 0,0 0,000 32 46,892 71 39,357 1,084 11,295 0,01225 47,5 3,879	32	35,229	71	38,131	1,035	10,354	0,01072	792,0	73,895	0,0	0,000
32 39,482 71 39,105 0,914 11,743 0,01074 55,5 5,165 0,0 0,000 32 40,262 71 37,193 0,880 9,600 0,00845 72,0 8,526 0,0 0,000 32 40,645 71 40,443 0,992 12,882 0,01278 0,0 0,000 0,0 0,000 32 41,044 71 38,274 1,190 11,427 0,01360 414,0 30,445 0,0 0,000 32 42,458 71 39,473 0,917 9,880 0,00906 0,0 0,000 0,000 32 42,802 71 38,581 1,088 11,733 0,01277 166,5 13,044 0,0 0,000 32 43,738 71 39,885 0,963 11,560 0,01113 275,1 24,710 0,0 0,000 32 46,892 71 39,357 1,084 11,295 0,01225 47,5 </td <td>32</td> <td>36,132</td> <td>71</td> <td>37,340</td> <td>0,868</td> <td>10,676</td> <td>0,00926</td> <td>450,0</td> <td>48,578</td> <td>0,0</td> <td>0,000</td>	32	36,132	71	37,340	0,868	10,676	0,00926	450,0	48,578	0,0	0,000
32 40,262 71 37,193 0,880 9,600 0,00845 72,0 8,526 0,0 0,000 32 40,645 71 40,443 0,992 12,882 0,01278 0,0 0,000 0,0 0,000 32 41,044 71 38,274 1,190 11,427 0,01360 414,0 30,445 0,0 0,000 32 42,458 71 39,473 0,917 9,880 0,00906 0,0 0,000 0,000 32 42,802 71 38,581 1,088 11,733 0,01277 166,5 13,044 0,0 0,000 32 43,738 71 39,885 0,963 11,560 0,01113 275,1 24,710 0,0 0,000 32 46,892 71 39,357 1,084 11,295 0,01225 47,5 3,879 0,0 0,000 32 48,847 71 41,962 0,992 13,051 0,01178 252,0<		37,326	71	38,420		10,269	0,01086	216,3	19,925	0,0	0,000
32 40,645 71 40,443 0,992 12,882 0,01278 0,0 0,000 0,0 0,000 32 41,044 71 38,274 1,190 11,427 0,01360 414,0 30,445 0,0 0,000 32 42,458 71 39,473 0,917 9,880 0,00906 0,0 0,000 0,00 0,000 32 42,802 71 38,581 1,088 11,733 0,01277 166,5 13,044 0,0 0,000 32 43,738 71 39,885 0,963 11,560 0,01113 275,1 24,710 0,0 0,000 32 46,892 71 39,357 1,084 11,295 0,01225 47,5 3,879 0,0 0,000 32 48,847 71 41,218 1,028 11,459 0,01178 252,0 21,389 0,0 0,000 32 49,134 71 40,725 1,089 10,820 0,0117		39,482	71	39,105	0,914	11,743	0,01074	55,5	5,165	0,0	0,000
32 41,044 71 38,274 1,190 11,427 0,01360 414,0 30,445 0,0 0,000 32 42,458 71 39,473 0,917 9,880 0,00906 0,0 0,000 0,00 0,000 32 42,802 71 38,581 1,088 11,733 0,01277 166,5 13,044 0,0 0,000 32 43,738 71 39,385 0,963 11,560 0,01113 275,1 24,710 0,0 0,000 32 46,892 71 39,357 1,084 11,295 0,01225 47,5 3,879 0,0 0,000 32 48,847 71 41,218 1,028 11,459 0,01178 252,0 21,389 0,0 0,000 32 48,847 71 41,962 0,992 13,051 0,01294 179,9 13,903 0,0 0,000 32 49,134 71 40,725 1,089 10,820 0,0		40,262	71	37,193	0,880		0,00845	72,0	8,526	0,0	0,000
32 42,458 71 39,473 0,917 9,880 0,00906 0,0 0,000 0,0 0,000 32 42,802 71 38,581 1,088 11,733 0,01277 166,5 13,044 0,0 0,000 32 43,738 71 39,885 0,963 11,560 0,01113 275,1 24,710 0,0 0,000 32 46,892 71 39,357 1,084 11,295 0,01225 47,5 3,879 0,0 0,000 32 48,847 71 41,218 1,028 11,459 0,01178 252,0 21,389 0,0 0,000 32 48,975 71 41,962 0,992 13,051 0,01294 179,9 13,903 0,0 0,000 32 49,134 71 40,725 1,089 10,820 0,01178 378,0 32,077 0,0 0,000 32 49,849 71 41,089 0,999 10,887 0,01		40,645	71				0,01278			0,0	0,000
32 42,802 71 38,581 1,088 11,733 0,01277 166,5 13,044 0,0 0,000 32 43,738 71 39,885 0,963 11,560 0,01113 275,1 24,710 0,0 0,000 32 46,892 71 39,357 1,084 11,295 0,01225 47,5 3,879 0,0 0,000 32 48,847 71 41,218 1,028 11,459 0,01178 252,0 21,389 0,0 0,000 32 48,975 71 41,962 0,992 13,051 0,01294 179,9 13,903 0,0 0,000 32 49,134 71 40,725 1,089 10,820 0,01178 378,0 32,077 0,0 0,000 32 49,849 71 41,089 0,999 11,262 0,01125 433,4 38,516 0,0 0,000 32 51,708 71 40,019 0,999 10,887									-		
32 43,738 71 39,885 0,963 11,560 0,01113 275,1 24,710 0,0 0,000 32 46,892 71 39,357 1,084 11,295 0,01225 47,5 3,879 0,0 0,000 32 48,847 71 41,218 1,028 11,459 0,01178 252,0 21,389 0,0 0,000 32 48,975 71 41,962 0,992 13,051 0,01294 179,9 13,903 0,0 0,000 32 49,134 71 40,725 1,089 10,820 0,01178 378,0 32,077 0,0 0,000 32 49,418 71 39,867									,		
32 46,892 71 39,357 1,084 11,295 0,01225 47,5 3,879 0,0 0,000 32 48,847 71 41,218 1,028 11,459 0,01178 252,0 21,389 0,0 0,000 32 48,975 71 41,962 0,992 13,051 0,01294 179,9 13,903 0,0 0,000 32 49,134 71 40,725 1,089 10,820 0,01178 378,0 32,077 0,0 0,000 32 49,849 71 41,089 0,999 11,262 0,01125 433,4 38,516 0,0 0,000 32 49,849 71 40,019 0,999 10,887 0,01088 594,0 54,614 0,0 0,000 32 51,708 71 41,128 1,126 10,396 0,01171 360,0 30,753 0,0 0,000 32 52,250 71 40,019 1,019 10,505 0,01070 198,0 18,505 0,0 0,000 32 52,458											
32 48,847 71 41,218 1,028 11,459 0,01178 252,0 21,389 0,0 0,000 32 48,975 71 41,962 0,992 13,051 0,01294 179,9 13,903 0,0 0,000 32 49,134 71 40,725 1,089 10,820 0,01178 378,0 32,077 0,0 0,000 32 49,418 71 39,867					0,963						
32 48,975 71 41,962 0,992 13,051 0,01294 179,9 13,903 0,0 0,000 32 49,134 71 40,725 1,089 10,820 0,01178 378,0 32,077 0,0 0,000 32 49,418 71 39,867											
32 49,134 71 40,725 1,089 10,820 0,01178 378,0 32,077 0,0 0,000 32 49,418 71 39,867									-		0,000
32 49,418 71 39,867 999 11,262 0,01125 433,4 38,516 0,0 0,000 32 49,849 71 41,089 0,999 11,262 0,01125 433,4 38,516 0,0 0,000 32 49,981 71 40,019 0,999 10,887 0,01088 594,0 54,614 0,0 0,000 32 51,708 71 41,128 1,126 10,396 0,01171 360,0 30,753 0,0 0,000 32 52,250 71 40,019 1,019 10,505 0,01070 198,0 18,505 0,0 0,000 32 52,458 71 43,938 0,995 9,725 0,00968 155,2 16,035 0,0 0,000 32 53,072 71 42,132 1,099 10,114 0,01111 378,0 34,012 0,0 0,000 32 54,109 71 46,110 1,111 10,400 0											
32 49,849 71 41,089 0,999 11,262 0,01125 433,4 38,516 0,0 0,000 32 49,981 71 40,019 0,999 10,887 0,01088 594,0 54,614 0,0 0,000 32 51,708 71 41,128 1,126 10,396 0,01171 360,0 30,753 0,0 0,000 32 52,250 71 40,019 1,019 10,505 0,01070 198,0 18,505 0,0 0,000 32 52,458 71 43,938 0,995 9,725 0,00968 155,2 16,035 0,0 0,000 32 53,072 71 42,132 1,099 10,114 0,01111 378,0 34,012 0,0 0,000 32 54,109 71 46,110 1,111 10,400 0,01156 0,0 0,000 0,0 0,000 32 54,424 71 41,119 0,863 9,779 0,0					1,089	10,820	0,01178	378,0	32,077	0,0	0,000
32 49,981 71 40,019 0,999 10,887 0,01088 594,0 54,614 0,0 0,000 32 51,708 71 41,128 1,126 10,396 0,01171 360,0 30,753 0,0 0,000 32 52,250 71 40,019 1,019 10,505 0,01070 198,0 18,505 0,0 0,000 32 52,458 71 43,938 0,995 9,725 0,00968 155,2 16,035 0,0 0,000 32 53,072 71 42,132 1,099 10,114 0,01111 378,0 34,012 0,0 0,000 32 54,109 71 46,110 1,111 10,400 0,01156 0,0 0,000 0,000 32 54,424 71 41,119 0,863 9,779 0,00844 198,0 23,458 0,0 0,000 32 55,038 71 42,573 1,222 9,200 0,01125											
32 51,708 71 41,128 1,126 10,396 0,01171 360,0 30,753 0,0 0,000 32 52,250 71 40,019 1,019 10,505 0,01070 198,0 18,505 0,0 0,000 32 52,458 71 43,938 0,995 9,725 0,00968 155,2 16,035 0,0 0,000 32 53,072 71 42,132 1,099 10,114 0,01111 378,0 34,012 0,0 0,000 32 54,109 71 46,110 1,111 10,400 0,01156 0,0 0,000 0,000 32 54,424 71 41,119 0,863 9,779 0,00844 198,0 23,458 0,0 0,000 32 55,038 71 42,573 1,222 9,200 0,01125 198,0 17,607 0,0 0,000											
32 52,250 71 40,019 1,019 10,505 0,01070 198,0 18,505 0,0 0,000 32 52,458 71 43,938 0,995 9,725 0,00968 155,2 16,035 0,0 0,000 32 53,072 71 42,132 1,099 10,114 0,01111 378,0 34,012 0,0 0,000 32 54,109 71 46,110 1,111 10,400 0,01156 0,0 0,000 0,00 0,000 32 54,424 71 41,119 0,863 9,779 0,00844 198,0 23,458 0,0 0,000 32 55,038 71 42,573 1,222 9,200 0,01125 198,0 17,607 0,0 0,000											
32 52,458 71 43,938 0,995 9,725 0,00968 155,2 16,035 0,0 0,000 32 53,072 71 42,132 1,099 10,114 0,01111 378,0 34,012 0,0 0,000 32 54,109 71 46,110 1,111 10,400 0,01156 0,0 0,000 0,000 0,000 32 54,424 71 41,119 0,863 9,779 0,00844 198,0 23,458 0,0 0,000 32 55,038 71 42,573 1,222 9,200 0,01125 198,0 17,607 0,0 0,000											
32 53,072 71 42,132 1,099 10,114 0,01111 378,0 34,012 0,0 0,000 32 54,109 71 46,110 1,111 10,400 0,01156 0,0 0,000 0,0 0,000 32 54,424 71 41,119 0,863 9,779 0,00844 198,0 23,458 0,0 0,000 32 55,038 71 42,573 1,222 9,200 0,01125 198,0 17,607 0,0 0,000											0,000
32 54,109 71 46,110 1,111 10,400 0,01156 0,0 0,000 0,00 0,000 32 54,424 71 41,119 0,863 9,779 0,00844 198,0 23,458 0,0 0,000 32 55,038 71 42,573 1,222 9,200 0,01125 198,0 17,607 0,0 0,000											0,000
32 54,424 71 41,119 0,863 9,779 0,00844 198,0 23,458 0,0 0,000 32 55,038 71 42,573 1,222 9,200 0,01125 198,0 17,607 0,0 0,000											0,000
32 55,038 71 42,573 1,222 9,200 0,01125 198,0 17,607 0,0 0,000								-			0,000
32 55,065 71 44,761 1,058 11,445 0,01211 378,0 31,221 0,0 0,000											
	32	55,065	71	44,761	1,058	11,445	0,01211	378,0	31,221	0,0	0,000

33 33,592 71 55,267 0,992 11,912 0,01181 0,0 0,000 0,0 0,000 33 33,953 71 57,428 0,992 11,931 0,01183 0,0 0,000 0,0 0,000 33 34,891 71 54,507 0,992 11,184 0,01109 324,0 29,212 0,0 0,000 33 34,950 71 59,472 0,992 11,931 0,01183 0,0 0,000 0,0 0,000 33 34,987 71 52,833 0,992 10,736 0,01065 126,0 11,834 0,0 0,000 33 35,952 71 51,582 0,992 11,203 0,01111 5,3 0,474 0,0 0,000 33 36,061 71 54,312 0,992 11,184 0,01109 180,0 16,229 0,0 0,000 33 36,143 71 58,128 0,992 10,979 0,01089 <th></th>											
32 57,266 71 44,000 1,073 9,536 0,01023 270,0 26,385 0,0 0,000 32 57,843 71 44,005 1,064 9,980 0,01061 234,0 22,045 0,0 0,000 32 58,873 71 44,026 0,917 9,630 0,00883 288,0 32,623 0,0 0,000 32 59,161 71 47,995 1,043 9,788 0,01021 4,9 0,476 0,0 0,000 32 59,397 71 46,753 1,056 9,550 0,01008 387,0 38,388 0,0 0,000 33 1,376 71 48,475 0,824 9,490 0,00782 4,7 0,597 0,0 0,000 33 1,558 71 49,302 0,926 9,700 0,0089 0,0 0,000 0,0 0,000 33 1,558 71 47,026 0,992 10,757 0,01067 522,0 48,933 0,0 0,000 33 1,558 71 47,026 0,992 10,757 0,01067 522,0 48,933 0,0 0,000 33 3,451 71 48,676 0,992 10,757 0,01067 522,0 48,933 0,0 0,000 33 3,885 71 49,269 0,992 10,692 0,01050 378,0 32,649 0,0 0,000 33 3,885 71 49,269 0,992 10,692 0,01050 47,993 0,0 0,000 33 3,559 71 49,471 0,992 10,590 0,01050 612,0 47,993 0,0 0,000 33 3,7501 71 49,812 0,992 10,590 0,01050 612,0 58,277 0,0 0,000 33 3,7501 71 49,812 0,992 10,673 0,01058 486,0 45,916 0,0 0,000 33 3,7501 71 52,131 0,132 15,085 0,00199 0,0 0,000 0,0 0,000 33 10,557 71 52,131 0,132 15,085 0,00199 0,0 0,000 0,0 0,000 33 10,557 71 52,235 0,992 11,464 0,01137 50,6 4,449 0,0 0,000 33 15,772 71 52,235 0,992 11,464 0,01137 50,6 4,449 0,0 0,000 33 15,772 71 52,235 0,992 11,464 0,01137 50,6 4,449 0,0 0,000 33 15,772 71 52,253 0,992 11,464 0,01137 50,6 4,449 0,0 0,000 33 15,772 71 52,253 0,992 11,464 0,01137 50,6 4,449 0,0 0,000 33 16,975 71 52,238 0,992 11,446 0,01137 50,6 4,449 0,0 0,000 33 12,633 71 51,592 0,992 11,447 0,01133 261,0 23,932 0,0 0,000 33 12,633 71 51,592 0,992 11,447 0,01133 27,0 23,827 0,0 0,000 33 20,003 71 51,996 0,992 11,464 0,01137 50,6 4,449 0,0 0,000 33 20,003 71 51,996 0,992 11,464 0,01137 50,6 4,449 0,0 0,000 33 20,003 71 51,996 0,992 11,464 0,01137 50,6 4,449 0,0 0,000 33 20,003 71 51,996 0,992 11,464 0,01137 50,6 4,449 0,0 0,000 33 20,003 71 51,996 0,992 11,464 0,01137 50,6 4,449 0,0 0,000 33 20,003 71 51,996 0,992 11,464 0,01137 50,6 4,449 0,0 0,000 33 20,003 71 51,5996 0,992 11,464 0,01137 50,6 4,449 0,0 0,000 33 20,003 71 51,5996 0,992 11,464 0,01137 50,0 0,000 0,000 0,	32	55,996	71	45,236	9,851	10,609	0,10450	4644,0	44,439	0,0	0,000
32 57,843 71 44,005 1,064 9,980 0,01061 234,0 22,045 0,0 0,000	32	56,834	71	43,741	0,657	9,600	0,00631	180,0	28,519	0,0	0,000
32 58,873 71 45,426 0,917 9,630 0,00883 288,0 32,623 0,0 0,000 32 59,161 71 47,995 1,043 9,788 0,01021 4,9 0,476 0,0 0,000 33 5,9397 71 46,7573 1,056 9,550 0,01008 387,0 38,388 0,0 0,000 33 0,776 71 48,475 0,824 9,490 0,00782 4,7 0,597 0,0 0,000 33 1,393 71 49,302 0,926 9,700 0,00898 0,0 0,000 0,0 0,000 33 1,598 71 47,264 0,992 10,757 0,01067 522,0 48,933 0,0 0,000 33 2,473 71 47,564 0,992 10,757 0,01067 522,0 48,933 0,0 0,000 33 3,451 71 48,676 0,992 10,757 0,01067 522,0 48,933 0,0 0,000 33 3,885 71 49,269 0,992 10,757 0,01067 342,0 32,060 0,0 0,000 33 3,855 71 49,247 0,992 10,590 0,01050 504,0 47,993 0,0 0,000 33 3,559 71 49,471 0,992 10,590 0,01050 504,0 47,993 0,0 0,000 33 3,559 71 49,471 0,992 10,590 0,01050 504,0 47,993 0,0 0,000 33 3,559 71 49,177 0,992 10,573 0,01068 378,0 35,649 0,0 0,000 33 3,559 71 49,177 0,992 10,590 0,01050 504,0 47,993 0,0 0,000 33 3,7882 71 52,191 0,132 15,085 0,00199 0,0 514,0 45,916 0,0 0,000 33 3,7882 71 52,191 0,132 15,085 0,00199 0,0 0,000 0,0 0,0 0,00 33 1,557 71 52,373 0,992 11,464 0,0113 159,1 14,423 0,0 0,000 33 15,577 71 52,530 0,992 11,464 0,01137 50,6 4,449 0,0 0,000 33 16,033 71 51,295 0,992 11,464 0,01137 50,6 4,449 0,0 0,000 33 16,033 71 51,292 0,992 11,445 0,01133 261,0 23,032 0,0 0,000 33 16,033 71 51,294 0,992 11,445 0,01133 270,0 23,827 0,0 0,000 33 16,033 71 51,294 0,992 11,445 0,01133 270,0 23,827 0,0 0,000 33 16,033 71 51,294 0,992 11,445 0,01133 270,0 23,827 0,0 0,000 33 12,022 71 52,38 0,992 11,445 0,01133 270,0 23,827 0,0 0,000 33 12,023 71 51,996 0,992 11,446 0,01137 50,6 4,449 0,0 0,000 33 12,037 71 52,536 0,992 11,447 0,01133 270,0 23,827 0,0 0,000 33 12,037 71 51,294 0,992 11,446 0,01137 50,6 4,449 0,0 0,000 33 12,037 71 51,294 0,992 11,449 0,01137 50,6 4,449 0,0 0,000 33 12,037 71 52,536 0,992 11,447 0,01133 279,0 24,617 0,0 0,000 33 12,037 71 51,294 0,992 11,494 0,01155 666,0 57,642 0,0 0,000 33 28,047 71 52,545 0,992 11,494 0,01157 636,0 54,956 0,0 0,000 33 28,047 71 54,940 0,992 11,440 0,01157 636,0 54,956 0,0 0,000 33 32,834 71 54,590 0,992 11,48	32	57,266	71	46,200	1,073	9,536	0,01023	270,0	26,385	0,0	0,000
32	32	57,843	71	44,005	1,064	9,980	0,01061	234,0	22,045	0,0	0,000
32 59,397 71 46,753 1,056 9,550 0,01008 387,0 38,388 0,0 0,000 0,33 3,076 71 48,475 0,824 9,490 0,00782 4,7 0,597 0,0 0,000 0,33 1,358 71 47,026 0,992 10,757 0,01067 522,0 48,933 0,0 0,000 33 1,558 71 47,026 0,992 10,757 0,01067 522,0 48,933 0,0 0,000 33 3,451 71 47,564 0,992 10,757 0,01067 342,0 32,060 0,0 0,000 33 3,451 71 48,676 0,992 10,757 0,01067 342,0 32,060 0,0 0,000 33 3,451 71 48,649 0,992 10,590 0,01050 504,0 47,993 0,0 0,000 33 4,574 71 48,649 0,992 10,590 0,01050 504,0 47,993 0,0 0,000 33 5,559 71 49,471 0,992 10,590 0,01050 612,0 58,277 0,0 0,000 33 7,882 71 49,107 0,992 10,673 0,01058 486,0 45,916 0,0 0,000 33 7,882 71 49,107 0,992 10,673 0,01058 612,0 57,820 0,0 0,000 33 7,882 71 52,91 0,132 15,058 0,0019 0,000 0	32	58,873	71	45,426	0,917	9,630	0,00883	288,0	32,623	0,0	0,000
32 59,397 71 46,753 1,056 9,550 0,01008 387,0 38,388 0,0 0,000 33 0,776 71 48,475 0,824 9,490 0,00782 4,7 0,597 0,0 0,000 33 1,558 71 47,026 0,992 10,757 0,01067 522,0 48,933 0,0 0,000 33 1,558 71 47,564 0,992 10,757 0,01067 522,0 48,933 0,0 0,000 33 3,451 71 48,676 0,992 10,757 0,01067 342,0 32,060 0,0 0,000 33 3,815 71 49,269 0,992 10,757 0,01067 342,0 32,060 0,0 0,000 33 3,815 71 48,649 0,992 10,590 0,01060 378,0 35,649 0,0 0,000 33 4,574 71 48,649 0,992 10,590 0,01050 504,0 47,993 0,0 0,000 33 6,136 71 49,107 0,992 10,590 0,01050 612,0 58,277 0,0 0,000 33 7,501 71 49,812 0,992 10,673 0,01058 486,0 45,916 0,0 0,000 33 7,882 71 52,191 0,132 15,085 0,00199 0,0 0,000 0,0 0,000 33 8,066 71 51,239 1,036 10,648 0,01103 159,1 14,423 0,0 0,000 33 12,022 71 51,295 0,992 11,437 0,01133 261,0 23,032 0,0 0,000 33 15,772 71 52,531 0,992 11,447 0,01133 261,0 23,032 0,0 0,000 33 15,772 71 52,531 0,992 11,447 0,01133 270,0 23,827 0,0 0,000 33 16,975 71 52,238 0,992 11,447 0,01133 270,0 23,827 0,0 0,000 33 18,197 71 52,531 0,992 11,447 0,01133 270,0 23,827 0,0 0,000 33 18,197 71 52,545 0,992 11,447 0,01133 270,0 23,827 0,0 0,000 33 2,033 71 51,622 0,992 11,447 0,01133 270,0 23,827 0,0 0,000 33 2,033 71 51,696 0,992 11,447 0,01133 270,0 23,827 0,0 0,000 33 2,038 71 51,696 0,992 11,447 0,01133 270,0 23,827 0,0 0,000 33 2,038 71 51,696 0,992 11,447 0,01133 279,0 24,617 0,0 0,000 33 2,038 71 51,648 0,992 11,448 0,01155 366,0 54,956 0,0 0,000 33 28,054 71 49,403 0,992 11,448 0,01155 366,0 54,956 0,0 0,000 33	32	59,161	71	47,995	1,043	9,788	0,01021	4,9	0,476	0,0	0,000
33 1,393 71 49,302 0,926 9,700 0,0088 0,0 0,000 0,00 0,000 33 1,558 71 47,026 0,992 10,757 0,01067 522,0 48,933 0,0 0,000 33 3,451 71 47,564 0,992 10,757 0,01067 342,0 32,060 0,0 0,000 33 3,451 71 48,676 0,992 10,692 0,01060 378,0 35,649 0,0 0,000 33 4,574 71 48,649 0,992 10,693 0,01050 504,0 47,993 0,0 0,000 33 5,559 71 49,471 0,992 10,673 0,01058 486,0 45,916 0,0 0,000 33 7,501 71 49,812 0,992 10,673 0,01058 612,0 58,277 0,0 0,000 33 7,601 71 49,812 0,992 11,631 0,01133 <td>32</td> <td></td> <td>71</td> <td></td> <td>1,056</td> <td></td> <td>0,01008</td> <td></td> <td>38,388</td> <td>0,0</td> <td>0,000</td>	32		71		1,056		0,01008		38,388	0,0	0,000
33 1,558 71 47,026 0,992 10,757 0,01067 522,0 48,933 0,0 0,000 33 2,473 71 47,564 0,992 10,757 0,01067 342,0 32,060 0,0 0,000 33 3,451 71 48,676 0,992 10,757 0,01067 342,0 32,060 0,0 0,000 33 3,557 1 48,649 0,992 10,590 0,01050 504,0 47,993 0,0 0,000 33 6,136 71 49,107 0,992 10,673 0,01050 612,0 58,277 0,0 0,000 33 7,501 71 49,812 0,992 10,673 0,01058 486,0 45,916 0,0 0,00 33 7,501 71 49,812 0,992 10,673 0,01058 482,0 48,916 0,0 0,00 33 7,501 71 52,191 0,132 15,685 0,0103 <td>33</td> <td>0,776</td> <td>71</td> <td>48,475</td> <td>0,824</td> <td>9,490</td> <td>0,00782</td> <td>4,7</td> <td>0,597</td> <td>0,0</td> <td>0,000</td>	33	0,776	71	48,475	0,824	9,490	0,00782	4,7	0,597	0,0	0,000
33 2,473 71 47,564 0,992 10,422 0,01034 486,0 47,022 0,0 0,000 33 3,451 71 48,676 0,992 10,692 0,01060 372,060 0,0 0,000 33 4,574 71 48,649 0,992 10,692 0,01060 378,0 35,649 0,0 0,000 33 5,559 71 49,471 0,992 10,590 0,01050 612,0 58,277 0,0 0,000 33 7,501 71 49,107 0,992 10,673 0,01050 612,0 58,277 0,0 0,000 33 7,501 71 49,812 0,992 10,673 0,01088 612,0 57,820 0,0 0,000 33 7,501 71 52,191 0,132 15,688 0,0199 0,0 0,000 0,0 0,000 33 10,557 71 52,375 0,992 11,421 0,01133 1561,0	33	1,393	71	49,302	0,926	9,700	0,00898	0,0	0,000	0,0	0,000
33	33	1,558	71	47,026	0,992	10,757	0,01067	522,0	48,933	0,0	0,000
33 3,885 71 49,269 0,992 10,692 0,01060 378,0 35,649 0,0 0,000 33 4,574 71 48,649 0,992 10,590 0,01050 504,0 47,993 0,0 0,000 33 5,559 71 49,471 0,992 10,673 0,01050 612,0 58,277 0,0 0,000 33 6,136 71 49,107 0,992 10,673 0,01058 486,0 45,916 0,0 0,000 33 7,501 71 49,812 0,992 10,673 0,01058 612,0 57,820 0,0 0,000 33 7,501 71 49,812 0,992 11,631 0,01183 159,1 14,423 0,0 0,000 33 10,557 71 52,375 0,992 11,427 0,01133 261,0 23,032 0,0 0,000 33 12,022 71 51,253 0,992 11,464 0,01	33	2,473	71	47,564	0,992	10,422	0,01034	486,0	47,022	0,0	0,000
33 4,574 71 48,649 0,992 10,590 0,01050 504,0 47,993 0,0 0,000 33 5,559 71 49,471 0,992 10,673 0,01058 486,0 45,916 0,0 0,000 33 7,501 71 49,812 0,992 10,673 0,01058 486,0 45,916 0,0 0,000 33 7,501 71 49,812 0,992 10,673 0,01058 612,0 57,820 0,0 0,000 33 7,882 71 52,191 0,132 15,085 0,00199 0,0 0,000 0,000 0,000 33 10,557 71 52,235 0,992 11,427 0,01133 156,1 11,501 0,0 0,000 33 13,799 71 52,530 0,992 11,427 0,01137 50,6 4,449 0,0 0,000 33 15,772 71 52,531 0,992 11,427 0,0113	33	3,451	71	48,676	0,992	10,757	0,01067	342,0	32,060	0,0	0,000
33 5,559 71 49,471 0,992 10,590 0,01050 612,0 58,277 0,0 0,000 33 6,136 71 49,107 0,992 10,673 0,01058 486,0 45,916 0,0 0,000 33 7,501 71 49,812 0,992 10,673 0,01058 612,0 57,820 0,0 0,000 33 7,501 71 49,812 0,992 11,631 0,0103 0,000 0,000 0,000 33 8,066 71 51,239 1,036 10,648 0,01103 159,1 14,423 0,0 0,000 33 12,022 71 51,295 0,992 11,427 0,01133 261,0 23,032 0,0 0,000 33 13,799 71 52,530 0,992 11,424 0,01137 58,7 5,165 0,0 0,000 33 16,033 71 51,522 0,992 11,427 0,01133 270	33	3,885	71	49,269	0,992	10,692	0,01060	378,0	35,649	0,0	0,000
33	33	4,574	71	48,649	0,992	10,590	0,01050	504,0	47,993	0,0	0,000
33	33	5,559	71	49,471	0,992	10,590	0,01050	612,0	58,277	0,0	0,000
33 7,882 71 52,191 0,132 15,085 0,00199 0,0 0,000 0,0 0,000 33 8,066 71 51,239 1,036 10,648 0,01103 159,1 14,423 0,0 0,000 33 10,557 71 52,375 0,992 11,931 0,01183 136,1 11,501 0,0 0,000 33 13,799 71 52,530 0,992 11,464 0,01137 50,6 4,449 0,0 0,000 33 15,772 71 52,531 0,992 11,464 0,01137 58,7 5,165 0,0 0,000 33 16,033 71 51,522 0,992 11,427 0,01133 270,0 23,827 0,0 0,000 33 16,075 71 52,738 0,992 11,427 0,01133 270,0 23,827 0,0 0,000 33 16,975 71 52,738 0,992 11,494 0,01135	33	6,136	71	49,107	0,992	10,673	0,01058	486,0	45,916	0,0	0,000
33	33	7,501	71	49,812	0,992	10,673	0,01058	612,0	57,820	0,0	0,000
33 10,557 71 52,375 0,992 11,931 0,01183 136,1 11,501 0,0 0,000 33 12,022 71 51,295 0,992 11,427 0,01137 50,6 4,449 0,0 0,000 33 13,779 71 52,530 0,992 11,464 0,01137 50,6 4,449 0,0 0,000 33 15,772 71 52,531 0,992 11,427 0,01137 58,7 5,165 0,0 0,000 33 16,033 71 51,522 0,992 11,427 0,01133 270,0 23,827 0,0 0,000 33 16,975 71 52,738 0,992 11,431 0,01183 33,9 2,866 0,0 0,000 33 16,937 71 51,996 0,992 11,445 0,01135 173,9 15,319 0,0 0,000 33 23,684 71 52,545 0,992 11,427 0,0118	33	7,882	71	52,191	0,132	15,085	0,00199	0,0	0,000	0,0	0,000
33 12,022 71 51,295 0,992 11,427 0,01133 261,0 23,032 0,0 0,000 33 13,799 71 52,530 0,992 11,464 0,01137 50,6 4,449 0,0 0,000 33 15,772 71 52,531 0,992 11,464 0,01137 58,7 5,165 0,0 0,000 33 16,033 71 51,522 0,992 11,427 0,01133 270,0 23,827 0,0 0,000 33 16,975 71 52,738 0,992 11,931 0,01133 33,9 2,866 0,0 0,000 33 18,109 71 51,722 0,992 11,445 0,01135 173,9 15,319 0,0 0,000 33 21,633 71 51,601 0,992 11,445 0,01135 173,9 15,319 0,0 0,000 33 23,657 71 51,601 0,992 11,427 0,01	33	8,066	71	51,239	1,036	10,648	0,01103	159,1	14,423	0,0	0,000
33 13,799 71 52,530 0,992 11,464 0,01137 50,6 4,449 0,0 0,000 33 15,772 71 52,531 0,992 11,464 0,01137 58,7 5,165 0,0 0,000 33 16,033 71 51,522 0,992 11,427 0,01133 270,0 23,827 0,0 0,000 33 16,975 71 52,738 0,992 11,931 0,01183 33,9 2,866 0,0 0,000 33 18,109 71 51,722 0,992 11,445 0,01135 173,9 15,1319 0,0 0,000 33 20,023 71 51,996 0,992 11,445 0,01135 173,9 15,319 0,0 0,000 33 23,084 71 52,645 0,992 11,427 0,01133 279,0 24,617 0,0 0,000 33 24,251 71 52,368 0,992 11,644 0,0	33	10,557	71	52,375	0,992	11,931	0,01183	136,1	11,501	0,0	0,000
33 15,772 71 52,531 0,992 11,464 0,01137 58,7 5,165 0,0 0,000 33 16,033 71 51,522 0,992 11,427 0,01133 270,0 23,827 0,0 0,000 33 16,975 71 52,738 0,992 11,931 0,01183 33,9 2,866 0,0 0,000 33 18,109 71 51,722 0,992 11,844 0,01135 173,9 15,319 0,0 0,000 33 20,023 71 51,601 0,992 11,445 0,01135 173,9 15,319 0,0 0,000 33 23,084 71 52,545 0,992 11,445 0,01133 20,0 0,000 0,0 0,0 0,000 33 23,505 71 51,294 0,992 11,427 0,01133 279,0 24,617 0,0 0,000 33 26,023 71 51,652 0,992 11,464<	33	12,022	71	51,295	0,992	11,427	0,01133	261,0	23,032	0,0	0,000
33 16,033 71 51,522 0,992 11,427 0,01133 270,0 23,827 0,0 0,000 33 16,975 71 52,738 0,992 11,931 0,01183 33,9 2,866 0,0 0,000 33 18,109 71 51,722 0,992 11,893 0,01179 142,9 12,114 0,0 0,000 33 20,023 71 51,996 0,992 11,485 0,01135 173,9 15,319 0,0 0,000 33 23,084 71 51,601 0,992 13,685 0,01357 414,0 30,505 0,0 0,000 33 23,084 71 52,545 0,992 11,427 0,01133 279,0 24,617 0,0 0,000 33 24,251 71 52,368 0,992 11,464 0,01137 184,7 16,244 0,0 0,000 33 26,023 71 50,642 5,553 11,427	33	13,799	71	52,530	0,992	11,464	0,01137	50,6	4,449	0,0	0,000
33 16,975 71 52,738 0,992 11,931 0,01183 33,9 2,866 0,0 0,000 33 18,109 71 51,722 0,992 11,893 0,01179 142,9 12,114 0,0 0,000 33 20,023 71 51,996 0,992 11,445 0,01135 173,9 15,319 0,0 0,000 33 21,633 71 51,601 0,992 13,685 0,01357 414,0 30,505 0,0 0,000 33 23,084 71 52,545 0,992 11,427 0,01133 279,0 24,617 0,0 0,000 33 24,251 71 51,294 0,992 11,427 0,01133 279,0 24,617 0,0 0,000 33 25,053 71 51,552 0,992 11,427 0,01133 287,0 25,329 0,0 0,000 33 26,023 71 50,642 5,553 11,427	33	15,772	71	52,531	0,992	11,464	0,01137	58,7	5,165	0,0	0,000
33 18,109 71 51,722 0,992 11,893 0,01179 142,9 12,114 0,0 0,000 33 20,023 71 51,996 0,992 11,445 0,01135 173,9 15,319 0,0 0,000 33 21,633 71 51,601 0,992 13,685 0,01357 414,0 30,505 0,0 0,000 33 23,084 71 52,545 0,992 11,931 0,01183 0,0 0,000 0,0 0,000 33 23,757 71 51,294 0,992 11,427 0,01133 279,0 24,617 0,0 0,000 33 24,251 71 52,368 0,992 11,427 0,01133 287,0 25,329 0,0 0,000 33 26,023 71 50,679 0,992 11,651 0,01155 360,0 31,158 0,0 0,000 33 28,054 71 50,642 5,553 11,427 0	33	16,033	71	51,522	0,992	11,427	0,01133	270,0	23,827	0,0	0,000
33 20,023 71 51,996 0,992 11,445 0,01135 173,9 15,319 0,0 0,000 33 21,633 71 51,601 0,992 13,685 0,01357 414,0 30,505 0,0 0,000 33 23,084 71 52,545 0,992 11,931 0,01133 0,0 0,000 0,0 0,000 33 23,757 71 51,294 0,992 11,427 0,01133 279,0 24,617 0,0 0,000 33 24,251 71 52,368 0,992 11,427 0,01133 287,0 25,329 0,0 0,000 33 26,023 71 50,679 0,992 11,651 0,01155 360,0 31,158 0,0 0,000 33 26,077 71 50,642 5,553 11,427 0,06346 1764,0 27,798 0,0 0,000 33 28,054 71 49,403 0,992 11,669	33	16,975	71	52,738	0,992	11,931	0,01183	33,9	2,866	0,0	0,000
33 21,633 71 51,601 0,992 13,685 0,01357 414,0 30,505 0,0 0,000 33 23,084 71 52,545 0,992 11,931 0,01183 0,0 0,000 0,0 0,000 33 23,757 71 51,294 0,992 11,427 0,01133 279,0 24,617 0,0 0,000 33 24,251 71 52,368 0,992 11,464 0,01137 184,7 16,244 0,0 0,000 33 25,053 71 51,552 0,992 11,427 0,01133 287,0 25,329 0,0 0,000 33 26,023 71 50,679 0,992 11,651 0,01155 360,0 31,158 0,0 0,000 33 26,077 71 50,642 5,553 11,427 0,06346 1764,0 27,798 0,0 0,000 33 28,054 71 49,403 0,992 11,184	33	18,109	71	51,722	0,992	11,893	0,01179	142,9	12,114	0,0	0,000
33 23,084 71 52,545 0,992 11,931 0,01183 0,0 0,000 0,0 0,000 33 23,757 71 51,294 0,992 11,427 0,01133 279,0 24,617 0,0 0,000 33 24,251 71 52,368 0,992 11,464 0,01137 184,7 16,244 0,0 0,000 33 25,053 71 51,552 0,992 11,427 0,01133 287,0 25,329 0,0 0,000 33 26,023 71 50,679 0,992 11,651 0,01155 360,0 31,158 0,0 0,000 33 26,077 71 50,642 5,553 11,427 0,06346 1764,0 27,798 0,0 0,000 33 28,054 71 49,403 0,992 11,669 0,01157 636,0 54,956 0,0 0,000 33 28,232 71 50,448 0,992 11,651	33	20,023	71	51,996	0,992	11,445	0,01135	173,9	15,319	0,0	0,000
33 23,757 71 51,294 0,992 11,427 0,01133 279,0 24,617 0,0 0,000 33 24,251 71 52,368 0,992 11,464 0,01137 184,7 16,244 0,0 0,000 33 25,053 71 51,552 0,992 11,427 0,01133 287,0 25,329 0,0 0,000 33 26,023 71 50,679 0,992 11,651 0,01155 360,0 31,158 0,0 0,000 33 26,077 71 50,642 5,553 11,427 0,06346 1764,0 27,798 0,0 0,000 33 28,054 71 49,403 0,992 11,669 0,01157 636,0 54,956 0,0 0,000 33 28,054 71 49,403 0,992 11,661 0,01155 666,0 57,642 0,0 0,000 33 28,232 71 50,448 0,992 11,408 <	33	21,633	71	51,601	0,992	13,685	0,01357	414,0	30,505	0,0	0,000
33 24,251 71 52,368 0,992 11,464 0,01137 184,7 16,244 0,0 0,000 33 25,053 71 51,552 0,992 11,427 0,01133 287,0 25,329 0,0 0,000 33 26,023 71 50,679 0,992 11,651 0,01155 360,0 31,158 0,0 0,000 33 26,077 71 50,642 5,553 11,427 0,06346 1764,0 27,798 0,0 0,000 33 27,507 71 51,606 0,992 11,669 0,01157 636,0 54,956 0,0 0,000 33 28,054 71 49,403 0,992 11,844 0,01109 0,0 0,000 0,0 0,000 33 28,360 71 48,298 0,992 11,408 0,01131 162,0 14,319 0,0 0,000 33 28,419 71 51,954 0,992 11,84 0	33	23,084	71	52,545	0,992	11,931	0,01183	0,0	0,000	0,0	0,000
33 25,053 71 51,552 0,992 11,427 0,01133 287,0 25,329 0,0 0,000 33 26,023 71 50,679 0,992 11,651 0,01155 360,0 31,158 0,0 0,000 33 26,077 71 50,642 5,553 11,427 0,06346 1764,0 27,798 0,0 0,000 33 27,507 71 51,606 0,992 11,669 0,01157 636,0 54,956 0,0 0,000 33 28,054 71 49,403 0,992 11,669 0,01155 636,0 54,956 0,0 0,000 33 28,232 71 50,448 0,992 11,651 0,01155 666,0 57,642 0,0 0,000 33 28,360 71 48,298 0,992 11,408 0,01131 162,0 14,319 0,0 0,000 33 29,200 71 49,222 0,992 11,84 <t< td=""><td>33</td><td>23,757</td><td>71</td><td>51,294</td><td>0,992</td><td>11,427</td><td>0,01133</td><td>279,0</td><td>24,617</td><td>0,0</td><td>0,000</td></t<>	33	23,757	71	51,294	0,992	11,427	0,01133	279,0	24,617	0,0	0,000
33 26,023 71 50,679 0,992 11,651 0,01155 360,0 31,158 0,0 0,000 33 26,077 71 50,642 5,553 11,427 0,06346 1764,0 27,798 0,0 0,000 33 27,507 71 51,606 0,992 11,669 0,01157 636,0 54,956 0,0 0,000 33 28,054 71 49,403 0,992 11,651 0,01155 666,0 57,642 0,0 0,000 33 28,232 71 50,448 0,992 11,651 0,01155 666,0 57,642 0,0 0,000 33 28,360 71 48,298 0,992 11,408 0,01131 162,0 14,319 0,0 0,000 33 28,419 71 51,954 0,992 11,931 0,01183 26,6 2,246 0,0 0,000 33 33,334 71 54,590 0,992 11,912 <td< td=""><td>33</td><td>24,251</td><td>71</td><td>52,368</td><td>0,992</td><td>11,464</td><td>0,01137</td><td>184,7</td><td>16,244</td><td>0,0</td><td>0,000</td></td<>	33	24,251	71	52,368	0,992	11,464	0,01137	184,7	16,244	0,0	0,000
33 26,077 71 50,642 5,553 11,427 0,06346 1764,0 27,798 0,0 0,000 33 27,507 71 51,606 0,992 11,669 0,01157 636,0 54,956 0,0 0,000 33 28,054 71 49,403 0,992 11,184 0,01109 0,0 0,000 0,0 0,000 33 28,232 71 50,448 0,992 11,651 0,01155 666,0 57,642 0,0 0,000 33 28,360 71 48,298 0,992 11,408 0,01131 162,0 14,319 0,0 0,000 33 28,419 71 51,954 0,992 11,931 0,01183 26,6 2,246 0,0 0,000 33 29,200 71 49,222 0,992 11,464 0,01109 468,0 42,195 0,0 0,000 33 33,3953 71 54,590 0,992 11,912 0	33	25,053	71	51,552	0,992	11,427	0,01133	287,0	25,329	0,0	0,000
33 27,507 71 51,606 0,992 11,669 0,01157 636,0 54,956 0,0 0,000 33 28,054 71 49,403 0,992 11,184 0,01109 0,0 0,000 0,0 0,000 33 28,232 71 50,448 0,992 11,651 0,01155 666,0 57,642 0,0 0,000 33 28,360 71 48,298 0,992 11,408 0,01131 162,0 14,319 0,0 0,000 33 28,419 71 51,954 0,992 11,931 0,01183 26,6 2,246 0,0 0,000 33 29,200 71 49,222 0,992 11,184 0,01109 468,0 42,195 0,0 0,000 33 33,334 71 54,590 0,992 11,464 0,01137 0,0 0,000 0,0 0,000 33 33,953 71 57,428 0,992 11,912 0,0118	33	26,023	71	50,679	0,992	11,651	0,01155	360,0	31,158	0,0	0,000
33 28,054 71 49,403 0,992 11,184 0,01109 0,0 0,000 0,0 0,000 33 28,232 71 50,448 0,992 11,651 0,01155 666,0 57,642 0,0 0,000 33 28,360 71 48,298 0,992 11,408 0,01131 162,0 14,319 0,0 0,000 33 28,419 71 51,954 0,992 11,931 0,01183 26,6 2,246 0,0 0,000 33 29,200 71 49,222 0,992 11,184 0,01109 468,0 42,195 0,0 0,000 33 33,334 71 54,590 0,992 11,464 0,01137 0,0 0,000 0,0 0,000 33 33,592 71 55,267 0,992 11,912 0,01181 0,0 0,000 0,0 0,000 33 34,891 71 54,507 0,992 11,184 0,01109 </td <td></td> <td></td> <td></td> <td></td> <td>5,553</td> <td>11,427</td> <td>0,06346</td> <td>1764,0</td> <td></td> <td>0,0</td> <td></td>					5,553	11,427	0,06346	1764,0		0,0	
33 28,232 71 50,448 0,992 11,651 0,01155 666,0 57,642 0,0 0,000 33 28,360 71 48,298 0,992 11,408 0,01131 162,0 14,319 0,0 0,000 33 28,419 71 51,954 0,992 11,931 0,01183 26,6 2,246 0,0 0,000 33 29,200 71 49,222 0,992 11,184 0,01109 468,0 42,195 0,0 0,000 33 33,334 71 54,590 0,992 11,464 0,01137 0,0 0,000 0,000 33 33,592 71 55,267 0,992 11,912 0,01181 0,0 0,000 0,0 0,000 33 34,891 71 54,507 0,992 11,184 0,01109 324,0 29,212 0,0 0,000 33 34,987 71 59,472 0,992 11,31 0,01183 0,0	33	27,507	71	51,606	0,992	11,669	0,01157	636,0	54,956	0,0	0,000
33 28,360 71 48,298 0,992 11,408 0,01131 162,0 14,319 0,0 0,000 33 28,419 71 51,954 0,992 11,931 0,01183 26,6 2,246 0,0 0,000 33 29,200 71 49,222 0,992 11,184 0,01109 468,0 42,195 0,0 0,000 33 33,334 71 54,590 0,992 11,464 0,01137 0,0 0,000 0,000 0,000 33 33,592 71 55,267 0,992 11,912 0,01181 0,0 0,000 0,0 0,000 33 33,953 71 57,428 0,992 11,931 0,01183 0,0 0,000 0,0 0,000 33 34,891 71 54,507 0,992 11,184 0,01109 324,0 29,212 0,0 0,000 33 34,987 71 59,472 0,992 11,931 0,01183			71				0,01109			0,0	0,000
33 28,419 71 51,954 0,992 11,931 0,01183 26,6 2,246 0,0 0,000 33 29,200 71 49,222 0,992 11,184 0,01109 468,0 42,195 0,0 0,000 33 33,334 71 54,590 0,992 11,464 0,01137 0,0 0,000 0,0 0,000 33 33,592 71 55,267 0,992 11,912 0,01181 0,0 0,000 0,0 0,000 33 33,953 71 57,428 0,992 11,931 0,01183 0,0 0,000 0,0 0,000 33 34,891 71 54,507 0,992 11,184 0,01109 324,0 29,212 0,0 0,000 33 34,987 71 59,472 0,992 11,931 0,01183 0,0 0,000 0,0 0,000 33 34,987 71 52,833 0,992 10,736 0,0165			71								
33 29,200 71 49,222 0,992 11,184 0,01109 468,0 42,195 0,0 0,000 33 33,334 71 54,590 0,992 11,464 0,01137 0,0 0,000 0,0 0,000 33 33,592 71 55,267 0,992 11,912 0,01181 0,0 0,000 0,0 0,000 33 33,953 71 57,428 0,992 11,931 0,01183 0,0 0,000 0,0 0,000 33 34,891 71 54,507 0,992 11,184 0,01109 324,0 29,212 0,0 0,000 33 34,987 71 59,472 0,992 11,931 0,01183 0,0 0,000 0,0 0,000 33 34,987 71 52,833 0,992 10,736 0,01065 126,0 11,834 0,0 0,000 33 35,952 71 51,582 0,992 11,203 0,01111 <td></td>											
33 33,334 71 54,590 0,992 11,464 0,01137 0,0 0,000 0,0 0,000 33 33,592 71 55,267 0,992 11,912 0,01181 0,0 0,000 0,0 0,000 33 33,953 71 57,428 0,992 11,931 0,01183 0,0 0,000 0,000 0,000 33 34,891 71 54,507 0,992 11,184 0,01109 324,0 29,212 0,0 0,000 33 34,950 71 59,472 0,992 11,931 0,01183 0,0 0,000 0,0 0,000 33 34,987 71 52,833 0,992 10,736 0,01065 126,0 11,834 0,0 0,000 33 35,952 71 51,582 0,992 11,203 0,01111 5,3 0,474 0,0 0,000 33 36,061 71 54,312 0,992 11,184 0,01109 <td></td>											
33 33,592 71 55,267 0,992 11,912 0,01181 0,0 0,000 0,0 0,000 33 33,953 71 57,428 0,992 11,931 0,01183 0,0 0,000 0,0 0,000 33 34,891 71 54,507 0,992 11,184 0,01109 324,0 29,212 0,0 0,000 33 34,950 71 59,472 0,992 11,931 0,01183 0,0 0,000 0,0 0,000 33 34,987 71 52,833 0,992 10,736 0,01065 126,0 11,834 0,0 0,000 33 35,952 71 51,582 0,992 11,203 0,01111 5,3 0,474 0,0 0,000 33 36,061 71 54,312 0,992 11,184 0,01109 180,0 16,229 0,0 0,000 33 36,143 71 58,128 0,992 10,979 0,01089 <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td>					-			,			
33 33,953 71 57,428 0,992 11,931 0,01183 0,0 0,000 0,000 0,000 33 34,891 71 54,507 0,992 11,184 0,01109 324,0 29,212 0,0 0,000 33 34,950 71 59,472 0,992 11,931 0,01183 0,0 0,000 0,0 0,000 33 34,987 71 52,833 0,992 10,736 0,01065 126,0 11,834 0,0 0,000 33 35,952 71 51,582 0,992 11,203 0,01111 5,3 0,474 0,0 0,000 33 36,061 71 54,312 0,992 11,184 0,01109 180,0 16,229 0,0 0,000 33 36,143 71 58,128 0,992 10,979 0,01089 187,5 17,222 0,0 0,000	33	33,334	71	54,590		11,464	0,01137	0,0	0,000	0,0	0,000
33 34,891 71 54,507 0,992 11,184 0,01109 324,0 29,212 0,0 0,000 33 34,950 71 59,472 0,992 11,931 0,01183 0,0 0,000 0,000 0,000 33 34,987 71 52,833 0,992 10,736 0,01065 126,0 11,834 0,0 0,000 33 35,952 71 51,582 0,992 11,203 0,01111 5,3 0,474 0,0 0,000 33 36,061 71 54,312 0,992 11,184 0,01109 180,0 16,229 0,0 0,000 33 36,143 71 58,128 0,992 10,979 0,01089 187,5 17,222 0,0 0,000										-	0,000
33 34,950 71 59,472 0,992 11,931 0,01183 0,0 0,000 0,00 0,000 33 34,987 71 52,833 0,992 10,736 0,01065 126,0 11,834 0,0 0,000 33 35,952 71 51,582 0,992 11,203 0,01111 5,3 0,474 0,0 0,000 33 36,061 71 54,312 0,992 11,184 0,01109 180,0 16,229 0,0 0,000 33 36,143 71 58,128 0,992 10,979 0,01089 187,5 17,222 0,0 0,000											
33 34,987 71 52,833 0,992 10,736 0,01065 126,0 11,834 0,0 0,000 33 35,952 71 51,582 0,992 11,203 0,01111 5,3 0,474 0,0 0,000 33 36,061 71 54,312 0,992 11,184 0,01109 180,0 16,229 0,0 0,000 33 36,143 71 58,128 0,992 10,979 0,01089 187,5 17,222 0,0 0,000											
33 35,952 71 51,582 0,992 11,203 0,01111 5,3 0,474 0,0 0,000 33 36,061 71 54,312 0,992 11,184 0,01109 180,0 16,229 0,0 0,000 33 36,143 71 58,128 0,992 10,979 0,01089 187,5 17,222 0,0 0,000											0,000
33 36,061 71 54,312 0,992 11,184 0,01109 180,0 16,229 0,0 0,000 33 36,143 71 58,128 0,992 10,979 0,01089 187,5 17,222 0,0 0,000											
33 36,143 71 58,128 0,992 10,979 0,01089 187,5 17,222 0,0 0,000											
										-	
33 36,829 72 0,670 0,992 11,464 0,01137 0,0 0,000 0,00 0,000											0,000
	33	36,829	72	0,670	0,992	11,464	0,01137	0,0	0,000	0,0	0,000

33	36,924	72	1,277	0,992	11,707	0,01161	0,0	0,000	0,0	0,000
33	37,048	71	55,509	0,992	10,960	0,01087	126,0	11,592	0,0	0,000
33	37,919	71	57,967	0,992	11,427	0,01133	252,0	22,238	0,0	0,000
33	38,797	71	59,161	0,992	10,960	0,01087	234,0	21,529	0,0	0,000
33	38,894	71	56,722	0,992	10,960	0,01087	0,0	0,000	0,0	0,000
33	41,836	72	1,246	0,992	11,427	0,01133	27,0	2,383	0,0	0,000
33	45,168	72	3,252	0,992	11,427	0,01133	108,0	9,531	0,0	0,000
33	45,208	72	3,442	0,992	11,203	0,01111	2,0	0,181	0,0	0,000
33	48,598	72	5,229	0,992	11,427	0,01133	81,0	7,148	0,0	0,000
33	51,690	72	7,056	0,992	11,427	0,01133	36,0	3,177	0,0	0,000
33	55,939	72	8,343	0,992	11,893	0,01179	72,0	6,104	0,0	0,000
33	59,329	72	9,358	0,992	11,427	0,01133	0,0	0,000	0,0	0,000
34	3,878	72	13,423	0,992	11,483	0,01139	0,0	0,000	0,0	0,000
34	4,630	72	12,209	0,992	11,669	0,01157	16,9	1,456	0,0	0,000
34	4,716	72	11,024	0,992	11,427	0,01133	0,0	0,000	0,0	0,000
34	5,181	72	13,420	0,331	14,152	0,00468	0,0	0,000	0,0	0,000
34	6,770	72	13,642	0.992	11.912	0.01181	27.0	2.286	0.0	0.000
34	6.773	72	11.243	0.992	11.427	0.01133	54.0	4.765	0.0	0.000
34	7.657	72	11.026	0.992	11.427	0.01133	54.0	4.765	0.0	0.000
34	7.665	72	14.939	0.992	11.931	0.01183	0.0	0.000	0.0	0.000
34	8.402	72	11.072	0.992	11.427	0.01133	36.0	3.177	0.0	0.000
34	9.558	72	14.743	0.992	11.688	0.01159	0.0	0.000	0.0	0.000
34	9.606	72	12.398	0.992	11.669	0.01157	54.0	4.666	0.0	0.000
34	10.410	72	14.847	0.992	11.688	0.01159	2.2	0.190	0.0	0.000
34	10.410	72	12.474	0.992	11.669	0.01157	54.0	4.666	0.0	0.000
34	12.308	72	11.306	0.331	11.427	0.00378	0.0	0.000	0.0	0.000
34	12.622	72	13.793	0.992	11.445	0.01135	0.0	0.000	0.0	0.000
34	13.527	72	15.159	0.992	11.464	0.01137	0.0	0.000	0.0	0.000
34	14.526	72	15.735	0.992	11.707	0.01161	0.0	0.000	0.0	0.000
34	14.537	72	11.207	0.992	11.427	0.01133	52.2	4.608	0.0	0.000
34	14.586	72	14.966	1.058	11.688	0.01236	0.0	0.000	0.0	0.000
34	15.338	72	12.733	1.058	11.669	0.01234	0.0	0.000	0.0	0.000
34	15.508	72	16.032	0.992	12.173	0.01207	0.0	0.000	0.0	0.000
34	16.471	72	13.892	0.992	11.912	0.01181	0.0	0.000	0.0	0.000
34	16.594	72	10.161	0.992	11.427	0.01133	54.0	4.765	0.0	0.000
34	17.214	72	12.541	0.992	11.669	0.01157	27.0	2.333	0.0	0.000
34	17.408	72	14.510	0.346	10.700	0.00370	11.3	3.044	0.0	0.000
34	18.605	72	11.314	1.019	11.117	0.01132	181.2	15.999	0.0	0.000
34	19.377	72	10.128	0.992	11.893	0.01179	126.0	10.683	0.0	0.000
34	19.566	72	12.538	1.093	10.450	0.01142	8.0	0.700	0.0	0.000
34	20.349	72	9.842	1.077	10.793	0.01163	135.0	11.611	0.0	0.000
34	20.729	72	12.487	0.926	10.900	0.01009	0.0	0.000	0.0	0.000
34	21.591	72	11.226	0.974	11.650	0.01134	64.6	5.699	0.0	0.000
34	21.726	72	12.427	0.988	10.413	0.01028	0.0	0.000	0.0	0.000
34	22.702	72	8.984	1.174	10.915	0.01281	108.0	8.429	0.0	0.000
34	23.000	72	10.938	0.992	11.445	0.01135	144.0	12.687	0.0	0.000
34	23.541	72	10.251	0.952	11.993	0.01142	162.0	14.182	0.0	0.000
34	24.429	72	5.082	0.992	10.673	0.01058	0.0	0.000	0.0	0.000
34	24.552	72	11.748	0.989	11.986	0.01185	0.0	0.000	0.0	0.000
34	24.828	72	9.181	1.309	11.350	0.01485	216.0	14.541	0.0	0.000

34	25.454	72	5.506	0.992	10.673	0.01058	918.0	86.730	0.0	0.000
34	25.472	72	6.643	0.992	10.590	0.01050	1134.0	107.984	0.0	0.000
34	25.496	72	10.942	1.039	11.000	0.01143	34.8	3.044	0.0	0.000
34	26.807	72	11.486	0.992	11.931	0.01183	0.0	0.000	0.0	0.000
34	27.442	72	10.437	0.992	11.445	0.01135	30.4	2.680	0.0	0.000
34	27.577	72	5.613	0.992	10.673	0.01058	0.0	0.000	0.0	0.000
34	28.703	72	8.359	0.992	11.651	0.01155	32.9	2.847	0.0	0.000
34	29.290	72	9.843	1.038	11.467	0.01191	216.0	18.140	0.0	0.000
34	29.617	72	7.216	0.992	10.590	0.01050	1026.0	97.699	0.0	0.000
34	29.649	72	5.710	0.992	10.319	0.01023	864.0	84.426	0.0	0.000
34	29.811	72	11.738	1.111	11.150	0.01239	0.0	0.000	0.0	0.000
34	30.770	72	10.725	1.103	11.973	0.01320	309.7	23.459	0.0	0.000
34	31.850	72	11.640	0.395	11.800	0.00466	0.0	0.000	0.0	0.000
34	32.664	72	10.781	0.992	11.893	0.01179	450.0	38.153	0.0	0.000
34	32.738	72	9.734	1.080	11.072	0.01195	18.0	1.506	0.0	0.000
34	33.707	72	12.403	0.992	11.931	0.01183	0.0	0.000	0.0	0.000
34	33.934	72	9.742	1.069	11.209	0.01198	0.0	0.000	0.0	0.000
34	35.704	72	9.896	0.994	11.236	0.01117	0.0	0.000	0.0	0.000
34	35.843	72	12.303	0.952	11.852	0.01128	405.0	35.897	0.0	0.000
34	35.951	72	13.019	1.007	12.100	0.01219	0.0	0.000	0.0	0.000
34	37.608	72	11.121	1.091	11.174	0.01219	27.0	2.215	0.0	0.000
34	37.710	72	13.588	1.065	12.450	0.01326	0.0	0.000	0.0	0.000
34	39.017	72	9.660	1.051	9.950	0.01045	0.0	0.000	0.0	0.000
34	39.756	72	11.184	1.118	10.288	0.01151	9.0	0.782	0.0	0.000
34	39.779	72	13.382	1.224	11.356	0.01390	41.7	2.999	0.0	0.000
34	42.619	72	13.696	0.992	11.893	0.01179	486.0	41.205	0.0	0.000
34	46.289	72	16.730	0.992	11.893	0.01179	9.0	0.763	0.0	0.000
34	50.472	72	17.790	0.992	11.669	0.01157	54.0	4.666	0.0	0.000
34	53.207	72	30.147	0.992	11.427	0.01133	0.0	0.000	0.0	0.000
34	54.415	72	32.461	0.992	11.445	0.01135	0.0	0.000	0.0	0.000
34	54.439	72	20.479	0.992	11.669	0.01157	0.0	0.000	0.0	0.000
34	57.910	72	30.076	1.034	11.967	0.01237	0.0	0.000	0.0	0.000
34	58.033	72	31.050	1.117	11.047	0.01234	0.0	0.000	0.0	0.000
34	59.347	72	32.595	1.058	12.014	0.01271	0.0	0.000	0.0	0.000
35	0.225	72	30.179	0.992	11.184	0.01109	0.0	0.000	0.0	0.000
35	1.275	72	32.516	1.048	12.321	0.01291	0.0	0.000	0.0	0.000
35	2.775	72	30.289	0.962	12.356	0.01189	0.0	0.000	0.0	0.000
35	5.337	72	37.251	0.826	11.878	0.00981	0.6	0.059	0.0	0.000
35	12.924	72	41.427	0.992	11.445	0.01135	4.5	0.396	0.0	0.000
35	13.421	72	42.439	0.992	11.669	0.01157	0.0	0.000	0.0	0.000
35	15.489	72	42.182	0.992	11.427	0.01133	0.0	0.000	0.0	0.000
35	16.065	72	37.554	0.992	11.184	0.01109	0.0	0.000	0.0	0.000
35	22.879	72	58.175	0.992	13.685	0.01357	116.1	8.555	0.0	0.000
35	23.264	72	58.487	0.992	11.669	0.01157	0.0	0.000	0.0	0.000
35	51.834	72	55.709	0.926	11.400	0.01056	0.0	0.000	180.0	17.051
35	52.442	72	54.409	0.976	11.529	0.01125	0.0	0.000	252.0	22.405
35	52.712	72	52.090	1.058	11.184	0.01183	0.0	0.000	126.0	10.650
35	53.878	72	56.401	0.992	11.427	0.01133	5.8	0.511	2.2	0.195
35	54.204	72	56.371	10.975	11.203	0.12295	0.0	0.000	18.0	0.146
35	54.251	72	53.620	0.854	11.311	0.00966	0.0	0.000	288.0	29.816

35 55.372 72 54.601 0.803 12.300 0.00987 0.0 0.000 0.0 0.000 335 55.569 72 53.385 1.014 11.720 0.01188 0.0 0.000 234.0 19.691 35 57.498 72 54.622 0.898 11.700 0.01050 0.0 0.000 0.0 0.000 35 57.507 72 53.790 0.992 11.427 0.01133 2.0 0.175 73.0 6.444 35 59.793 72 54.021 8.330 11.427 0.09113 2.0 0.000 720.0 7.564 36 0.224 73 24.583 0.992 11.669 0.01157 0.0 0.000 0.0 0.000 36 0.245 73 23.506 0.992 11.203 0.01111 72.0 6.481 0.0 0.000 36 2.455 73 23.506 0.992 11.427 0.01133 288.0 25.415 0.0 0.000 36 3.465 73 25.868 0.992 11.688 0.01159 0.0 0.000 0.0 0.000 36 4.986 73 25.7473 0.992 11.688 0.01159 0.0 0.000 0.0 0.000 36 4.986 73 25.513 0.992 11.688 0.01159 0.0 0.000 0.0 0.000 36 6.388 72 57.790 0.992 11.427 0.01133 0.0 0.000 0.0 0.000 0.3 0.000 36 6.888 72 57.790 0.992 11.688 0.01159 0.0 0.000 0.0 0.000 0.3 0.000 36 6.888 72 57.790 0.992 11.681 0.01155 0.0 0.000 0.0 0.000 0.3 0.000 0.3 0.000 0.0 0.000 0.3 0.000 0.3 0.000 0.0 0.000											
35 55.569 72 53.385 1.014 11.720 0.01188 0.0 0.000 234.0 19.691 35 57.498 72 54.622 0.898 11.700 0.01050 0.0 0.000 0.0 0.000 0.0 55.57.978 72 53.790 0.992 11.427 0.01133 2.0 0.175 73.0 6.444 35 59.793 72 54.021 8.330 11.427 0.09519 0.0 0.000 0.0 0.000 0.0 0.000 36 0.224 73 24.583 0.992 11.696 0.01157 0.0 0.000 0.0 0.000 36 2.455 73 23.506 0.992 11.203 0.01111 72.0 6.481 0.0 0.000 36 2.455 73 23.506 0.992 11.203 0.01111 18.0 1.620 0.0 0.000 36 3.465 73 25.868 0.992 11.688 0.01159 0.0 0.000 0.0 0.000 36 4.986 73 25.858 0.992 11.688 0.01159 0.0 0.000 0.0 0.000 36 6.328 72 55.73 0.992 11.688 0.01159 0.0 0.000 0.0 0.000 36 6.328 72 55.73 0.992 11.688 0.01159 0.0 0.000 0.0 0.000 36 6.328 72 55.73 0.992 11.681 0.01159 0.0 0.000 0.0 0.000 36 6.328 72 55.73 0.992 11.681 0.01159 0.0 0.000 0.0 0.000 36 6.328 72 55.73 0.992 11.681 0.01159 0.0 0.000 0.0 0.000 36 7.758 72 56.304 0.992 11.681 0.01155 0.0 0.000 0.0 0.000 36 3.7958 72 55.304 0.992 11.688 0.01159 0.0 0.000 0.0 0.000 36 8.791 72 58.907 4.231 11.184 0.04732 0.0 0.000 340.0 6.424 36 8.791 72 58.957 0.992 11.688 0.01159 0.0 0.000 540.0 46.812 36 8.791 72 58.957 0.992 11.632 0.01154 0.0 0.000 540.0 46.812 36 9.714 73 0.101 0.992 11.632 0.01154 0.0 0.000 540.0 46.812 36 9.714 73 3.1269 0.992 11.632 0.01154 0.0 0.000 0.0 0.000 36 0.746 72 55.661 0.992 11.632 0.01154 0.0 0.000 0.0 0.000 36 10.476 72 55.661 0.992 11.632 0.01154 0.0 0.000 0.0 0.000 36 10.476 72 55.661 0.992 11.632 0.01154 0.0 0.000 0.0 0.000 36 10.476 72 55.661 0.992 11.6	35	54.625	72	51.447	6.149	11.651	0.07164	0.0	0.000	180.0	2.513
35 57.498 72 54.622 0.898 11.700 0.01050 0.0 0.000 0.0 0.000 335 57.507 72 53.790 0.992 11.427 0.01133 2.0 0.175 73.0 6.448 35 59.793 72 54.021 8.330 11.427 0.09519 0.0 0.000 720.0 7.504 36 0.224 73 24.583 0.992 11.669 0.01157 0.0 0.000 0.0 0.000 36 2.086 73 25.821 0.992 11.203 0.01111 72.0 6.481 0.0 0.000 36 2.485 73 23.506 0.992 11.203 0.01111 18.0 1.620 0.0 0.000 36 3.465 73 25.868 0.992 11.203 0.01111 18.0 1.620 0.0 0.000 36 3.537 73 27.473 0.992 11.688 0.01159 0.0 0.000 0.0 0.000 36 6.328 72 57.790 0.992 11.427 0.01133 0.0 0.000 0.0 0.000 36 6.328 72 57.790 0.992 11.427 0.01133 0.0 0.000 0.0 0.000 36 6.388 72 55.513 0.992 11.848 0.01169 0.0 0.000 0.0 0.000 36 6.388 72 55.513 0.992 11.488 0.01169 0.0 0.000 0.0 0.000 36 7.758 72 56.304 0.992 11.688 0.01151 0.0 0.000 0.0 0.000 0.0 36 6.373 73 31.188 0.992 11.688 0.01151 0.0 0.000 0.0 0.00 0.0 36 8.371 73 31.188 0.992 11.688 0.01151 0.0 0.000 3.04.0 6.424 3.6 3.7 3.7 3.188 0.992 11.688 0.01151 0.0 0.000 3.04.0 6.424 3.6 3.7 3.7 3.1818 0.992 11.631 0.01155 0.0 0.000 0.0 0.000 3.6 8.791 72 58.957 0.992 11.632 0.01154 0.0 0.000 3.04.0 6.424 3.6 3.7 3.1818 0.992 11.688 0.01159 0.0 0.000 0.0 0.000 3.6 3.6 3.77 3.3 3.581 3.9 3.92 11.688 0.01154 0.0 0.000 3.000	35	55.372	72	54.601	0.803	12.300	0.00987	0.0	0.000	0.0	0.000
35 57.507 72 53.790 0.992 11.427 0.01133 2.0 0.175 73.0 6.444 33 59.793 72 54.021 8.330 11.427 0.09519 0.0 0.000 720.0 7.564 73 24.823 0.992 11.690 0.01157 0.0 0.000 0.0 0.000 36 2.086 73 25.821 0.992 11.203 0.01111 72.0 6.481 0.0 0.000 36 2.455 73 23.506 0.992 11.427 0.01133 288.0 25.415 0.0 0.000 36 3.455 73 25.886 0.992 11.688 0.01159 0.0 0.000 0.0 0.000 36 3.537 73 27.473 0.992 11.688 0.01159 0.0 0.000 0.0 0.000 36 4.986 73 25.513 0.992 11.688 0.01159 0.0 0.000 0.0 0.000 36 6.328 72 57.790 0.992 11.688 0.01159 0.0 0.000 0.0 0.000 36 6.328 72 57.790 0.992 11.681 0.01169 0.0 0.000 0.0 0.000 36 6.328 72 55.513 0.992 11.681 0.01169 0.0 0.000 0.0 0.000 36 7.711 72 58.610 0.992 11.681 0.01159 0.0 0.000 0.0 0.000 36 7.758 72 56.304 0.992 11.681 0.01159 0.0 0.000 0.0 0.000 36 8.317 73 31.189 0.992 11.688 0.01159 0.0 0.000 0.0 0.000 36 8.317 73 31.189 0.992 11.688 0.01159 0.0 0.000 30.40 6.424 36 8.317 73 31.189 0.992 11.688 0.01159 0.0 0.000 30.40 6.424 36 8.317 73 31.189 0.992 11.683 0.01159 0.0 0.000 30.40 6.424 36 8.791 72 58.957 0.992 11.632 0.01154 0.0 0.000 540.0 46.80 36 7.714 73 0.101 0.992 11.632 0.01154 0.0 0.000 540.0 46.80 36 7.714 73 0.101 0.992 11.632 0.01154 0.0 0.000 0.0 0.000 36 10.476 73 5.566 0.992 11.485 0.01159 0.0 0.000 0.0 0.000 36 10.476 73 5.566 0.992 11.485 0.01154 0.0 0.000 0.0 0.000 36 10.476 73 5.566 0.992 11.485 0.01154 0.0 0.000 0.0 0.000 36 10.476 73 5.566 0.992 11.485 0.01154 0.0 0.000 0.0 0.000 0.0 0.000 36 11.4915 73 3.354 0.992 11.485 0.01154 0.0	35	55.569	72	53.385	1.014	11.720	0.01188	0.0	0.000	234.0	19.691
35 59,793 72 54,021 8,330 11,427 0.09519 0.0 0.000 720.0 7.564 36 0.224 73 24,583 0.992 11,669 0.01157 0.0 0.000 0.0 0.000 36 2,455 73 23,506 0.992 11,427 0.01131 228.0 25,415 0.0 0.000 36 2,455 73 23,506 0.992 11,427 0.01133 288.0 25,415 0.0 0.000 36 3,465 73 25,868 0.992 11,638 0.01159 0.0 0.000 0.0 0.000 36 3,537 73 27,473 0.992 11,688 0.01159 0.0 0.000 0.0 0.000 36 4,986 73 26,951 0.992 11,688 0.01159 0.0 0.000 0.0 0.000 36 6,328 72 57,790 0.992 11,614 0.01159 0.0 0.000 0.0 0.000 36 6,328 72 55,513 0.992 11,614 0.01159 0.0 0.000 0.0 0.000 36 7,758 72 56,304 0.992 11,631 0.01155 0.0 0.000 0.0 0.000 36 7,758 72 56,304 0.992 11,488 0.01131 0.0 0.000 468.0 41,367 36 7,969 72 58,807 4,231 11,184 0.01199 0.0 0.000 304.0 6,424 36 8,371 73 31,189 0.992 11,632 0.01154 0.0 0.000 0.00 0.000 36 8,791 72 58,651 0.992 11,632 0.01154 0.0 0.000 540.0 46.812 36 9,706 72 55,661 0.992 11,632 0.01154 0.0 0.000 0.0 0.000 36 10,476 72 56,029 0.992 11,632 0.01154 0.0 0.000 0.0 0.000 36 10,494 73 0.101 0.992 11,632 0.01154 0.0 0.000 0.0 0.000 36 10,494 73 31,299 0.992 11,445 0.01155 0.0 0.000 0.0 0.000 36 10,494 73 31,299 0.992 11,488 0.01131 0.0 0.000 0.0 0.000 36 11,493 73 3.347 0.992 11,488 0.01135 0.0 0.000 0.0 0.000 36 11,216 73 32,337 0.992 11,488 0.01135 0.0 0.000 0.0 0.000 36 11,576 72 56,762 0.992 11,488 0.01131 0.0 0.000 0.0 0.000 36 12,848 72 58,831 0.992 11,445 0.01155 0.0 0.000 0.0 0.000 36 12,848 72 58,853 0.992 11,408 0.01131 0.0 0.000 0.0 0.000 36	35	57.498	72	54.622	0.898	11.700	0.01050	0.0	0.000	0.0	0.000
36 0.224 73 24.583 0.992 11.669 0.01157 0.0 0.000 0.0 0.0 0.003 36 2.086 73 25.821 0.992 11.203 0.01111 72.0 6.481 0.0 0.000 36 3.465 73 25.868 0.992 11.203 0.01111 18.0 1.620 0.0 0.000 36 3.465 73 25.868 0.992 11.203 0.01111 18.0 1.620 0.0 0.000 36 3.537 73 27.473 0.992 11.688 0.01159 0.0 0.000 0.0 0.0 0.000 36 4.986 73 26.951 0.992 11.688 0.01159 0.0 0.000 0.0 0.0 0.000 36 6.328 72 57.790 0.992 11.688 0.01159 0.0 0.000 0.0 0.0 0.000 36 6.888 72 55.513 0.992 11.688 0.01155 0.0 0.000 0.0 0.0 0.000 36 6.888 72 55.513 0.992 11.681 0.01155 0.0 0.000 0.0 0.0 0.000 36 7.711 72 58.610 0.992 11.681 0.01155 0.0 0.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0	35	57.507	72	53.790	0.992	11.427	0.01133	2.0	0.175	73.0	6.444
36	35	59.793	72	54.021	8.330	11.427	0.09519	0.0	0.000	720.0	7.564
36	36	0.224	73	24.583	0.992	11.669	0.01157	0.0	0.000	0.0	0.000
36	36	2.086	73	25.821	0.992	11.203	0.01111	72.0	6.481	0.0	0.000
36	36	2.455	73	23.506	0.992	11.427	0.01133	288.0	25.415	0.0	0.000
36 4.986 73 26.951 0.992 11.688 0.01159 0.0 0.000 0.0 0.000 36 6.328 72 57.790 0.992 11.1427 0.01133 0.0 0.000 0.0 0.000 36 6.888 72 55.513 0.992 11.184 0.01109 0.0 0.000 60.0 5.410 36 7.758 72 56.304 0.992 11.651 0.01131 0.0 0.000 468.0 41.367 36 7.969 72 58.007 4.231 11.184 0.04732 0.0 0.000 304 6.424 36 8.317 73 31.189 0.992 11.638 0.01159 0.0 0.000 304 6.424 36 9.706 72 55.661 0.992 11.632 0.01154 0.0 0.000 20.0 0.000 36 10.476 72 56.661 0.992 11.4632 0.01154	36	3.465	73	25.868	0.992	11.203	0.01111	18.0	1.620	0.0	0.000
36 6.328 72 57.790 0.992 11.427 0.01133 0.0 0.000 0.0 0.000 36 6.888 72 55.513 0.992 11.681 0.01109 0.0 0.000 6.00 5.410 36 7.711 72 58.610 0.992 11.488 0.01131 0.0 0.000 468.0 41.367 36 7.969 72 58.007 4.231 11.184 0.04732 0.0 0.000 304.0 6.424 36 8.317 73 31.189 0.992 11.688 0.01159 0.0 0.000 0.0 0.000 36 8.791 72 58.957 0.992 11.632 0.01154 0.0 0.000 540.0 46.812 36 9.704 72 55.661 0.992 11.632 0.01154 0.0 0.000 27.0 23.406 36 10.494 73 31.269 0.992 11.632 0.01154	36	3.537	73	27.473	0.992	11.688	0.01159	0.0	0.000	0.0	0.000
36 6.888 72 55.513 0.992 11.184 0.01109 0.0 0.000 60.0 5.410 36 7.711 72 58.610 0.992 11.651 0.01155 0.0 0.000 0.0 0.000 36 7.758 72 58.007 4.231 11.184 0.04732 0.0 0.000 364.0 4.4367 36 7.969 72 58.007 4.231 11.184 0.04732 0.0 0.000 304.0 6.424 36 8.317 73 31.189 0.992 11.632 0.01154 0.0 0.000 540.0 46.812 36 9.706 72 55.661 0.992 11.632 0.01154 0.0 0.000 20.0 0.000 36 10.476 72 56.029 0.992 11.463 0.01154 0.0 0.000 0.0 0.000 36 10.476 72 56.029 0.992 11.465 0.0113	36	4.986	73	26.951	0.992	11.688	0.01159	0.0	0.000	0.0	0.000
36 7.711 72 58.610 0.992 11.651 0.01155 0.0 0.000 0.0 0.000 36 7.758 72 56.304 0.992 11.408 0.01131 0.0 0.000 468.0 41.367 36 7.969 72 58.007 4.231 11.184 0.04732 0.0 0.000 304.0 6.824 36 8.791 72 58.957 0.992 11.632 0.01154 0.0 0.000 0.0 0.000 36 8.791 72 58.957 0.992 11.632 0.01154 0.0 0.000 540.0 46.812 36 9.714 73 0.101 0.992 11.632 0.01154 0.0 0.000 270.0 23.406 36 10.476 72 56.029 0.992 11.445 0.01157 0.0 0.00 0.0 0.00 36 10.494 73 31.269 0.992 11.485 0.01131	36	6.328	72	57.790	0.992	11.427	0.01133	0.0	0.000	0.0	0.000
36	36	6.888	72	55.513	0.992	11.184	0.01109	0.0	0.000	60.0	5.410
36	36	7.711	72	58.610	0.992	11.651	0.01155	0.0	0.000	0.0	0.000
36 8.317 73 31.189 0.992 11.688 0.01159 0.0 0.000 0.0 0.000 36 8.791 72 58.957 0.992 11.632 0.01154 0.0 0.000 540.0 46.812 36 9.704 73 0.101 0.992 11.632 0.01154 0.0 0.000 270.0 23.406 36 10.476 72 56.029 0.992 11.166 0.01107 0.0 0.000 0.0 0.000 36 10.476 72 56.029 0.992 11.445 0.01135 0.0 0.000 0.0 0.000 36 10.494 73 31.269 0.992 11.632 0.01154 0.0 0.000 0.0 0.000 36 10.655 72 59.151 0.992 11.632 0.01134 0.0 0.000 244.0 21.567 36 11.216 73 32.337 0.992 11.931 0.01183	36	7.758	72	56.304	0.992	11.408	0.01131	0.0	0.000	468.0	41.367
36	36	7.969	72	58.007	4.231	11.184	0.04732	0.0	0.000	304.0	6.424
36 9.706 72 55.661 0.992 10.942 0.01085 0.0 0.000 0.0 0.000 36 9.714 73 0.101 0.992 11.632 0.01154 0.0 0.000 27.00 23.406 36 10.476 72 56.029 0.992 11.465 0.01135 0.0 0.000 0.0 0.000 36 10.494 73 31.269 0.992 11.435 0.01135 0.0 0.000 450.0 39.010 36 10.700 73 1.591 0.992 11.408 0.01131 0.0 0.000 450.0 39.010 36 11.216 73 32.337 0.992 11.848 0.01131 0.0 0.000 244.0 21.567 36 11.216 73 32.337 0.992 11.84 0.01109 0.0 0.000 0.0 0.000 36 11.293 73 3.894 0.992 11.632 0.01154	36	8.317	73	31.189	0.992	11.688	0.01159	0.0	0.000	0.0	0.000
36	36	8.791	72	58.957	0.992	11.632	0.01154	0.0	0.000	540.0	46.812
36 10.476 72 56.029 0.992 11.166 0.01107 0.0 0.000 0.0 0.000 36 10.494 73 31.269 0.992 11.445 0.01135 0.0 0.000 0.0 0.000 36 10.655 72 59.151 0.992 11.632 0.01154 0.0 0.000 450.0 39.010 36 10.700 73 1.591 0.992 11.408 0.01131 0.0 0.000 244.0 21.567 36 11.216 73 32.337 0.992 11.632 0.01154 0.0 0.000 0.0 0.000 36 11.576 72 56.762 0.992 11.632 0.01154 0.0 0.000 64.0 5.548 36 11.576 72 56.762 0.992 11.408 0.01131 0.0 0.000 64.0 5.548 36 12.541 73 8.023 0.992 11.408 0.01131	36	9.706	72	55.661	0.992	10.942	0.01085	0.0	0.000	0.0	0.000
36 10.494 73 31.269 0.992 11.445 0.01135 0.0 0.000 0.0 0.000 36 10.655 72 59.151 0.992 11.632 0.01154 0.0 0.000 450.0 39.010 36 10.700 73 1.591 0.992 11.408 0.01131 0.0 0.000 244.0 21.567 36 11.216 73 32.337 0.992 11.814 0.01109 0.0 0.000 0.0 0.000 36 11.576 72 56.762 0.992 11.484 0.01154 0.0 0.000 64.0 5.548 36 11.729 73 3.947 0.992 11.408 0.01131 0.0 0.000 207.0 18.297 36 12.541 73 8.023 0.992 11.408 0.01131 0.0 0.000 207.0 18.297 36 12.541 73 3.2344 0.992 11.445 0.01135 </td <td>36</td> <td>9.714</td> <td>73</td> <td>0.101</td> <td>0.992</td> <td>11.632</td> <td>0.01154</td> <td>0.0</td> <td>0.000</td> <td>270.0</td> <td>23.406</td>	36	9.714	73	0.101	0.992	11.632	0.01154	0.0	0.000	270.0	23.406
36 10.655 72 59.151 0.992 11.632 0.01154 0.0 0.000 450.0 39.010 36 10.700 73 1.591 0.992 11.408 0.01131 0.0 0.000 244.0 21.567 36 11.216 73 32.337 0.992 11.84 0.01109 0.0 0.000 0.0 0.000 36 11.493 73 7.839 0.992 11.84 0.01109 0.0 0.000 0.0 0.000 36 11.576 72 56.762 0.992 11.408 0.01131 0.0 0.000 207.0 18.297 36 12.541 73 8.023 0.992 11.408 0.01131 0.0 0.000 135.0 11.933 36 12.541 73 3.2344 0.992 11.408 0.01135 0.0 0.000 135.0 11.933 36 12.848 72 58.183 0.992 11.632 0.01154 </td <td>36</td> <td>10.476</td> <td>72</td> <td>56.029</td> <td>0.992</td> <td>11.166</td> <td>0.01107</td> <td>0.0</td> <td>0.000</td> <td>0.0</td> <td>0.000</td>	36	10.476	72	56.029	0.992	11.166	0.01107	0.0	0.000	0.0	0.000
36 10.700 73 1.591 0.992 11.408 0.01131 0.0 0.000 244.0 21.567 36 11.216 73 32.337 0.992 11.931 0.01183 0.0 0.000 0.0 0.000 36 11.493 73 7.839 0.992 11.184 0.01199 0.0 0.000 0.0 0.000 36 11.576 72 56.762 0.992 11.408 0.01131 0.0 0.000 207.0 18.297 36 11.729 73 3.947 0.992 11.408 0.01131 0.0 0.000 207.0 18.297 36 12.563 73 32.344 0.992 11.445 0.01135 0.0 0.000 135.0 11.933 36 12.848 72 58.183 0.992 11.632 0.01154 0.0 0.000 160.0 13.870 36 12.848 72 56.593 0.992 11.666 0.01107	36	10.494	73	31.269	0.992	11.445	0.01135	0.0	0.000	0.0	0.000
36 11.216 73 32.337 0.992 11.931 0.01183 0.0 0.000 0.0 0.000 36 11.493 73 7.839 0.992 11.184 0.01109 0.0 0.000 0.0 0.000 36 11.576 72 56.762 0.992 11.632 0.01154 0.0 0.000 64.0 5.548 36 11.729 73 3.947 0.992 11.408 0.01131 0.0 0.000 207.0 18.297 36 12.541 73 8.023 0.992 11.408 0.01131 0.0 0.000 135.0 11.933 36 12.563 73 32.344 0.992 11.435 0.01135 0.0 0.000 0.0 0.000 36 12.848 72 58.183 0.992 11.166 0.01107 0.0 0.000 48.0 4.335 36 12.848 72 56.593 0.992 11.632 0.01154	36	10.655	72	59.151	0.992	11.632	0.01154	0.0	0.000	450.0	39.010
36 11.493 73 7.839 0.992 11.184 0.01109 0.0 0.000 0.0 0.000 36 11.576 72 56.762 0.992 11.632 0.01154 0.0 0.000 64.0 5.548 36 11.729 73 3.947 0.992 11.408 0.01131 0.0 0.000 207.0 18.297 36 12.541 73 8.023 0.992 11.408 0.01131 0.0 0.000 135.0 11.933 36 12.563 73 32.344 0.992 11.445 0.01135 0.0 0.000 0.0 0.000 36 12.848 72 58.183 0.992 11.662 0.01107 0.0 0.000 48.0 4.335 36 12.848 72 56.593 0.992 11.666 0.01107 0.0 0.000 48.0 4.335 36 13.594 73 6.831 0.992 11.408 0.01131	36	10.700	73	1.591	0.992	11.408	0.01131	0.0	0.000	244.0	21.567
36 11.576 72 56.762 0.992 11.632 0.01154 0.0 0.000 64.0 5.548 36 11.729 73 3.947 0.992 11.408 0.01131 0.0 0.000 207.0 18.297 36 12.541 73 8.023 0.992 11.408 0.01131 0.0 0.000 135.0 11.933 36 12.563 73 32.344 0.992 11.445 0.01135 0.0 0.000 0.0 0.000 36 12.820 73 3.290 0.992 11.632 0.01154 0.0 0.000 160.0 13.870 36 12.848 72 58.183 0.992 11.166 0.01107 0.0 0.000 48.0 4.335 36 12.889 72 56.593 0.992 11.632 0.01154 0.0 0.000 80.0 6.935 36 13.094 73 0.741 0.992 11.408 0.01137 <td>36</td> <td>11.216</td> <td>73</td> <td>32.337</td> <td>0.992</td> <td>11.931</td> <td>0.01183</td> <td>0.0</td> <td>0.000</td> <td>0.0</td> <td>0.000</td>	36	11.216	73	32.337	0.992	11.931	0.01183	0.0	0.000	0.0	0.000
36 11.729 73 3.947 0.992 11.408 0.01131 0.0 0.000 207.0 18.297 36 12.541 73 8.023 0.992 11.408 0.01131 0.0 0.000 135.0 11.933 36 12.563 73 32.344 0.992 11.445 0.01135 0.0 0.000 0.0 0.000 36 12.820 73 3.290 0.992 11.632 0.01154 0.0 0.000 160.0 13.870 36 12.848 72 58.183 0.992 11.166 0.01107 0.0 0.000 48.0 4.335 36 12.889 72 56.593 0.992 11.66 0.01107 0.0 0.000 80.0 6.935 36 13.094 73 0.741 0.992 11.632 0.01154 0.0 0.000 80.0 6.935 36 13.592 73 6.831 0.992 11.408 0.01137	36	11.493	73	7.839	0.992	11.184	0.01109	0.0	0.000	0.0	0.000
36 12.541 73 8.023 0.992 11.408 0.01131 0.0 0.000 135.0 11.933 36 12.563 73 32.344 0.992 11.445 0.01135 0.0 0.000 0.0 0.000 36 12.820 73 3.290 0.992 11.632 0.01154 0.0 0.000 160.0 13.870 36 12.848 72 58.183 0.992 11.166 0.01107 0.0 0.000 48.0 4.335 36 12.889 72 56.593 0.992 11.166 0.01107 0.0 0.000 0.000 36 13.094 73 0.741 0.992 11.408 0.01131 0.0 0.000 80.0 6.935 36 13.542 73 6.831 0.992 11.408 0.01131 0.0 0.000 23.0 2.033 36 13.758 72 58.091 0.992 11.166 0.01107 0.0	36	11.576	72	56.762	0.992	11.632	0.01154	0.0	0.000	64.0	5.548
36 12.563 73 32.344 0.992 11.445 0.01135 0.0 0.000 0.0 0.000 36 12.820 73 3.290 0.992 11.632 0.01154 0.0 0.000 160.0 13.870 36 12.848 72 58.183 0.992 11.166 0.01107 0.0 0.000 48.0 4.335 36 12.889 72 56.593 0.992 11.666 0.01107 0.0 0.000 0.00 0.000 36 13.094 73 0.741 0.992 11.408 0.01131 0.0 0.000 80.0 6.935 36 13.542 73 6.831 0.992 11.464 0.01137 0.0 0.000 23.0 2.033 36 13.758 72 58.091 0.992 11.464 0.01137 0.0 0.000 48.0 4.335 36 13.758 73 31.610 0.992 11.203 0.01111	36	11.729	73	3.947	0.992	11.408	0.01131	0.0	0.000	207.0	18.297
36 12.820 73 3.290 0.992 11.632 0.01154 0.0 0.000 160.0 13.870 36 12.848 72 58.183 0.992 11.166 0.01107 0.0 0.000 48.0 4.335 36 12.889 72 56.593 0.992 11.166 0.01107 0.0 0.000 0.0 0.000 36 13.094 73 0.741 0.992 11.632 0.01154 0.0 0.000 80.0 6.935 36 13.542 73 6.831 0.992 11.408 0.01131 0.0 0.000 23.0 2.033 36 13.608 73 33.322 0.992 11.464 0.01137 0.0 0.000 0.0 0.000 36 13.758 72 58.091 0.992 11.203 0.01111 0.0 0.000 48.0 4.335 36 13.758 73 31.610 0.992 11.203 0.01111	36	12.541	73	8.023	0.992	11.408	0.01131	0.0	0.000	135.0	11.933
36 12.848 72 58.183 0.992 11.166 0.01107 0.0 0.000 48.0 4.335 36 12.889 72 56.593 0.992 11.166 0.01107 0.0 0.000 0.0 0.000 36 13.094 73 0.741 0.992 11.632 0.01154 0.0 0.000 80.0 6.935 36 13.542 73 6.831 0.992 11.408 0.01131 0.0 0.000 23.0 2.033 36 13.608 73 33.322 0.992 11.464 0.01137 0.0 0.000 0.0 0.000 36 13.758 72 58.091 0.992 11.203 0.01111 0.0 0.000 48.0 4.335 36 13.758 73 31.610 0.992 11.203 0.01111 0.0 0.000 48.0 4.335 36 14.841 73 7.238 0.992 11.408 0.01131		12.563	73						0.000		0.000
36 12.889 72 56.593 0.992 11.166 0.01107 0.0 0.000 0.0 0.000 36 13.094 73 0.741 0.992 11.632 0.01154 0.0 0.000 80.0 6.935 36 13.542 73 6.831 0.992 11.408 0.01131 0.0 0.000 23.0 2.033 36 13.608 73 33.322 0.992 11.464 0.01137 0.0 0.000 0.0 0.000 36 13.758 72 58.091 0.992 11.166 0.01107 0.0 0.000 48.0 4.335 36 13.758 73 31.610 0.992 11.203 0.01111 0.0 0.000 48.0 4.335 36 14.841 73 7.238 0.992 11.408 0.01131 0.0 0.000 36.0 3.182 36 15.166 72 58.435 0.992 11.166 0.01107	36	12.820	73	3.290	0.992	11.632	0.01154	0.0	0.000	160.0	13.870
36 13.094 73 0.741 0.992 11.632 0.01154 0.0 0.000 80.0 6.935 36 13.542 73 6.831 0.992 11.408 0.01131 0.0 0.000 23.0 2.033 36 13.608 73 33.322 0.992 11.464 0.01137 0.0 0.000 0.0 0.000 36 13.758 72 58.091 0.992 11.66 0.01107 0.0 0.000 48.0 4.335 36 13.758 73 31.610 0.992 11.203 0.01111 0.0 0.000 0.0 0.000 36 14.841 73 7.238 0.992 11.408 0.01131 0.0 0.000 36.0 3.182 36 14.915 73 4.698 0.992 11.632 0.01154 0.0 0.000 24.0 2.081 36 15.166 72 58.435 0.992 11.166 0.01107	36	12.848	72	58.183		11.166	0.01107	0.0	0.000	48.0	4.335
36 13.542 73 6.831 0.992 11.408 0.01131 0.0 0.000 23.0 2.033 36 13.608 73 33.322 0.992 11.464 0.01137 0.0 0.000 0.0 0.000 36 13.758 72 58.091 0.992 11.66 0.01107 0.0 0.000 48.0 4.335 36 13.758 73 31.610 0.992 11.203 0.01111 0.0 0.000 0.000 0.000 36 14.841 73 7.238 0.992 11.408 0.01131 0.0 0.000 36.0 3.182 36 14.915 73 4.698 0.992 11.632 0.01154 0.0 0.000 24.0 2.081 36 15.166 72 58.435 0.992 11.166 0.01107 0.0 0.000 0.0 0.000 36 15.336 73 0.474 0.992 11.912 0.01181	36								0.000		0.000
36 13.608 73 33.322 0.992 11.464 0.01137 0.0 0.000 0.0 0.000 36 13.758 72 58.091 0.992 11.166 0.01107 0.0 0.000 48.0 4.335 36 13.758 73 31.610 0.992 11.203 0.01111 0.0 0.000 0.0 0.000 36 14.841 73 7.238 0.992 11.408 0.01131 0.0 0.000 36.0 3.182 36 14.915 73 4.698 0.992 11.632 0.01154 0.0 0.000 24.0 2.081 36 15.166 72 58.435 0.992 11.166 0.01107 0.0 0.000 0.000 23.0 2.077 36 15.643 73 33.752 0.992 11.912 0.01181 0.0 0.000 22.0 1.945 36 15.753 73 6.569 0.992 11.408	36	13.094	73	0.741	0.992	11.632	0.01154	0.0	0.000	80.0	6.935
36 13.758 72 58.091 0.992 11.166 0.01107 0.0 0.000 48.0 4.335 36 13.758 73 31.610 0.992 11.203 0.01111 0.0 0.000 0.0 0.000 36 14.841 73 7.238 0.992 11.408 0.01131 0.0 0.000 36.0 3.182 36 14.915 73 4.698 0.992 11.632 0.01154 0.0 0.000 24.0 2.081 36 15.166 72 58.435 0.992 11.166 0.01107 0.0 0.000 0.000 2.081 36 15.336 73 0.474 0.992 11.166 0.01107 0.0 0.000 23.0 2.077 36 15.643 73 33.752 0.992 11.912 0.01181 0.0 0.000 0.0 0.000 36 15.753 73 6.569 0.992 11.408 0.01131	36	13.542	73	6.831	0.992	11.408	0.01131	0.0	0.000	23.0	2.033
36 13.758 73 31.610 0.992 11.203 0.01111 0.0 0.000 0.0 0.000 36 14.841 73 7.238 0.992 11.408 0.01131 0.0 0.000 36.0 3.182 36 14.915 73 4.698 0.992 11.632 0.01154 0.0 0.000 24.0 2.081 36 15.166 72 58.435 0.992 11.166 0.01107 0.0 0.000 0.0 0.000 36 15.336 73 0.474 0.992 11.166 0.01107 0.0 0.000 23.0 2.077 36 15.643 73 33.752 0.992 11.912 0.01181 0.0 0.000 0.0 0.000 36 15.753 73 6.569 0.992 11.408 0.01131 0.0 0.000 22.0 1.945 36 15.791 73 0.838 0.992 11.408 0.01131			73		0.992	11.464	0.01137	0.0	0.000		0.000
36 14.841 73 7.238 0.992 11.408 0.01131 0.0 0.000 36.0 3.182 36 14.915 73 4.698 0.992 11.632 0.01154 0.0 0.000 24.0 2.081 36 15.166 72 58.435 0.992 11.166 0.01107 0.0 0.000 0.0 0.000 36 15.336 73 0.474 0.992 11.166 0.01107 0.0 0.000 23.0 2.077 36 15.643 73 33.752 0.992 11.912 0.01181 0.0 0.000 0.0 0.000 36 15.753 73 6.569 0.992 11.408 0.01131 0.0 0.000 22.0 1.945 36 15.791 73 0.838 0.992 11.166 0.01107 0.0 0.000 9.0 0.813 36 15.911 73 8.398 0.992 11.408 0.01131											4.335
36 14.915 73 4.698 0.992 11.632 0.01154 0.0 0.000 24.0 2.081 36 15.166 72 58.435 0.992 11.166 0.01107 0.0 0.000 0.0 0.000 36 15.336 73 0.474 0.992 11.166 0.01107 0.0 0.000 23.0 2.077 36 15.643 73 33.752 0.992 11.912 0.01181 0.0 0.000 0.0 0.000 36 15.753 73 6.569 0.992 11.408 0.01131 0.0 0.000 22.0 1.945 36 15.791 73 0.838 0.992 11.166 0.01107 0.0 0.000 9.0 0.813 36 15.911 73 8.398 0.992 11.408 0.01131 0.0 0.000 16.0 1.414 36 15.915 73 3.364 0.992 11.632 0.01154											0.000
36 15.166 72 58.435 0.992 11.166 0.01107 0.0 0.000 0.0 0.000 36 15.336 73 0.474 0.992 11.166 0.01107 0.0 0.000 23.0 2.077 36 15.643 73 33.752 0.992 11.912 0.01181 0.0 0.000 0.0 0.000 36 15.753 73 6.569 0.992 11.408 0.01131 0.0 0.000 22.0 1.945 36 15.791 73 0.838 0.992 11.166 0.01107 0.0 0.000 9.0 0.813 36 15.911 73 8.398 0.992 11.408 0.01131 0.0 0.000 16.0 1.414 36 15.915 73 3.364 0.992 11.632 0.01154 0.0 0.000 16.0 1.387 36 16.613 73 32.708 0.992 11.184 0.01109											3.182
36 15.336 73 0.474 0.992 11.166 0.01107 0.0 0.000 23.0 2.077 36 15.643 73 33.752 0.992 11.912 0.01181 0.0 0.000 0.0 0.000 36 15.753 73 6.569 0.992 11.408 0.01131 0.0 0.000 22.0 1.945 36 15.791 73 0.838 0.992 11.166 0.01107 0.0 0.000 9.0 0.813 36 15.911 73 8.398 0.992 11.408 0.01131 0.0 0.000 16.0 1.414 36 15.915 73 3.364 0.992 11.632 0.01154 0.0 0.000 16.0 1.387 36 16.613 73 32.708 0.992 11.184 0.01109 4.3 0.386 0.0 0.000		14.915	73	4.698	0.992	11.632	0.01154	0.0	0.000	24.0	2.081
36 15.643 73 33.752 0.992 11.912 0.01181 0.0 0.000 0.0 0.000 36 15.753 73 6.569 0.992 11.408 0.01131 0.0 0.000 22.0 1.945 36 15.791 73 0.838 0.992 11.166 0.01107 0.0 0.000 9.0 0.813 36 15.911 73 8.398 0.992 11.408 0.01131 0.0 0.000 16.0 1.414 36 15.915 73 3.364 0.992 11.632 0.01154 0.0 0.000 16.0 1.387 36 16.613 73 32.708 0.992 11.184 0.01109 4.3 0.386 0.0 0.000		15.166	72	58.435	0.992	11.166	0.01107	0.0	0.000	0.0	0.000
36 15.753 73 6.569 0.992 11.408 0.01131 0.0 0.000 22.0 1.945 36 15.791 73 0.838 0.992 11.166 0.01107 0.0 0.000 9.0 0.813 36 15.911 73 8.398 0.992 11.408 0.01131 0.0 0.000 16.0 1.414 36 15.915 73 3.364 0.992 11.632 0.01154 0.0 0.000 16.0 1.387 36 16.613 73 32.708 0.992 11.184 0.01109 4.3 0.386 0.0 0.000										23.0	2.077
36 15.791 73 0.838 0.992 11.166 0.01107 0.0 0.000 9.0 0.813 36 15.911 73 8.398 0.992 11.408 0.01131 0.0 0.000 16.0 1.414 36 15.915 73 3.364 0.992 11.632 0.01154 0.0 0.000 16.0 1.387 36 16.613 73 32.708 0.992 11.184 0.01109 4.3 0.386 0.0 0.000											0.000
36 15.911 73 8.398 0.992 11.408 0.01131 0.0 0.000 16.0 1.414 36 15.915 73 3.364 0.992 11.632 0.01154 0.0 0.000 16.0 1.387 36 16.613 73 32.708 0.992 11.184 0.01109 4.3 0.386 0.0 0.000											1.945
36 15.915 73 3.364 0.992 11.632 0.01154 0.0 0.000 16.0 1.387 36 16.613 73 32.708 0.992 11.184 0.01109 4.3 0.386 0.0 0.000			73		0.992	11.166	$0.01\overline{107}$	0.0	0.000	9.0	0.813
36 16.613 73 32.708 0.992 11.184 0.01109 4.3 0.386 0.0 0.000	36	15.911	73	8.398	0.992	11.408	0.01131	0.0	0.000	16.0	1.414
			73	3.364	0.992	11.632	$0.0\overline{1154}$	0.0	0.000	16.0	1.387
36 16.775 73 5.806 1.190 11.408 0.01358 0.0 0.000 17.0 1.252											0.000
	36	16.775	73	5.806	1.190	11.408	0.01358	0.0	0.000	17.0	1.252

36 16,836 72 88,221 0.992 11.166 0.01107 0.0 0.000 0.0 0.0 0.000 36 17,271 73 2.171 0.992 11.166 0.01107 0.0 0.000 0.0 0.0 0.000 36 17,271 73 31,226 0.992 11.651 0.01155 0.0 0.000 0.0 0.0 0.000 36 17,271 73 33,226 0.992 11.651 0.01155 0.0 0.000 0.0 0.0 0.000 36 18,580 73 72 59,416 0.992 11.662 0.01154 0.0 0.000 7.0 0.607 36 18,580 73 72 121 0.992 11.663 0.01154 0.0 0.000 7.0 0.607 36 18,580 73 72 122 0.992 11.663 0.01154 0.0 0.000 7.0 0.607 36 19,041 73 2.159 0.992 11.662 0.01154 0.0 0.000 7.0 0.607 36 19,053 73 8,334 0.992 11.663 0.01154 0.0 0.000 0.0 0.000 36 19,741 73 0.798 0.992 11.166 0.01107 0.0 0.000 0.0 0.0 0.000 36 19,741 73 0.798 0.992 11.166 0.01107 0.0 0.000 0.0 0.0 0.000 36 19,741 73 0.798 0.992 11.166 0.01107 0.0 0.000 0.0 0.0 0.000 36 19,73 5,5703 0.992 11.166 0.01107 0.0 0.000 0.0 0.0 0.000 36 19,834 73 5,703 0.992 11.166 0.01107 0.0 0.000 0.0 0.0 0.000 36 20,075 73 9.684 0.992 11.632 0.01154 0.0 0.000 0.0 0.0 0.000 36 22,075 73 9.684 0.992 11.632 0.01154 0.0 0.000 0.0 0.0 0.000 36 21.640 73 5,894 0.992 11.632 0.01154 0.0 0.000 0.0 0.0 0.000 36 21.640 73 5,894 0.992 11.632 0.01154 0.0 0.000 0.0 0.0 0.000 36 22.037 73 8.490 0.992 11.632 0.01154 0.0 0.000 0.0 0.0 0.000 36 22.037 73 8.490 0.992 11.632 0.01154 0.0 0.000 0.0 0.0 0.000 36 22.353 73 3.2121 0.992 11.651 0.01155 130.8 11.322 0.0 0.000 36 22.337 73 8.400 0.992 11.632 0.01154 0.0 0.000 0.0 0.0 0.000 36 22.337 73 8.400 0.992 11.632 0.01154 0.0 0.000 0.0 0.0 0.000 36 22.347 73 1.263 0.992 11.660 0.01107 0.0 0.000 0.0 0.0 0.000 36 22.357 73 3.2999 0.992 11.660 0.01107 0.0 0.000 0.0 0.0 0.000 36 22.340 73 8.940 0.992 11.630 0.01154 0.0 0.000 0.0 0.0 0.000 36 22.568 73 3.2899 0.992 11.688 0.01159 0.0 0.000 0.0 0.0 0.000 36 22.5767 73 3.2899 0.992 11.690 0.01154 0.0 0.000 0.0 0.0 0.000 36 22.5767 73 3.2899 0.992 11.690 0.01154 0.0 0.000 0.0 0.0 0.000 36 22.5767 73 3.2899 0.992 11.690 0.01154 0.0 0.000 0.0 0.0 0.000 36 22.576 73 3.2899 0.992 11.690 0.01154 0.0 0.000 0.0 0.0 0.000 36 22.576 73 3.2899 0.992 11.690 0.01154 0.0 0.000 0.0 0.0 0.000 36											
36	36	16.836	72	58.221	0.992	11.166	0.01107	0.0	0.000	0.0	0.000
36	36	16.977	73	2.171	0.992	11.166	0.01107	0.0	0.000	0.0	0.000
36	36	17.136	73	1.027	0.992	11.166	0.01107	0.0	0.000	0.0	0.000
36	36	17.271	73	33.226	0.992	11.651	0.01155	0.0	0.000	0.0	0.000
36	36	17.729	73	4.549	0.992	11.632	0.01154	0.0	0.000	7.0	0.607
36	36	18.306	72	59.416	0.992	11.166	0.01107	0.0	0.000	0.0	0.000
36	36	18.580	73	7.212	0.992	11.632	0.01154	0.0	0.000	7.0	0.607
36	36	19.041	73	2.159	0.992	11.166	0.01107	0.0	0.000	15.0	1.355
36	36	19.053	73	8.354	0.992	11.632	0.01154	0.0	0.000	0.0	0.000
36	36	19.741	73	0.798	0.992	11.166	0.01107	0.0	0.000	0.0	0.000
36	36	19.834	73	5.703	0.992	11.166	0.01107	0.0	0.000	0.0	0.000
36	36	19.993	73	3.275	0.992	11.166	0.01107	0.0	0.000	0.0	0.000
36	36	20.075	73	9.684	0.992	11.632	0.01154	0.0	0.000	0.0	0.000
36 21.640 73 5.894 0.992 11.166 0.01107 0.0 0.000 0.0 0.000 36 21.737 73 8.469 0.992 11.632 0.01154 0.0 0.000 0.0 0.000 36 22.933 73 32.099 0.992 11.632 0.01154 0.0 0.000 0.0 0.000 36 22.730 73 8.420 0.992 11.632 0.01154 0.0 0.000 0.0 0.000 36 22.767 73 5.856 0.992 11.662 0.01107 0.0 0.000 0.0 0.000 36 23.734 73 11.263 0.992 11.688 0.01159 0.0 0.000 0.0 0.000 36 23.840 73 8.094 0.992 11.662 0.01154 0.0 0.000 15.0 1.300 36 24.636 73 6.099 0.992 11.390 0.01130 <td< td=""><td>36</td><td>20.683</td><td>73</td><td>5.824</td><td>0.992</td><td>11.632</td><td>0.01154</td><td>0.0</td><td>0.000</td><td>15.0</td><td>1.300</td></td<>	36	20.683	73	5.824	0.992	11.632	0.01154	0.0	0.000	15.0	1.300
36 21.737 73 8.469 0.992 11.632 0.01154 0.0 0.000 0.0 0.000 36 22.093 73 32.099 0.992 11.651 0.01155 130.8 11.322 0.0 0.000 36 22.353 73 32.121 0.992 11.621 0.01133 12.16 10.730 0.0 0.000 36 22.353 73 32.212 0.992 11.666 0.01107 0.0 0.000 0.0 0.000 36 22.767 73 32.979 0.992 11.688 0.01159 0.0 0.000 0.0 0.000 36 23.734 73 11.263 0.992 11.688 0.01154 0.0 0.000 1.300 36 24.636 73 8.094 0.992 11.669 0.01130 0.0 0.000 7.0 0.620 36 24.694 73 9.790 0.992 11.632 0.01157 360.4	36	21.067	73	9.555	0.992	11.632	0.01154	0.0	0.000	0.0	0.000
36 22.093 73 32.099 0.992 11.651 0.01155 130.8 11.322 0.0 0.000 36 22.353 73 32.121 0.992 11.427 0.01133 121.6 10.730 0.0 0.000 36 22.767 73 8.420 0.992 11.681 0.01154 0.0 0.000 0.0 0.000 36 22.767 73 32.979 0.992 11.688 0.01159 0.0 0.000 0.0 0.000 36 23.734 73 11.263 0.992 11.632 0.01154 0.0 0.000 0.0 0.000 36 23.734 73 11.263 0.992 11.632 0.01154 0.0 0.000 0.0 0.000 36 24.636 73 8.094 0.992 11.632 0.01154 0.0 0.000 7.0 0.620 36 24.636 73 32.2485 0.992 11.632 0.01154	36	21.640	73	5.894	0.992	11.166	0.01107	0.0	0.000	0.0	0.000
36 22.353 73 32.121 0.992 11.427 0.01133 121.6 10.730 0.0 0.000 36 22.730 73 8.420 0.992 11.632 0.01154 0.0 0.000 0.0 0.000 36 22.767 73 5.856 0.992 11.686 0.01107 0.0 0.000 0.0 0.000 36 23.737 73 32.979 0.992 11.632 0.01154 0.0 0.000 15.0 0.000 36 23.734 73 8.094 0.992 11.666 0.01107 0.0 0.000 15.0 1.300 36 23.840 73 8.099 0.992 11.690 0.01154 0.0 0.000 0.0 0.00	36	21.737	73		0.992		0.01154	0.0	0.000	0.0	0.000
36 22.730 73 8.420 0.992 11.632 0.01154 0.0 0.000 0.0 0.000 36 22.767 73 5.856 0.992 11.166 0.01107 0.0 0.000 0.0 0.000 36 23.197 73 32.979 0.992 11.632 0.01154 0.0 0.000 0.0 0.000 36 23.840 73 8.094 0.992 11.666 0.01107 0.0 0.000 0.000 0.000 36 23.840 73 6.099 0.992 11.630 0.01130 0.0 0.000 7.0 0.620 36 24.694 73 9.790 0.992 11.632 0.01154 0.0 0.000 7.0 0.620 36 25.163 73 32.485 0.992 11.669 0.01157 360.4 31.146 0.0 0.000 36 25.168 73 33.2534 7.934 11.203 0.0888	36	22.093	73	32.099	0.992	11.651	0.01155	130.8	11.322	0.0	0.000
36 22.767 73 5.856 0.992 11.166 0.01107 0.0 0.000 0.0 0.000 36 23.197 73 32.979 0.992 11.688 0.01159 0.0 0.000 0.0 0.000 36 23.734 73 11.263 0.992 11.632 0.01154 0.0 0.000 15.0 1.300 36 23.840 73 8.094 0.992 11.660 0.01107 0.0 0.000 0.0 0.000 36 24.636 73 6.099 0.992 11.390 0.01130 0.0 0.000 0.0 0.000 36 24.636 73 32.485 0.992 11.632 0.01154 0.0 0.000 0.0 0.000 36 25.163 73 32.485 0.992 11.669 0.01157 360.4 31.146 0.0 0.000 36 25.168 73 33.282 0.992 11.644 0.01137 0.0 0.000 0.0 0.000 36 25.305 73 32.534 7.934 11.203 0.08888 2465.1 27.736 0.0 0.000 36 25.706 73 6.224 0.992 11.390 0.01130 0.0 0.000 7.0 0.620 36 25.774 73 11.174 0.992 11.632 0.01154 0.0 0.000 7.0 0.620 36 25.990 73 8.512 0.992 11.390 0.01130 0.0 0.000 7.0 0.620 36 26.236 73 33.560 0.992 11.931 0.01183 0.0 0.000 4.0 0.354 36 26.2641 73 33.676 0.992 11.390 0.01130 0.0 0.000 4.0 0.354 36 26.568 73 7.658 0.992 11.390 0.01130 0.0 0.000 2.3.0 2.036 36 27.313 73 32.258 0.992 11.390 0.01130 0.0 0.000 0.0 0.000 36 26.568 73 7.658 0.992 11.390 0.01130 0.0 0.000 23.0 2.036 36 27.973 73 11.165 0.992 11.856 0.01176 0.0 0.000 23.0 2.556 36 27.973 73 11.165 0.992 11.856 0.01176 0.0 0.000 3.0 2.552 36 28.341 73 32.485 0.992 11.390 0.01130 0.0 0.000 3.0 2.552 36 28.530 73 8.638 0.992 11.203 0.01111 134.0 12.061 0.0 0.000 36 29.553 73 32.343 0.992 11.856 0.01176 0.0 0.000 3.0 2.556 36 29.553 73 32.343 0.992 11.856 0.01176 0.0 0.000 3.0 2.556 36 29.567 73 12.425 0.992 11.856 0.01176 0.0 0.000 0.0 0.000	36	22.353	73	32.121	0.992	11.427	0.01133	121.6	10.730	0.0	0.000
36 23.197 73 32.979 0.992 11.688 0.01159 0.0 0.000 0.0 0.000 36 23.734 73 11.263 0.992 11.632 0.01154 0.0 0.000 15.0 1.300 36 23.840 73 8.094 0.992 11.166 0.01107 0.0 0.000 0.0 0.000 36 24.636 73 6.099 0.992 11.632 0.01154 0.0 0.000 7.0 0.620 36 24.694 73 9.799 0.992 11.669 0.01157 360.4 31.146 0.0 0.000 36 25.163 73 32.485 0.992 11.464 0.01137 0.0 0.000 0.0 0.000 36 25.168 73 33.284 0.992 11.390 0.01130 0.0 0.000 7.0 0.600 36 25.706 73 6.224 0.992 11.390 0.01130	36	22.730	73	8.420	0.992	11.632	0.01154	0.0	0.000	0.0	0.000
36 23.734 73 11.263 0.992 11.632 0.01154 0.0 0.000 15.0 1.300 36 23.840 73 8.094 0.992 11.166 0.01107 0.0 0.000 0.0 0.000 36 24.636 73 6.099 0.992 11.390 0.01130 0.0 0.000 7.0 0.620 36 24.694 73 9.790 0.992 11.669 0.01157 360.4 31.146 0.0 0.000 36 25.168 73 33.282 0.992 11.464 0.01137 0.0 0.000 0.0 0.000 36 25.106 73 32.534 7.934 11.203 0.08888 2465.1 27.736 0.0 0.000 36 25.706 73 6.224 0.992 11.390 0.01130 0.0 0.000 7.0 0.620 36 25.796 73 8.512 0.992 11.390 0.01130	36	22.767	73	5.856	0.992	11.166	0.01107	0.0	0.000	0.0	0.000
36 23.840 73 8.094 0.992 11.166 0.01107 0.0 0.000 0.0 0.000 36 24.636 73 6.099 0.992 11.390 0.01130 0.0 0.000 7.0 0.620 36 24.694 73 9.790 0.992 11.669 0.01157 360.4 31.146 0.0 0.000 36 25.168 73 32.485 0.992 11.669 0.01157 360.4 31.146 0.0 0.000 36 25.168 73 33.282 0.992 11.464 0.01137 0.0 0.000 0.000 36 25.706 73 6.224 0.992 11.390 0.01130 0.0 0.000 7.0 0.620 36 25.774 73 11.174 0.992 11.390 0.01130 0.0 0.000 7.0 0.620 36 25.790 73 8.512 0.992 11.391 0.01130 0.0	36	23.197	73	32.979	0.992	11.688	0.01159	0.0	0.000	0.0	0.000
36 24.636 73 6.099 0.992 11.390 0.01130 0.0 0.000 7.0 0.620 36 24.694 73 9.790 0.992 11.632 0.01154 0.0 0.000 0.0 0.000 36 25.163 73 32.485 0.992 11.669 0.01157 360.4 31.146 0.0 0.000 36 25.168 73 33.282 0.992 11.464 0.01137 0.0 0.000 0.0 0.000 36 25.706 73 6.224 0.992 11.390 0.01130 0.0 0.000 7.0 0.620 36 25.774 73 11.174 0.992 11.390 0.01130 0.0 0.000 7.0 0.607 36 25.774 73 11.174 0.992 11.390 0.01130 0.0 0.000 7.0 0.607 36 25.990 73 8.512 0.992 11.931 0.01183	36	23.734	73	11.263	0.992	11.632	0.01154	0.0	0.000	15.0	1.300
36 24.694 73 9.790 0.992 11.632 0.01154 0.0 0.000 0.0 0.000 36 25.163 73 32.485 0.992 11.669 0.01157 360.4 31.146 0.0 0.000 36 25.168 73 33.282 0.992 11.464 0.01137 0.0 0.000 0.0 0.000 36 25.305 73 32.534 7.934 11.203 0.08888 2465.1 27.736 0.0 0.000 36 25.706 73 6.224 0.992 11.390 0.01130 0.0 0.000 7.0 0.620 36 25.774 73 11.174 0.992 11.632 0.01154 0.0 0.000 7.0 0.607 36 25.990 73 8.512 0.992 11.931 0.01130 0.0 0.000 4.0 0.354 36 26.236 73 33.560 0.992 11.931 0.01183	36	23.840	73	8.094	0.992	11.166	0.01107	0.0	0.000	0.0	0.000
36 25.163 73 32.485 0.992 11.669 0.01157 360.4 31.146 0.0 0.000 36 25.168 73 33.282 0.992 11.464 0.01137 0.0 0.000 0.0 0.000 36 25.305 73 32.534 7.934 11.203 0.08888 2465.1 27.736 0.0 0.000 36 25.706 73 6.224 0.992 11.390 0.01130 0.0 0.000 7.0 0.620 36 25.774 73 11.174 0.992 11.390 0.01130 0.0 0.000 7.0 0.607 36 25.990 73 8.512 0.992 11.390 0.01130 0.0 0.000 4.0 0.354 36 26.236 73 33.560 0.992 11.931 0.01183 0.0 0.000 0.0 0.000 36 26.568 73 7.658 0.992 11.390 0.01130	36	24.636	73	6.099	0.992	11.390	0.01130	0.0	0.000	7.0	0.620
36 25.168 73 33.282 0.992 11.464 0.01137 0.0 0.000 0.0 0.000 36 25.305 73 32.534 7.934 11.203 0.08888 2465.1 27.736 0.0 0.000 36 25.706 73 6.224 0.992 11.390 0.01130 0.0 0.000 7.0 0.620 36 25.774 73 11.174 0.992 11.632 0.01154 0.0 0.000 7.0 0.607 36 25.990 73 8.512 0.992 11.390 0.01130 0.0 0.000 4.0 0.354 36 26.236 73 33.560 0.992 11.931 0.01183 0.0 0.000 0.0 0.000 36 26.568 73 7.658 0.992 11.390 0.01130 0.0 0.000 23.0 2.036 36 27.313 73 32.258 0.992 11.203 0.01176	36		73	9.790	0.992	11.632	0.01154	0.0	0.000	0.0	0.000
36 25.305 73 32.534 7.934 11.203 0.08888 2465.1 27.736 0.0 0.000 36 25.706 73 6.224 0.992 11.390 0.01130 0.0 0.000 7.0 0.620 36 25.774 73 11.174 0.992 11.632 0.01154 0.0 0.000 7.0 0.607 36 25.990 73 8.512 0.992 11.390 0.01130 0.0 0.000 4.0 0.354 36 26.236 73 33.560 0.992 11.931 0.01183 0.0 0.000 0.0 0.000 36 26.568 73 7.658 0.992 11.390 0.01130 0.0 0.000 23.0 2.036 36 26.962 73 9.821 0.992 11.856 0.01176 0.0 0.000 23.0 1.956 36 27.313 73 32.258 0.992 11.203 0.01176	36	25.163	73	32.485	0.992	11.669	0.01157	360.4	31.146	0.0	0.000
36 25.706 73 6.224 0.992 11.390 0.01130 0.0 0.000 7.0 0.620 36 25.774 73 11.174 0.992 11.632 0.01154 0.0 0.000 7.0 0.607 36 25.990 73 8.512 0.992 11.390 0.01130 0.0 0.000 4.0 0.354 36 26.236 73 33.560 0.992 11.931 0.01183 0.0 0.000 0.0 0.000 36 26.241 73 33.676 0.992 11.390 0.01130 0.0 0.000 0.000 36 26.568 73 7.658 0.992 11.390 0.01130 0.0 0.000 23.0 2.036 36 26.962 73 9.821 0.992 11.203 0.01116 0.0 0.000 23.0 1.956 36 27.313 73 32.258 0.992 11.203 0.01111 486.0	36	25.168	73	33.282	0.992	11.464	0.01137	0.0	0.000	0.0	0.000
36 25.774 73 11.174 0.992 11.632 0.01154 0.0 0.000 7.0 0.607 36 25.990 73 8.512 0.992 11.390 0.01130 0.0 0.000 4.0 0.354 36 26.236 73 33.560 0.992 11.931 0.01183 0.0 0.000 0.0 0.000 36 26.241 73 33.676 0.992 11.931 0.01183 0.0 0.000 0.0 0.000 36 26.568 73 7.658 0.992 11.390 0.01130 0.0 0.000 23.0 2.036 36 26.962 73 9.821 0.992 11.856 0.01176 0.0 0.000 23.0 1.956 36 27.313 73 32.258 0.992 11.203 0.01111 486.0 43.745 0.0 0.000 36 27.973 73 11.165 0.992 11.856 0.01176	36	25.305	73	32.534	7.934	11.203		2465.1	27.736	0.0	0.000
36 25.990 73 8.512 0.992 11.390 0.01130 0.0 0.000 4.0 0.354 36 26.236 73 33.560 0.992 11.931 0.01183 0.0 0.000 0.0 0.000 36 26.241 73 33.676 0.992 11.390 0.01130 0.0 0.000 23.0 2.036 36 26.568 73 7.658 0.992 11.856 0.01176 0.0 0.000 23.0 2.036 36 26.962 73 9.821 0.992 11.856 0.01176 0.0 0.000 23.0 1.956 36 27.313 73 32.258 0.992 11.203 0.01111 486.0 43.745 0.0 0.000 36 27.973 73 11.165 0.992 11.856 0.01176 0.0 0.000 30.0 2.552 36 28.341 73 32.498 0.992 11.203 0.01111			73	6.224		11.390	0.01130	0.0	0.000	7.0	0.620
36 26.236 73 33.560 0.992 11.931 0.01183 0.0 0.000 0.0 0.000 36 26.241 73 33.676 0.992 11.931 0.01183 0.0 0.000 0.0 0.000 36 26.568 73 7.658 0.992 11.390 0.01130 0.0 0.000 23.0 2.036 36 26.962 73 9.821 0.992 11.856 0.01176 0.0 0.000 23.0 1.956 36 27.313 73 32.258 0.992 11.203 0.01111 486.0 43.745 0.0 0.000 36 27.973 73 11.165 0.992 11.856 0.01176 0.0 0.000 30.0 2.552 36 28.341 73 32.498 0.992 11.203 0.01111 134.0 12.061 0.0 0.000 36 28.789 73 12.425 0.992 11.856 0.01176											
36 26.241 73 33.676 0.992 11.931 0.01183 0.0 0.000 0.0 0.000 36 26.568 73 7.658 0.992 11.390 0.01130 0.0 0.000 23.0 2.036 36 26.962 73 9.821 0.992 11.856 0.01176 0.0 0.000 23.0 1.956 36 27.313 73 32.258 0.992 11.203 0.01111 486.0 43.745 0.0 0.000 36 27.667 73 7.477 0.992 11.390 0.01130 0.0 0.000 7.0 0.620 36 27.973 73 11.165 0.992 11.856 0.01176 0.0 0.000 30.0 2.552 36 28.341 73 32.498 0.992 11.390 0.01130 0.0 0.000 30.0 2.656 36 28.789 73 12.425 0.992 11.856 0.01176											
36 26.568 73 7.658 0.992 11.390 0.01130 0.0 0.000 23.0 2.036 36 26.962 73 9.821 0.992 11.856 0.01176 0.0 0.000 23.0 1.956 36 27.313 73 32.258 0.992 11.203 0.01111 486.0 43.745 0.0 0.000 36 27.667 73 7.477 0.992 11.390 0.01130 0.0 0.000 7.0 0.620 36 27.973 73 11.165 0.992 11.856 0.01176 0.0 0.000 30.0 2.552 36 28.341 73 32.498 0.992 11.203 0.01111 134.0 12.061 0.0 0.000 36 28.530 73 8.638 0.992 11.390 0.01130 0.0 0.000 30.0 2.656 36 28.789 73 12.425 0.992 11.856 0.01176											
36 26.962 73 9.821 0.992 11.856 0.01176 0.0 0.000 23.0 1.956 36 27.313 73 32.258 0.992 11.203 0.01111 486.0 43.745 0.0 0.000 36 27.667 73 7.477 0.992 11.390 0.01130 0.0 0.000 7.0 0.620 36 27.973 73 11.165 0.992 11.856 0.01176 0.0 0.000 30.0 2.552 36 28.341 73 32.498 0.992 11.203 0.01111 134.0 12.061 0.0 0.000 36 28.530 73 8.638 0.992 11.390 0.01130 0.0 0.000 30.0 2.656 36 28.789 73 12.425 0.992 11.856 0.01176 0.0 0.000 15.0 1.276 36 29.324 73 34.457 0.992 11.84 0.01109											
36 27.313 73 32.258 0.992 11.203 0.01111 486.0 43.745 0.0 0.000 36 27.667 73 7.477 0.992 11.390 0.01130 0.0 0.000 7.0 0.620 36 27.973 73 11.165 0.992 11.856 0.01176 0.0 0.000 30.0 2.552 36 28.341 73 32.498 0.992 11.203 0.01111 134.0 12.061 0.0 0.000 36 28.789 73 12.425 0.992 11.390 0.01130 0.0 0.000 30.0 2.656 36 28.789 73 12.425 0.992 11.856 0.01176 0.0 0.000 15.0 1.276 36 29.324 73 34.457 0.992 11.84 0.01183 0.0 0.000 0.0 0.000 36 29.553 73 32.343 0.992 11.184 0.01109		26.568	73	7.658	0.992		0.01130	0.0	0.000	23.0	
36 27.667 73 7.477 0.992 11.390 0.01130 0.0 0.000 7.0 0.620 36 27.973 73 11.165 0.992 11.856 0.01176 0.0 0.000 30.0 2.552 36 28.341 73 32.498 0.992 11.203 0.01111 134.0 12.061 0.0 0.000 36 28.530 73 8.638 0.992 11.390 0.01130 0.0 0.000 30.0 2.656 36 28.789 73 12.425 0.992 11.856 0.01176 0.0 0.000 15.0 1.276 36 29.324 73 34.457 0.992 11.931 0.01183 0.0 0.000 0.000 0.000 36 29.553 73 32.343 0.992 11.184 0.01109 27.0 2.434 0.0 0.000 36 29.681 73 15.442 0.992 11.408 0.01131	36	26.962	73	9.821	0.992	11.856		0.0	0.000	23.0	1.956
36 27.973 73 11.165 0.992 11.856 0.01176 0.0 0.000 30.0 2.552 36 28.341 73 32.498 0.992 11.203 0.01111 134.0 12.061 0.0 0.000 36 28.530 73 8.638 0.992 11.390 0.01130 0.0 0.000 30.0 2.656 36 28.789 73 12.425 0.992 11.856 0.01176 0.0 0.000 15.0 1.276 36 29.324 73 34.457 0.992 11.931 0.01183 0.0 0.000 0.000 0.000 36 29.553 73 32.343 0.992 11.184 0.01109 27.0 2.434 0.0 0.000 36 29.681 73 15.442 0.992 11.408 0.01131 0.0 0.000 15.0 1.326 36 29.697 73 12.760 0.992 11.632 0.01154 <td></td> <td></td> <td>73</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			73								
36 28.341 73 32.498 0.992 11.203 0.01111 134.0 12.061 0.0 0.000 36 28.530 73 8.638 0.992 11.390 0.01130 0.0 0.000 30.0 2.656 36 28.789 73 12.425 0.992 11.856 0.01176 0.0 0.000 15.0 1.276 36 29.324 73 34.457 0.992 11.931 0.01183 0.0 0.000 0.0 0.000 36 29.553 73 32.343 0.992 11.184 0.01109 27.0 2.434 0.0 0.000 36 29.681 73 15.442 0.992 11.408 0.01131 0.0 0.000 15.0 1.326 36 29.697 73 12.760 0.992 11.632 0.01154 0.0 0.000 23.0 1.994 36 29.946 73 7.859 0.992 11.166 0.01107											
36 28.530 73 8.638 0.992 11.390 0.01130 0.0 0.000 30.0 2.656 36 28.789 73 12.425 0.992 11.856 0.01176 0.0 0.000 15.0 1.276 36 29.324 73 34.457 0.992 11.931 0.01183 0.0 0.000 0.0 0.000 36 29.553 73 32.343 0.992 11.184 0.01109 27.0 2.434 0.0 0.000 36 29.681 73 15.442 0.992 11.408 0.01131 0.0 0.000 15.0 1.326 36 29.697 73 12.760 0.992 11.632 0.01154 0.0 0.000 23.0 1.994 36 29.946 73 7.859 0.992 11.166 0.01107 0.0 0.000 0.0 0.03 36 30.343 73 6.576 0.992 11.184 0.01107											
36 28.789 73 12.425 0.992 11.856 0.01176 0.0 0.000 15.0 1.276 36 29.324 73 34.457 0.992 11.931 0.01183 0.0 0.000 0.0 0.000 36 29.553 73 32.343 0.992 11.184 0.01109 27.0 2.434 0.0 0.000 36 29.681 73 15.442 0.992 11.408 0.01131 0.0 0.000 15.0 1.326 36 29.697 73 12.760 0.992 11.632 0.01154 0.0 0.000 23.0 1.994 36 29.946 73 7.859 0.992 11.166 0.01107 0.0 0.000 0.0 0.000 36 30.343 73 6.576 0.992 11.166 0.01107 0.0 0.000 7.0 0.632 36 30.390 73 30.883 0.992 11.184 0.01109								134.0			
36 29.324 73 34.457 0.992 11.931 0.01183 0.0 0.000 0.0 0.000 36 29.553 73 32.343 0.992 11.184 0.01109 27.0 2.434 0.0 0.000 36 29.681 73 15.442 0.992 11.408 0.01131 0.0 0.000 15.0 1.326 36 29.697 73 12.760 0.992 11.632 0.01154 0.0 0.000 23.0 1.994 36 29.946 73 7.859 0.992 11.166 0.01107 0.0 0.000 0.0 0.000 36 30.343 73 6.576 0.992 11.166 0.01107 0.0 0.000 7.0 0.632 36 30.390 73 30.883 0.992 11.184 0.01109 1.5 0.135 0.0 0.000	36		73	8.638	0.992	11.390	0.01130	0.0	0.000		
36 29.553 73 32.343 0.992 11.184 0.01109 27.0 2.434 0.0 0.000 36 29.681 73 15.442 0.992 11.408 0.01131 0.0 0.000 15.0 1.326 36 29.697 73 12.760 0.992 11.632 0.01154 0.0 0.000 23.0 1.994 36 29.946 73 7.859 0.992 11.166 0.01107 0.0 0.000 0.0 0.000 36 30.343 73 6.576 0.992 11.166 0.01107 0.0 0.000 7.0 0.632 36 30.390 73 30.883 0.992 11.184 0.01109 1.5 0.135 0.0 0.000											
36 29.681 73 15.442 0.992 11.408 0.01131 0.0 0.000 15.0 1.326 36 29.697 73 12.760 0.992 11.632 0.01154 0.0 0.000 23.0 1.994 36 29.946 73 7.859 0.992 11.166 0.01107 0.0 0.000 0.0 0.000 36 30.343 73 6.576 0.992 11.166 0.01107 0.0 0.000 7.0 0.632 36 30.390 73 30.883 0.992 11.184 0.01109 1.5 0.135 0.0 0.000	36		73	34.457	0.992	11.931		0.0	0.000	0.0	0.000
36 29.697 73 12.760 0.992 11.632 0.01154 0.0 0.000 23.0 1.994 36 29.946 73 7.859 0.992 11.166 0.01107 0.0 0.000 0.0 0.000 36 30.343 73 6.576 0.992 11.166 0.01107 0.0 0.000 7.0 0.632 36 30.390 73 30.883 0.992 11.184 0.01109 1.5 0.135 0.0 0.000											
36 29.946 73 7.859 0.992 11.166 0.01107 0.0 0.000 0.0 0.000 36 30.343 73 6.576 0.992 11.166 0.01107 0.0 0.000 7.0 0.632 36 30.390 73 30.883 0.992 11.184 0.01109 1.5 0.135 0.0 0.000											
36 30.343 73 6.576 0.992 11.166 0.01107 0.0 0.000 7.0 0.632 36 30.390 73 30.883 0.992 11.184 0.01109 1.5 0.135 0.0 0.000			73		0.992	11.632	0.01154	0.0	0.000	23.0	1.994
36 30.390 73 30.883 0.992 11.184 0.01109 1.5 0.135 0.0 0.000	36	29.946	73	7.859	0.992	11.166	0.01107	0.0	0.000	0.0	0.000
	36	30.343	73	6.576	0.992	11.166	$0.0\overline{1107}$		0.000	7.0	0.632
36 30.481 73 35.125 0.992 11.483 0.01139 0.0 0.000 0.0 0.000										0.0	
	36	30.481	73	35.125	0.992	11.483	0.01139	0.0	0.000	0.0	0.000

36	30.524	73	12.663	0.992	11.632	0.01154	0.0	0.000	30.0	2.601
36	30.761	73	9.947	0.992	11.632	0.01154	0.0	0.000	23.0	1.994
36	30.762	73	11.495	0.992	11.632	0.01154	0.0	0.000	45.0	3.901
36	30.975	73	8.971	0.992	11.166	0.01107	0.0	0.000	105.0	9.483
36	31.169	73	33.859	0.992	11.203	0.01111	270.0	24.303	0.0	0.000
36	31.258	73	34.759	0.992	11.688	0.01159	0.0	0.000	0.0	0.000
36	31.334	73	31.107	0.992	11.184	0.01109	0.0	0.000	54.0	4.869
36	31.864	73	13.760	0.992	11.632	0.01154	0.0	0.000	101.0	8.756
36	32.155	73	34.138	0.992	11.203	0.01111	360.0	32.404	0.0	0.000
36	32.312	73	11.187	0.992	11.632	0.01154	0.0	0.000	130.0	11.269
36	32.588	73	34.789	0.992	11.464	0.01137	0.0	0.000	0.0	0.000
36	33.282	73	12.725	0.992	11.632	0.01154	0.0	0.000	45.0	3.901
36	33.296	73	31.161	0.529	11.184	0.00592	0.0	0.000	45.0	7.607
36	33.411	73	33.939	7.801	11.203	0.08740	1476.0	16.888	0.0	0.000
36	33.964	73	12.720	0.992	11.632	0.01154	0.0	0.000	30.0	2.601
36	34.101	73	13.102	0.992	11.408	0.01131	0.0	0.000	405.0	35.798
36	34.282	73	15.300	0.992	11.632	0.01154	0.0	0.000	224.0	19.418
36	34.335	73	34.084	0.992	11.651	0.01155	36.0	3.116	0.0	0.000
36	35.207	73	13.614	0.992	11.408	0.01131	0.0	0.000	180.0	15.910
36	35.217	73	32.923	0.992	11.651	0.01155	45.0	3.895	0.0	0.000
36	35.923	73	15.408	0.992	11.632	0.01154	0.0	0.000	336.0	29.127
36	37.146	73	32.948	0.992	11.651	0.01155	34.0	2.943	0.0	0.000
36	37.320	73	15.415	0.992	11.632	0.01154	0.0	0.000	378.0	32.768
36	37.441	73	34.678	0.992	12.397	0.01229	0.0	0.000	0.0	0.000
36	37.804	73	16.759	0.992	11.632	0.01154	0.0	0.000	170.0	14.737
36	38.083	73	14.595	0.992	11.632	0.01154	0.0	0.000	459.0	39.790
36	38.473	73	33.999	0.992	11.445	0.01135	162.0	14.273	0.0	0.000
36	38.977	73	34.271	0.992	11.464	0.01137	0.0	0.000	0.0	0.000
36	39.072	73	15.099	0.992	11.408	0.01131	0.0	0.000	54.0	4.773
36	39.296	73	32.940	0.992	11.651	0.01155	72.0	6.232	0.0	0.000
36	39.351	73	17.479	6.611	12.099	0.07999	0.0	0.000	630.0	7.876
36	39.717	73	17.075	0.992	11.632	0.01154	0.0	0.000	143.0	12.396
36	40.350	73	15.762	11.900	11.408	0.13576	0.0	0.000	432.0	3.182
36	41.085	73	16.814	0.992	11.408	0.01131	0.0	0.000	18.0	1.591
36	41.521	73	20.550	9.917	11.408	0.11313	0.0	0.000	1224.0	10.819
36	41.631	73	20.728	11.900	11.408	0.13576	0.0	0.000	1260.0	9.281
36	41.818	73	17.911	5.289	11.632	0.06152	0.0	0.000	684.0	11.118
36	41.829	73	18.177	0.992	11.632	0.01154	0.0	0.000	119.0	10.316
36	41.831	73	21.148	11.900	11.408	0.13576	0.0	0.000	1278.0	9.414
36	41.863	73	18.870	6.281	11.632	0.07306	0.0	0.000	594.0	8.130
36	41.943	73	18.255	7.603	11.632	0.08844	0.0	0.000	486.0	5.495
36	41.999	73	18.896	8.264	11.632	0.09613	0.0	0.000	540.0	5.617
36	42.000	73	18.342	8.264	11.632	0.09613	0.0	0.000	684.0	7.115
36	42.009	73	19.233	7.603	11.632	0.08844	0.0	0.000	756.0	8.548
36	42.129	73	34.467	0.992	11.221	0.01113	0.0	0.000	0.0	0.000
36	42.134	73	18.199	7.603	11.632	0.08844	0.0	0.000	630.0	7.124
36	42.141	73	18.402	7.272	11.632	0.08459	0.0	0.000	630.0	7.447
36	42.165	73	20.005	13.223	11.408	0.15085	0.0	0.000	1134.0	7.518
36	42.169	73	32.986	0.992	11.184	0.01109	0.0	0.000	0.0	0.000
36	42.191	73	20.500	11.900	11.408	0.13576	0.0	0.000	1404.0	10.342

36 42.492 73 18.580 11.900 11.408 0.13576 0.0 0.000 1224.0 9.016 36 42.580 73 17.500 7.934 11.408 0.09051 0.0 0.000 1224.0 13.524 36 42.604 73 17.208 10.578 11.408 0.12068 0.0 0.000 1350.0 11.187 36 42.724 73 18.635 11.239 11.408 0.12822 0.0 0.000 1224.0 9.546 36 42.728 73 18.995 7.603 11.632 0.08844 0.0 0.000 666.0 7.531 36 42.817 73 20.285 7.603 11.632 0.08844 0.0 0.000 630.0 7.124 36 42.958 73 17.929 3.570 11.184 0.03576 0.0 0.000 118.80 8.751 36 43.097 73 21.597 7.934 11.408											
36 42.580 73 17.500 7.934 11.408 0.09051 0.0 0.000 1224.0 13.524 36 42.604 73 17.208 10.578 11.408 0.12068 0.0 0.000 1350.0 11.187 36 42.724 73 18.635 11.239 11.408 0.12822 0.0 0.000 1224.0 9.546 36 42.728 73 18.995 7.603 11.632 0.08844 0.0 0.000 666.0 7.531 36 42.958 73 17.929 3.570 11.184 0.03993 0.0 0.000 630.0 7.124 36 43.017 73 21.597 11.900 11.408 0.03993 0.0 0.000 1180.0 8.751 36 43.517 73 21.127 7.934 11.408 0.03993 0.0 0.000 1170.0 12.927 36 44.086 73 19.856 0.992 11.184	36	42.303	73	18.231	0.992	11.632	0.01154	0.0	0.000	136.0	11.790
36 42.604 73 17.208 10.578 11.408 0.12068 0.0 0.000 1350.0 11.187 36 42.724 73 18.635 11.239 11.408 0.12822 0.0 0.000 1224.0 9.546 36 42.728 73 18.995 7.603 11.632 0.08844 0.0 0.000 666.0 7.531 36 42.817 73 20.285 7.603 11.632 0.08844 0.0 0.000 630.0 7.124 36 42.958 73 17.929 3.570 11.184 0.03993 0.0 0.000 1188.0 8.751 36 43.099 73 21.597 11.900 11.408 0.9951 0.0 0.000 1188.0 8.751 36 44.086 73 19.856 0.992 11.184 0.01109 0.0 0.000 11.00 126.0 2.825 36 51.3847 73 21.553 3.835 <t< td=""><td>36</td><td>42.492</td><td>73</td><td>18.580</td><td>11.900</td><td>11.408</td><td>0.13576</td><td>0.0</td><td>0.000</td><td>1224.0</td><td>9.016</td></t<>	36	42.492	73	18.580	11.900	11.408	0.13576	0.0	0.000	1224.0	9.016
36 42.724 73 18.635 11.239 11.408 0.12822 0.0 0.000 1224.0 9.546 36 42.728 73 18.995 7.603 11.632 0.08844 0.0 0.000 666.0 7.531 36 42.817 73 20.285 7.603 11.632 0.08844 0.0 0.000 630.0 7.124 36 42.958 73 17.929 3.570 11.184 0.03993 0.0 0.000 252.0 6.311 36 43.009 73 21.597 11.900 11.408 0.13576 0.0 0.000 1188.0 8.751 36 43.517 73 21.127 7.934 11.408 0.09051 0.0 0.000 118.0 12.927 36 44.086 73 19.856 0.992 11.184 0.01109 0.0 0.000 18.0 126.0 2.825 36 51.341 73 22.1533 3.835 1	36	42.580	73	17.500	7.934	11.408	0.09051	0.0	0.000	1224.0	13.524
36 42.728 73 18.995 7.603 11.632 0.08844 0.0 0.000 666.0 7.531 36 42.817 73 20.285 7.603 11.632 0.08844 0.0 0.000 630.0 7.124 36 42.958 73 17.929 3.570 11.184 0.03993 0.0 0.000 252.0 6.311 36 43.009 73 21.597 11.900 11.408 0.13576 0.0 0.000 1188.0 8.751 36 43.517 73 21.127 7.934 11.408 0.09051 0.0 0.000 1170.0 12.927 36 44.086 73 19.856 0.992 11.184 0.01109 0.0 0.000 18.0 1.623 36 44.593 73 21.553 3.835 11.632 0.04460 0.0 0.000 126.0 2.825 36 51.384 73 20.035 0.992 11.184 0.	36	42.604	73	17.208	10.578	11.408	0.12068	0.0	0.000	1350.0	11.187
36 42.817 73 20.285 7.603 11.632 0.08844 0.0 0.000 630.0 7.124 36 42.958 73 17.929 3.570 11.184 0.03993 0.0 0.000 252.0 6.311 36 43.009 73 21.597 11.900 11.408 0.13576 0.0 0.000 1188.0 8.751 36 43.517 73 21.127 7.934 11.408 0.09051 0.0 0.000 1170.0 12.927 36 44.086 73 19.856 0.992 11.184 0.01109 0.0 0.000 18.0 1.623 36 44.593 73 21.553 3.835 11.632 0.04460 0.0 0.000 126.0 2.825 36 51.384 73 20.035 0.992 11.184 0.01109 0.0 0.000 0.0 0.000 36 51.641 73 17.585 0.992 11.408 0.01	36	42.724	73	18.635	11.239	11.408	0.12822	0.0	0.000	1224.0	9.546
36 42.958 73 17.929 3.570 11.184 0.03993 0.0 0.000 252.0 6.311 36 43.009 73 21.597 11.900 11.408 0.13576 0.0 0.000 1188.0 8.751 36 43.517 73 21.127 7.934 11.408 0.09051 0.0 0.000 1170.0 12.927 36 44.086 73 19.856 0.992 11.184 0.01109 0.0 0.000 18.0 1.623 36 44.593 73 21.553 3.835 11.632 0.04460 0.0 0.000 126.0 2.825 36 51.384 73 20.035 0.992 11.184 0.01109 0.0 0.000 0.0 0.000 36 51.641 73 17.585 0.992 11.408 0.01131 0.0 0.000 0.0 0.000 36 51.681 73 23.574 0.966 11.443 0.0115	36	42.728	73	18.995	7.603	11.632	0.08844	0.0	0.000	666.0	7.531
36 43.009 73 21.597 11.900 11.408 0.13576 0.0 0.000 1188.0 8.751 36 43.517 73 21.127 7.934 11.408 0.09051 0.0 0.000 1170.0 12.927 36 44.086 73 19.856 0.992 11.184 0.01109 0.0 0.000 18.0 1.623 36 44.593 73 21.553 3.835 11.632 0.04460 0.0 0.000 126.0 2.825 36 51.384 73 20.035 0.992 11.184 0.01109 0.0 0.000 0.0 0.000 36 51.414 73 21.180 0.911 11.867 0.01081 0.0 0.000 0.0 0.000 36 51.641 73 17.585 0.992 11.408 0.01131 0.0 0.000 0.0 0.000 36 51.681 73 23.574 0.966 11.443 0.01154<	36	42.817	73	20.285	7.603	11.632	0.08844	0.0	0.000	630.0	7.124
36 43.517 73 21.127 7.934 11.408 0.09051 0.0 0.000 1170.0 12.927 36 44.086 73 19.856 0.992 11.184 0.01109 0.0 0.000 18.0 1.623 36 44.593 73 21.553 3.835 11.632 0.04460 0.0 0.000 126.0 2.825 36 51.384 73 20.035 0.992 11.184 0.01109 0.0 0.000 0.0 0.000 36 51.414 73 21.180 0.911 11.867 0.01081 0.0 0.000 0.0 0.000 36 51.641 73 17.585 0.992 11.408 0.01131 0.0 0.000 0.0 0.000 36 51.681 73 23.574 0.966 11.443 0.01154 0.0 0.000 0.0 0.000 36 51.862 73 16.185 0.992 11.632 0.01154	36	42.958	73	17.929	3.570	11.184	0.03993	0.0	0.000	252.0	6.311
36 44.086 73 19.856 0.992 11.184 0.01109 0.0 0.000 18.0 1.623 36 44.593 73 21.553 3.835 11.632 0.04460 0.0 0.000 126.0 2.825 36 51.384 73 20.035 0.992 11.184 0.01109 0.0 0.000 0.0 0.000 36 51.414 73 21.180 0.911 11.867 0.01081 0.0 0.000 0.00 0.000 36 51.641 73 17.585 0.992 11.408 0.01131 0.0 0.000 0.0 0.000 36 51.681 73 23.574 0.966 11.443 0.01105 0.0 0.000 0.0 0.000 36 51.862 73 16.185 0.992 11.632 0.01154 0.0 0.000 0.0 0.000 36 52.882 73 18.919 1.025 10.514 0.01078	36	43.009	73	21.597	11.900	11.408	0.13576	0.0	0.000	1188.0	8.751
36 44.593 73 21.553 3.835 11.632 0.04460 0.0 0.000 126.0 2.825 36 51.384 73 20.035 0.992 11.184 0.01109 0.0 0.000 0.000 0.000 36 51.414 73 21.180 0.911 11.867 0.01081 0.0 0.000 0.0 0.000 36 51.641 73 17.585 0.992 11.408 0.01131 0.0 0.000 0.0 0.000 36 51.681 73 23.574 0.966 11.443 0.01105 0.0 0.000 0.0 0.000 36 51.862 73 16.185 0.992 11.632 0.01154 0.0 0.000 0.0 0.000 36 52.882 73 18.919 1.025 10.514 0.01078 0.0 0.000 0.0 0.000 36 53.823 73 24.728 1.019 11.400 0.01131	36	43.517	73	21.127	7.934	11.408	0.09051	0.0	0.000	1170.0	12.927
36 51.384 73 20.035 0.992 11.184 0.01109 0.0 0.000 0.0 0.000 36 51.414 73 21.180 0.911 11.867 0.01081 0.0 0.000 0.0 0.000 36 51.641 73 17.585 0.992 11.408 0.01131 0.0 0.000 0.0 0.000 36 51.681 73 23.574 0.966 11.443 0.01105 0.0 0.000 0.0 0.000 36 51.862 73 16.185 0.992 11.632 0.01154 0.0 0.000 0.0 0.000 36 52.639 73 21.058 0.951 12.113 0.01152 0.0 0.000 9.0 0.782 36 52.882 73 18.919 1.025 10.514 0.01078 0.0 0.000 0.0 0.000 36 53.222 73 17.539 0.992 11.408 0.01131	36	44.086	73	19.856	0.992	11.184	0.01109	0.0	0.000	18.0	1.623
36 51.414 73 21.180 0.911 11.867 0.01081 0.0 0.000 0.0 0.000 36 51.641 73 17.585 0.992 11.408 0.01131 0.0 0.000 0.0 0.000 36 51.681 73 23.574 0.966 11.443 0.01105 0.0 0.000 0.0 0.000 36 51.862 73 16.185 0.992 11.632 0.01154 0.0 0.000 0.0 0.000 36 52.639 73 21.058 0.951 12.113 0.01152 0.0 0.000 9.0 0.782 36 52.882 73 18.919 1.025 10.514 0.01078 0.0 0.000 0.0 0.000 36 53.222 73 17.539 0.992 11.408 0.01131 0.0 0.000 27.0 2.325 36 53.823 73 24.728 1.019 11.400 0.01161	36	44.593	73	21.553	3.835	11.632	0.04460	0.0	0.000	126.0	2.825
36 51.641 73 17.585 0.992 11.408 0.01131 0.0 0.000 0.0 0.000 36 51.681 73 23.574 0.966 11.443 0.01105 0.0 0.000 0.0 0.000 36 51.862 73 16.185 0.992 11.632 0.01154 0.0 0.000 0.0 0.000 36 52.639 73 21.058 0.951 12.113 0.01152 0.0 0.000 9.0 0.782 36 52.882 73 18.919 1.025 10.514 0.01078 0.0 0.000 0.0 0.000 36 53.222 73 17.539 0.992 11.408 0.01131 0.0 0.000 0.0 0.000 36 53.823 73 24.728 1.019 11.400 0.01161 0.0 0.000 27.0 2.325 36 53.823 73 20.909 0.992 11.184 0.01109	36		73	20.035	0.992	11.184	0.01109	0.0	0.000	0.0	0.000
36 51.681 73 23.574 0.966 11.443 0.01105 0.0 0.000 0.0 0.000 36 51.862 73 16.185 0.992 11.632 0.01154 0.0 0.000 0.0 0.000 36 52.639 73 21.058 0.951 12.113 0.01152 0.0 0.000 9.0 0.782 36 52.882 73 18.919 1.025 10.514 0.01078 0.0 0.000 0.0 0.000 36 53.222 73 17.539 0.992 11.408 0.01131 0.0 0.000 0.000 0.000 36 53.563 73 24.728 1.019 11.400 0.01161 0.0 0.000 27.0 2.325 36 53.823 73 20.909 0.992 11.184 0.01109 0.0 0.000 36.0 3.246 36 54.843 73 19.909 1.040 11.931 0.01241	36	51.414	73	21.180	0.911	11.867	0.01081	0.0	0.000	0.0	0.000
36 51.862 73 16.185 0.992 11.632 0.01154 0.0 0.000 0.0 0.000 36 52.639 73 21.058 0.951 12.113 0.01152 0.0 0.000 9.0 0.782 36 52.882 73 18.919 1.025 10.514 0.01078 0.0 0.000 0.0 0.000 36 53.222 73 17.539 0.992 11.408 0.01131 0.0 0.000 0.000 0.000 36 53.563 73 24.728 1.019 11.400 0.01161 0.0 0.000 27.0 2.325 36 53.823 73 20.909 0.992 11.184 0.01109 0.0 0.000 36.0 3.246 36 54.843 73 19.909 1.040 11.931 0.01241 0.0 0.000 27.0 2.434 36 55.356 73 23.710 0.992 11.184 0.01109	36	51.641	73	17.585	0.992	11.408	0.01131	0.0	0.000	0.0	0.000
36 52.639 73 21.058 0.951 12.113 0.01152 0.0 0.000 9.0 0.782 36 52.882 73 18.919 1.025 10.514 0.01078 0.0 0.000 0.0 0.000 36 53.222 73 17.539 0.992 11.408 0.01131 0.0 0.000 0.0 0.000 36 53.563 73 24.728 1.019 11.400 0.01161 0.0 0.000 27.0 2.325 36 53.823 73 20.909 0.992 11.184 0.01109 0.0 0.000 36.0 3.246 36 54.571 73 22.179 0.992 11.184 0.01109 0.0 0.000 27.0 2.434 36 54.843 73 19.909 1.040 11.931 0.01241 0.0 0.000 450.0 36.268 36 55.356 73 23.710 0.992 11.184 0.01109	36	51.681	73	23.574	0.966	11.443	0.01105	0.0	0.000	0.0	0.000
36 52.882 73 18.919 1.025 10.514 0.01078 0.0 0.000 0.0 0.000 36 53.222 73 17.539 0.992 11.408 0.01131 0.0 0.000 0.0 0.000 36 53.563 73 24.728 1.019 11.400 0.01161 0.0 0.000 27.0 2.325 36 53.823 73 20.909 0.992 11.184 0.01109 0.0 0.000 36.0 3.246 36 54.571 73 22.179 0.992 11.184 0.01109 0.0 0.000 27.0 2.434 36 54.843 73 19.909 1.040 11.931 0.01241 0.0 0.000 450.0 36.268 36 55.356 73 23.710 0.992 11.184 0.01109 0.0 0.000 85.0 7.664 36 55.472 73 17.577 0.995 11.300 0.01125	36	51.862	73	16.185	0.992		0.01154	0.0	0.000	0.0	0.000
36 53.222 73 17.539 0.992 11.408 0.01131 0.0 0.000 0.0 0.000 36 53.563 73 24.728 1.019 11.400 0.01161 0.0 0.000 27.0 2.325 36 53.823 73 20.909 0.992 11.184 0.01109 0.0 0.000 36.0 3.246 36 54.571 73 22.179 0.992 11.184 0.01109 0.0 0.000 27.0 2.434 36 54.843 73 19.909 1.040 11.931 0.01241 0.0 0.000 450.0 36.268 36 55.356 73 23.710 0.992 11.184 0.01109 0.0 0.000 85.0 7.664 36 55.472 73 17.577 0.995 11.300 0.01125 0.0 0.000 306.0 27.203 36 56.458 73 25.099 0.992 11.184 0.01109 </td <td>36</td> <td>52.639</td> <td>73</td> <td>21.058</td> <td>0.951</td> <td>12.113</td> <td>0.01152</td> <td>0.0</td> <td>0.000</td> <td>9.0</td> <td>0.782</td>	36	52.639	73	21.058	0.951	12.113	0.01152	0.0	0.000	9.0	0.782
36 53.563 73 24.728 1.019 11.400 0.01161 0.0 0.000 27.0 2.325 36 53.823 73 20.909 0.992 11.184 0.01109 0.0 0.000 36.0 3.246 36 54.571 73 22.179 0.992 11.184 0.01109 0.0 0.000 27.0 2.434 36 54.843 73 19.909 1.040 11.931 0.01241 0.0 0.000 450.0 36.268 36 55.356 73 23.710 0.992 11.184 0.01109 0.0 0.000 85.0 7.664 36 55.472 73 17.577 0.995 11.300 0.01125 0.0 0.000 306.0 27.203 36 56.008 73 22.348 0.992 11.632 0.01154 0.0 0.000 54.0 4.681 36 56.458 73 25.099 0.992 11.184 0.01109<	36	52.882	73	18.919	1.025	10.514	0.01078	0.0	0.000	0.0	0.000
36 53.823 73 20.909 0.992 11.184 0.01109 0.0 0.000 36.0 3.246 36 54.571 73 22.179 0.992 11.184 0.01109 0.0 0.000 27.0 2.434 36 54.843 73 19.909 1.040 11.931 0.01241 0.0 0.000 450.0 36.268 36 55.356 73 23.710 0.992 11.184 0.01109 0.0 0.000 85.0 7.664 36 55.472 73 17.577 0.995 11.300 0.01125 0.0 0.000 306.0 27.203 36 56.008 73 22.348 0.992 11.632 0.01154 0.0 0.000 54.0 4.681 36 56.458 73 25.099 0.992 11.184 0.01109 0.0 0.000 54.0 4.681 36 56.542 73 19.105 0.868 11.075 0.00961<	36	53.222	73	17.539	0.992	11.408	0.01131	0.0	0.000	0.0	0.000
36 54.571 73 22.179 0.992 11.184 0.01109 0.0 0.000 27.0 2.434 36 54.843 73 19.909 1.040 11.931 0.01241 0.0 0.000 450.0 36.268 36 55.356 73 23.710 0.992 11.184 0.01109 0.0 0.000 85.0 7.664 36 55.472 73 17.577 0.995 11.300 0.01125 0.0 0.000 306.0 27.203 36 56.008 73 22.348 0.992 11.632 0.01154 0.0 0.000 54.0 4.681 36 56.458 73 25.099 0.992 11.184 0.01109 0.0 0.000 144.0 12.983 36 56.542 73 19.105 0.868 11.075 0.00961 0.0 0.000 558.0 58.037	36	53.563	73	24.728	1.019	11.400	0.01161	0.0	0.000	27.0	2.325
36 54.843 73 19.909 1.040 11.931 0.01241 0.0 0.000 450.0 36.268 36 55.356 73 23.710 0.992 11.184 0.01109 0.0 0.000 85.0 7.664 36 55.472 73 17.577 0.995 11.300 0.01125 0.0 0.000 306.0 27.203 36 56.008 73 22.348 0.992 11.632 0.01154 0.0 0.000 54.0 4.681 36 56.458 73 25.099 0.992 11.184 0.01109 0.0 0.000 144.0 12.983 36 56.542 73 19.105 0.868 11.075 0.00961 0.0 0.000 558.0 58.037	36	53.823	73	20.909	0.992	11.184	0.01109	0.0	0.000	36.0	3.246
36 55.356 73 23.710 0.992 11.184 0.01109 0.0 0.000 85.0 7.664 36 55.472 73 17.577 0.995 11.300 0.01125 0.0 0.000 306.0 27.203 36 56.008 73 22.348 0.992 11.632 0.01154 0.0 0.000 54.0 4.681 36 56.458 73 25.099 0.992 11.184 0.01109 0.0 0.000 144.0 12.983 36 56.542 73 19.105 0.868 11.075 0.00961 0.0 0.000 558.0 58.037	36	54.571	73	22.179		11.184	0.01109	0.0	0.000	27.0	2.434
36 55.472 73 17.577 0.995 11.300 0.01125 0.0 0.000 306.0 27.203 36 56.008 73 22.348 0.992 11.632 0.01154 0.0 0.000 54.0 4.681 36 56.458 73 25.099 0.992 11.184 0.01109 0.0 0.000 144.0 12.983 36 56.542 73 19.105 0.868 11.075 0.00961 0.0 0.000 558.0 58.037		54.843									36.268
36 56.008 73 22.348 0.992 11.632 0.01154 0.0 0.000 54.0 4.681 36 56.458 73 25.099 0.992 11.184 0.01109 0.0 0.000 144.0 12.983 36 56.542 73 19.105 0.868 11.075 0.00961 0.0 0.000 558.0 58.037	36	55.356			0.992	11.184	0.01109	0.0	0.000	85.0	7.664
36 56.458 73 25.099 0.992 11.184 0.01109 0.0 0.000 144.0 12.983 36 56.542 73 19.105 0.868 11.075 0.00961 0.0 0.000 558.0 58.037		55.472									
36 56.542 73 19.105 0.868 11.075 0.00961 0.0 0.000 558.0 58.037	36	56.008	73	22.348	0.992	11.632	0.01154	0.0	0.000	54.0	4.681
		56.458		25.099	0.992	11.184	0.01109	0.0	0.000		12.983
36 57.371 73 23.706 0.992 11.184 0.01109 0.0 0.000 108.0 9.737	36	56.542	73	19.105	0.868	11.075	0.00961	0.0	0.000	558.0	58.037
	36	57.371	73	23.706	0.992	11.184	0.01109	0.0	0.000	108.0	9.737

Anexo 4. Biomasa (tons) y Abundancia (miles de ejemplares) de langostino amarillo y langostino colorado, por caladero, sexo, dentro y fuera del arpa y región

ANEXO 4

BIOMASA (TONS) Y ABUNDANCIA
(MILES DE EJEMPLARES) DE
LANGOSTINO AMARILLO Y
LANGOSTINO COLORADO, POR
CALADERO, SEXO, DENTRO Y
FUERA DEL ARPA Y REGIÓN.

Anexo 4.1. Abundancia (miles de ejemplares) de langostino amarillo (*C. johni*) por foco de distribución, e intervalos de confianza respectivos (LI = límite inferior; LS = límite superior).

Foco	Abunda	ıncia (miles de ejen	nplares)
госо	Estimada	LI	LS
1	1.614,8	1.493,9	1.801,8
2	674,1	619,9	756,5
3	5.400,8	4.982,8	6.042,7
4	90,9	84,5	100,9
5	21.062,1	19.511,3	23.470,2
6	10.511,7	9.725,9	11.727,7
7	3.175,7	2.927,6	3.555,9
8	7.150,5	6.634,0	7.956,1
9	75,3	70,0	83,6
10	33.173,0	30.812,3	36.868,1
11	4.329,4	3.851,8	5.013,9
12	25.221,4	23.157,9	28.351,4
13	11.221,8	10.349,4	12.559,9
14	54.621,1	50.509,7	60.973,1
15	494.279,6	458.705,3	549.813,7
16	122.039,9	113.010,9	136.044,6
17	6.930,4	6.323,9	7.837,6
18	1.145.018,7	1.063.049,8	1.273.140,0
19	61.185,1	56.660,2	68.204,2
20	6.371,9	5.778,7	7.248,4
21	160.904,1	149.333,0	178.971,0
22	42.782,9	39.608,9	47.703,0
23	184,6	99,6	291,0
24	267,6	117,9	453,4
25	2.700,4	2.429,1	3.095,6
26	121,8	106,6	143,1
27	43,9	34,6	56,3
28	14.153,3	13.153,2	15.721,3
29	200,9	180,0	231,1
30	56.995,3	52.986,5	63.287,5
Total	2.292.503,0	2.126.309,2	2.551.503,6

Anexo 4.2. Abundancia (miles de ejemplares) de langostino colorado (*P. monodon*) por foco de distribución, e intervalos de confianza respectivos (LI = límite inferior; LS = límite superior).

Eggs	Abunda	ancia (miles de ejen	nplares)
Foco	Estimada	LI	LS
1	4.451,7	4.028,2	5.075,0
2	70.494,2	65.277,2	78.585,7
3	1.221.581,1	1.132.522,1	1.360.190,0
4	5.755,3	5.006,5	6.801,2
5	116.101,3	107.216,9	129.776,4
6	8.685,5	7.754,4	10.026,5
7	564,0	314,7	876,5
8	1.327,9	1.130,1	1.599,1
9	19.975,5	17.986,9	22.877,5
10	163.926,3	151.415,9	183.194,2
11	47.502,7	43.519,5	53.513,3
12	2.215,1	1.942,7	2.598,8
13	4.609,5	3.973,6	5.490,2
14	109.488,2	101.505,5	121.912,2
15	494.345,5	458.647,1	550.029,6
16	393.204,1	364.660,4	437.673,4
17	5.823,1	5.319,5	6.578,3
18	277.063,8	257.087,0	308.235,8
Total	2.947.114,8	2.729.308,2	3.285.033,7

Biomasa (tons) de **machos** de langostino amarillo (*Cervimunida johni*) por caladero **fuera** de las 5 mn de reserva artesanal entre la II y VIII Región. Enfoque geoestadístico. **Caladeros 1 a 15.** Anexo 4.3.

	15	0,080 0,308 0,129 0,479 1,756 1,883 3,936 10,644 11,490 40,448 54,133 94,206 159,374 167,004 179,984 210,586 124,909 104,213 98,586 127,666 129,396 146,771 164,770 239,264 200,558 111,156 4,321 4,4321 4,647	2731,897
	14		0,000
	13		0,000
	12	0,348 1,485 2,046 2,744 1,440 2,738 3,912 5,792 2,355 1,370 1,370 2,954 1,869 2,011	73,799
	11		0,000
	10		0,000
8.0	6	0,011 0,012 0,018 0,025 0,016 0,037 0,028	0,199
CALADERO	8		0,000
C	7		0,000
	9	0,085 0,110 0,991 0,279 0,312 0,522 0,402	2,701
	2	0,088 0,104 0,244 0,566 0,966 1,874 1,497 3,153 1,369 0,924 0,854 0,854	12,300
	4	0,0002 0,0003 0,0007 0,0019 0,019 0,010 0,010 0,021 0,049 0,049	0,400
	3	0,141 0,379 1,957 1,242 1,692 2,551 0,718 1,608 1,795 0,553 0,553 0,673 4,435 5,667 5,308 10,606 6,291 3,413 1,232	55,200
	2	0,003 0,062 0,163 0,188 0,075 0,075 0,030 0,030 0,016 0,018	666'0
	1	0,001 0,029 0,029 0,044 0,039 0,115 0,037 0,037 0,037 0,037	0,700
ZM	MC	$\begin{smallmatrix} 100\\ 112\\ 14\\ 15\\ 16\\ 17\\ 19\\ 19\\ 19\\ 19\\ 19\\ 19\\ 19\\ 19\\ 19\\ 19$	Total

Biomasa (tons) de **machos** de langostino amarillo (*Cervimunida johni*) por caladero **fuera** de las 5 mn de reserva artesanal entre la II y VIII Región. Enfoque geoestadístico. **Caladeros 16 a 30.** Anexo 4.4.

	30			0,195		0,139	0,164	0,574	1,552	1,786	2,336	3,321	4,135	6,775	10,448	15,382	8,852	16,357	17,351	27,078	43,735	37,365	46,053	63,875	59,527	65,924	77,195	102,291	108,615	138,842	104,050	50,551	20,306	21,720	12,888	5,498	3 115	1077,995
	29												0,016		0,040	0,136	0,050	0,112	0,031	0,136	0,149	0,490	0,268	0,389	0,370	0,401	0,497	0,469	0,796	0,467	0,084							4,901
	28						0,160				0,285		0,367		2,316	2,586	2,302	4,466	4,935	9,320	11,942	10,277	13,269	16,685	14,513	34,112	35,509	38,366	21,515	19,597	24,888	12,324	11,001	4,707	2,514	8,043		305,999
	27										0,001		0,001		0,008	0,008	0,005	0,013	0,019	0,030	0,045	0,056	0,044	0,084	0,061	0,111	0,143	0,099	0,049	0,057	0,075	0,028	0,025	0,011	0,006	0,018		0,997
	26														0,029	0,021		0,026	0,073	0,081	0,159	0,291	0,127	0,416	0,251	0,300	0,560	960'0		0,111	0,159							2,700
	25		0,049		0,083	0,097	0,223		0,439	0,332	0,374	0,839	0,937	1,042	0,433	0,318	0,700	0,768	1,468	2,058	3,231	5,122	2,917	7,557	3,393	4,742	7,439	1,258		1,437	2,044							49,300
0.1	24		0,000		0,014	0,017	0,039		0,076	0,057	0,065	0,145	0,162	0,181			0,121	0,067	0,073	0,159	0,172	0,187	0,202	0,328		0,126												2,200
CALADERO	23		0,003	0,002	0,005	0,003	0,011		0,014	0,033	0,018	0,041	0,084	0,085	0,057	0,052	0,034	0,063	0,110	0,060	0,049	0,053	0,038	0,103	0,044	0,120	0,077	0,137	0,206	0,157	0,100	0,107	0,076	0,121	0,213	0,271	0,096	2,696
C	22		0,511	0,730	0,858		1,157			6,867	1,936	4,343	16,972	16,176	17,916	16,476	3,624	15,892	30,399	9,467	5,146	5,581		13,040	14,049	30,213	24,321	43,428	62,029	49,602	31,734	33,786	23,948	38,142	67,412	85,679	30,213 16,851	721,498
	21		0,084	****	0,285	0,667	0,580	1,337	1,021	0,290	0,657	2,217	4,965	5,537	6,150	13,611	17,510	40,553	63,265	79,000	79,807	141,328	186,013	210,401	199,993	144,984	143,039	214,961	133,274	116,174	112,810	110,291	70,476	68,141	19,301	17,915	10,847 20.916	2238,501
	20		0,038	0,140	0,135	0,120	0,378	0,552	0,512	1,106	1,520	1,250	1,524	1,473	3,030	2,155	3,085	4,563	6,727	8,342	7,130	9,209	11,896	14,634	7,598	3,534	4,679	6,437	4,961	5,877	12,636	6,165	9,249	5,655	5,288	4,030	0,859	157,401
	19									0,358	1,212	2,723	3,551	8,471	13,148	18,672	29,687	77,678	69,447	83,735	48,807	860,79	80,302	95,022	90,571	73,492	108,101	152,687	102,381	79,945	47,135	31,085	20,350	10,810	5,735	6,078	3,216	1331,497
	18		0.193	0,462	0,548	996'0	1,126	3,473	7,478	18,775	28,410	64,870	96,616	159,322	163,168	178,765	232,646	381,725	479,810	550,330	593,789	798,658	925,714	1159,232	1213,816	1280,510	1271,495	1741,420	1424,001	1229,550	735,177	566,325	357,188	277,150	89,952	111,498	61,974 42,865	16248,997
	17																																					0,000
	16	0,039	0,488	2,219	1,935	5,162	4,006	3,219	3,174	2,004	2,689	4,393	4,495	7,913	7,004	666'6	4,788	6,218	2,957	11,984	18,016	13,202	13,025	7,912	8,630	7,514	4,080	6,632										164,100
SM	MC	10,5 11,5 12,5	14,5	16,5	17,5	18,5	19,5	20,5	21,5	22,5	23,5	24,5	25,5	26,5	27,5	28,5	29,5	30,5	31,5	32,5	33,5	34,5	35,5	36,5	37,5	38,5	39,5	40,5	41,5	42,5	43,5	44,5	45,5	46,5	47,5	48,5	49,5 >50,5	Total

Biomasa (tons) de **machos** de langostino amarillo (*Cervimunida johni*) por caladero **dentro** de las 5 mn de reserva artesanal entre la II y VIII Región. Enfoque geoestadístico. **Caladeros 1 a 15.** Anexo 4.5.

	15	0,064	0,147	1,667	4,556	7,243	25,502	39,787 57,212	113,797	124,757	201,087	212,310	219,698	233,610	195,141	142,170	62,308	49,728	19,391	12,567	2,707	2,911	3,126			2344,194
	14	0,106	0,161 0,780 1,167	2,467 2,923 3,595	7,003	11,566 14,070	17,284	20,636 20,308	22,278	19,6/0	31,202	19,676	37,316	40,824	52,647	44,084 51,470	33,726	37,876	22.838	10,526	7,534	2,019	2,161	2,626		618,799
	13		0,177	1,786	2,823	3,950 6,385	5,150	8,921 5,802	0,868	0,9,0	2,997	1,325	5,643 6,422	7,918	8,654	13,727	18,570	2,682	1.564							128,301
	12	1,031	1,878 2,238 7,028	6,186	12,422	9,486							15 573	0.00				25,476								89,400
	11				0,038	0,044	0,407	0,863	2,471	1,246	1,200	1,202	1,030	1,443	1,190	2,823	2,333	4,516	0,131	3,595	3,106	1,674	0,451	0,519		45,100
	10				1,420	1,664	6,715	15,440	13,390	11,3/2	4,801	10,744	6,657	7,375	16,293			11,817			16,535					165,100
0	6																									0,000
CALADERO	8						0,150	0,175	0,933	3,046	3,112	4,301	2,202	6,633	1,849	4,793 7,592	1,679	0,925	3,350	2,445	2,672					53,401
' C	7					0.341	0,599	0,930	2,480	1,775	0,919		0.657	70,0			1,116	2,460		1,625	1,776	1,936	2,107	2,482 2,687		24,698
	9				0,254	0,510	1,513	2,778	4,172	3,752	2,769	1,426	0.492	0,807	2,054	0,519 2,429	1,880	4,066	5,511	4,068	4,367	4,681	3,131 1,338			64,000
	5			0 464	0,809	2,178	5,700	8,316 9,911	6,450	0.732	1,626	2,701	1,994	1,200	1,313	1,561		3,678	2,981							66,303
	4																									0,000
	3																									0,000
	2		0 0 13	0,044	0,139	0,319	0,147	0,033	0,083	0 154		0,063	0.301	0,165	0,628	0,846	0,686	0,494		0,154						5,601
	1	0,011			0,113	0,324	0,502	0,661	1,303	0.439		0 106	0,130			0,301	0,977	0	0,579		0,940					7,902
JM		10,5 11,5 12,5 13,5	15,5 16,5 17,5 18,5	19,5	21,5	22,5 23,5	24,5	25,5	27,5	28,5 29,5	30,5	31,5	33.5	34,5	35,5	37,5	38,5	39,5	40,5 41,5	42,5	43,5	44,5	45,5 46,5	47,5 48,5	49,5 >50,5	Total

Biomasa (tons) de **machos** de langostino amarillo (*Cervimunida johni*) por caladero **dentro** de las 5 mn de reserva artesanal entre la II y VIII Región. Enfoque geoestadístico. **Caladeros 16 a 30.** Anexo 4.6.

	30		0,000
	29		0,000
	28		0,000
	27		0,000
	26		0,000
	25		0,000
3.0	24		0,000
CALADERO	23		0,000
О	22		0,000
	21	9,723 21,374 58,551 118,509 159,121 205,409 186,681 201,543 124,086 111,200 83,556 127,912 95,789 58,467 62,357 16,603	1749,201
	20		0,000
	19		0,000
	18	0,307 0,307 6,610 8,066 10,289 13,521 40,238 75,594 125,214 171,228 140,238 125,214 171,228 140,432 242,656 292,805 352,849 473,188 466,434 304,700 339,019 62,933 62,933 62,933 62,933 62,938 63,938 63,93	5280,896
	17	1,009 0,643 3,604 6,441 5,375 5,958 14,265 9,670 6,637 8,724 8,724 8,724 4,083 4,420 4,775	91,501
	16	0,041 0,052 0,192 0,235 0,947 2,716 4,423 6,612 12,111 16,990 19,784 26,530 37,476 45,641 60,320 64,030 64,030 64,030 10,612 101,612 104,252 81,706 12,739 96,612 104,252 81,706 12,739 11,488	1371,001
JM	INC	$\begin{array}{c} 100\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$	Total

Biomasa (tons) de **hembras** de langostino amarillo (*Cervimunida johni*) por caladero **fuera** de las 5 mn de reserva artesanal entre la II y VIII Región. Enfoque geoestadístico. **Caladeros 1 a 15.** Anexo 4.7.

	15	0.129 0.160 0.780 1.412 3.374 9.979 28.495 60.902 111.949 148.561 125.304 104.928 75.036 56.997 59.580 37.507 24.723 18.058 14.800 5.379 5.379 5.379 5.379 5.379	1785.700
	14		0.000
	13		0.000
	12	0,141 0,348 0,319 1,152 1,220 0,901 1,054 0,564 1,616 1,840 2,918 1,409 1,581	16,599
	11		0,000
	10		0,000
80	6	0,006 0,033 0,079 0,039 0,022 0,017 0,010	0,300
ALADERO	8		0,000
C	7		0,000
	9		0,000
	3	0,025 0,263 0,207 0,363 0,422 0,312 1,700 0,964 1,633 0,918 0,382 0,382 0,382 0,382	6,800
	4	0,013 0,041 0,084 0,080 0,030 0,009 0,009 0,011	0,401
	3	0,203 0,360 0,985 3,440 3,408 1,129 0,898 0,499 0,553 0,611	20,099
	2	0,003 0,010 0,018 0,096 0,122 0,039 0,039 0,001 0,001	0,500
	1	0,004 0,016 0,030 0,075 0,117 0,184 0,024 0,024 0,041 0,045 0,073	0,900
SM	MC	$\begin{array}{c} 0.01 \\ 1.02 \\ 2.02 \\ 2.03 \\ 2.$	Total

Biomasa (tons) de **hembras** de langostino amarillo (*Cervimunida johni*) por caladero **fuera** de las 5 mn de reserva artesanal entre la II y VIII Región. Enfoque geoestadístico. **Caladeros 16 a 30.** Anexo 4.8.

	30							0 117			,	0,191	0,443	0.510	0,876	2,989	2,767	2,262	711,7	5,224	6,895	8,262	8,505	11,567	24,688	36,735	53,650	68,029	63,872	74,405	57,848	26,216	22,031	33,940	31,055	25,520	12,637	2,256	7,239					591,200
•	29													0.010	0,012	1	0.031	0,031	0,017	0,020	0,065	0,049	0,027	0,030			0,039	0,043	0,141	0,051			0,065											0,600
-	28												0,216			0 972	0.367	,,,,	277	0,463	5,069	5,756	4,467	7,051	8,544	9,384	9,344	4,083	11,125	13,305	7,873	14,205	7,674	4,966	1,782		2,054	`						115,700
•	27															0000	200,0	0,001	1000	0,001	0,004	0,014	0,009	0,019	0,029	0,025	0,024	0,014	0,024	0,031	0,021	0,034	0,024	0,016	0,004		0.004	`						0,300
•	26																					0,022		0,054	0,120	990.0	0,054	0,059	0,021	0,047	0,051	0,055	0,089	0,064										0,702
•	25							0.042	0,01	0,040	0,112	0,193	0,220	0,250	0 188	0.105	0.588	0.265	0,401		0,320	0,703	0,193	1,053	2,525	0,998	0,812	0,878	0,948	0,681	0,732	0,786	1,263	0,901										14,801
	24							0.015	0.018	0,010	0,041	0,070	0,080	0,091	0,068	0.038	0,000	7000	0,00	7110	0,116	0,128	0,070	0,077	0,250				0,230															1,601
CALADERO	23							0 003	0,003	0,00	0,00,	0,013	0,014	0,033	0.018	0.021	720,0	7,0,0	0,079	0,038	0,094	0,092	0,076	0,055	0,060	0,049	0,053	0,058	0,124	0,045		0,258	0,138	0,089	0,221	0,135	0,107	0,038	0,081	0,172			0,051	2,300
	22													5.150	1,936	4 343	12,51	18 871	11,041	11,944	23,065	21,743	19,864	13,027	4,733	15,438	16,743	18,116	26,078	14,048		81,064	43,426	27,868	69,439	42,309	33,784	11,973	25,426	53,926			15,962	632,398
•	21								0.167	0,107	0,38/	0,446	0,510	0.871	0,657	1 478	1,1,0	7.760	1,10	7,176	15,313	38,774	70,797	111,469	94,637	71,738	57,507	46,504	42,310	43,209	54,536	40,052	59,883	34,553	21,123	7,521	4,011	6,407	2,271	4,825	2,559			845,701
•	20	000	0,009			0.023		0.067	0,000	0,120	0,550	0,220	0,383	0,663	0,927	0.768	05/0	,	717	0,413	0,30/	0,856	1,519	3,778	4,165	5,085	4,180	2,741	0,664	1,445	0,392	0,849	0,918		0,533									31,899
-	19									0,00	0,240	0,276	1,577	1.074	0,808	2 2 69	2,551	12,531	10,00	19,408	33,885	54,806	90,203	85,892	68,780	40,129	50,616	42,062	16,525	19,301	11,183	1,716	3,679	5,906	6,311	13,467	9,564	10,175	8,107	5,735				620,798
•	18							0 274	0.966	0,750	0,750	8,247	9,970	19,913	44,552	795.69	160,27	251.801	220,001	329,394	436,729	549,093	1094,182	1328,931	1170,274	959,472	1045,152	749,995	648,145	356,855	252,302	160,763	157,167	70,863	75,942	42,562	24,803	8,820	4,697	4,997		5,634		0,000 10075,299
	17																																											0,000
•	16	0	0,077	0,100	400,0		0.371	0.745	1 960	1,700	2,321	2,231	2,022	2,007	3,077	8 794	3,501	5,007	2,032	5,100	6,436	3,993	4,447	1,972	4,363	1,202	2,643	1,448	4,752		1,881													70,599
MC		10,5	c, II	C,71	2,51 7,51	15.5	16.5	17.5	2, 2,	10,0	c,61	20,2	21,5	22.5	23,5	24.5	, v	5,50	7,00	C, 12	5,87	29,5	30,5	31,5	32,5	33.5	34,5	35,5	36,5	37,5	38,5	39,5	40,5	41,5	42,5	43,5	44.5	45,5	46.5	47,5	48,5	49,5	>50,5	Total

Biomasa (tons) de **hembras** de langostino amarillo (*Cervimunida johni*) por caladero **dentro** de las 5 mn de reserva artesanal entre la II y VIII Región. Enfoque geoestadístico. **Caladeros 1 a 15.** Anexo 4.9.

	15	0,122 0,295 0,295 0,353 0,625 1,222 4,271 8,561 15,608 175,070	1108,498
-	14	0,161 0,585 0,584 1,521 2,436 3,253 8,802 119,896 32,203 32,210 27,956 32,210 27,956 32,110 27,956 32,110 27,956 32,110 27,956 32,110 27,956 32,110 27,956 31,110 1,005 2,110 2,110 2,110 2,110 3,110 1,100	298,599
	13	0,089 0,319 1,517 1,192 1,140 0,807 2,558 4,527 4,851 1,943 1,943 1,943 1,943 1,943 1,943 1,943 1,943 1,943 1,943 1,943 1,943 1,943 1,943 1,943 1,943 1,049	39,899
	12	17,000	17,000
	11	0,044 0,152 0,290 0,662 0,601 2,390 1,393 1,436 1,142 0,719 0,719 0,719 0,749 0,563 0,563 0,563 0,514	19,498
	10	4,815 3,329 7,747 11,195 20,593 17,659 6,697 18,960 8,552 9,605 16,298 8,977	154,700
	6		0,000
CALADERO	8	0,091 0,128 0,900 1,048 1,415 2,095 4,268 6,387 5,525 5,075 1,759 0,494	29,800
	7	0,203 0,145 0,801 0,700 1,891 1,425 1,425 1,219 0,923	6,599
	9	0,055 0,762 1,022 2,250 3,691 7,378 5,412 7,002 7,002 1,809 4,672 1,809 4,673 1,835 2,018 0,984 1,346 0,587 0,587 0,752	50,600
	5	0,232 1,078 3,733 10,349 18,725 17,551 7,301 11,138 9,186 2,927 2,438 0,900 0,993 1,093 1,696	90,901
	4		0,000
	3		0,000
	2	0,038 0,074 0,328 0,279 0,182 0,177 0,063 0,063	1,899
	1	0,042 0,168 0,321 0,805 1,244 1,964 1,173 0,261 0,480 0,775 0,253	9,601
JM		$ \begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	Total

Anexo 4.10. Biomasa (tons) de **hembras** de langostino amarillo (*Cervimunida johni*) por caladero **dentro** de las 5 mn de reserva artesanal entre la II y VIII Región. Enfoque geoestadístico. **Caladeros 16 a 30.**

	30		0,000
	29		0,000
	28		0,000
	27		0,000
	26		0,000
	25		0,000
0	24		0,000
ALADERO	23		0,000
CA	22		0,000
	21	7,174 39,842 110,218 131,259 138,921 117,095 38,382 27,730 8,216 17,778	659,498
	20		0,000
	19		0,000
	18	0,613 2,144 7,024 8,067 16,245 23,968 47,177 69,361 104,585 164,045 235,849 245,252 296,444 266,527 321,866 236,070 244,012 171,330 143,729 64,584 56,810 36,169 36,169 59,89 44,966 17,212 29,464 7,869 16,790 4,472 4,472 4,756	2962,401
	17	0,443 0,504 3,995 3,857 5,767 9,661 3,583 7,252 5,310 2,908 1,588	57,201
	16	0,078 0,663 1,585 3,887 7,556 11,560 15,715 18,074 30,159 45,732 62,890 76,917 91,728 77,118 88,101 74,550 46,411 35,125 26,019 14,721 9,054 4,389 4,777 5,188	751,997
JM		0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Total

Abundancia (miles de ejemplares) de **machos** de langostino amarillo (*Cervimunida johni*) por caladero **fuera** de las 5 mn de reserva artesanal entre la II y VIII Región. Enfoque geoestadístico. **Caladeros 1 a 15.** Anexo 4.11.

	15	70,6 212,6 70,8 212,6 638,1 567,0 992,2 2268,0 6308,2 11057,0 16372,9 15097,1 14388,4 1455,3 10277,4 7087,8 5315,9 4890,6 5032,4 515,9 4890,6 5032,4 1063,2 1063,2 1063,2 1063,2 1063,2 70,9	159050,7
	14		0,0
	13		0,0
	12	185,5 648,5 648,5 741,3 834,0 370,8 602,3 741,2 972,9 926,6 1065,5 694,9 509,6 185,3 46,3 139,0 46,3 46,3 46,3 46,3 46,3 46,3	8,0966
	11		0,0
	10		0,0
0	6	2, 2, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	26,4
ALADER	8		0,0
C	7		0,0
	9	17,9 17,8 142,3 35,6 35,6 53,4 17,8	320,3
	3	31,3 31,3 62,8 125,4 94,0 313,4 219,5 407,5 156,7 94,1 31,3 62,7	1661,4
	4	0,0 0,0 1,2 1,2 1,2 1,4 4,4 4,4 1,3 1,3 0,6 0,6 0,6 0,6	31,4
	3	29,1 58,1 261,3 145,2 174,1 232,3 58,1 116,1 116,1 116,1 116,1 174,2 29,0 174,2 203,2 174,	2671,0
	2	0, 6, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	65,0
	1	0,0 7,1 7,4 4,7 6,5 9,2 9,2 9,2 8,0 0,8 0,8 0,9 0,0 0,0 1,0 1,0 1,0 1,0 1,0 1,0	52,0
ZM	MIC	201	Total

Abundancia (miles de ejemplares) de **machos** de langostino amarillo (*Cervimunida johni*) por caladero **fuera** de las 5 mn de reserva artesanal entre la II y VIII Región. Enfoque geoestadístico. **Caladeros 16 a 30.** Anexo 4.12.

90	30						80.9		40.5	40.6	121.6	283.8	283.7	324.4	405.3	445.9	648.6	891.8	1175.6	608.1	1013.4	972.9	1378.3	2026.9	1581.0	1783.7	2270.1	1945.8	1986.4	2148.5	2635.0	2594.5	3080.9	2148.6	972.9	364.8	364.9	202.7	81.1		40.5	34943.8
96	29															1.7		3.4	10,4	3,4	6,9	1,7	6,9	6,9	20,7	10,4	13,8	12,1	12,1	13,8	12,1	19,0	10,4	1,7								167,6
96	28									39.6				39.6		39.6		197.7	197,6	158,1	276,7	276,7	474,4	553,5	434,8	513,9	593,0	474,4	1027,8	988,3	988,3	513,9	434,9	513,9	237,2	197,7	79,1	39,5	118,6			9408,8
,	7.7													0.1		0.1		0.7	0,0	0,3	0,8	1,1	1,5	2,1	2,4	1,7	3,0	2,0	3,3	4,0	2,6	1,2	1,3	1,5	0,5	0,4	0,2	0,1	0,3			31,8
,	70																	2.5	1,6	`	1,6	4,1	4,1	7,4	12,3	4,9	14,8	8,2	0,6	15,6	2,5		2,5	3,3								94,3
10	25				20,2			20,4	20,4	40,6	262.	61.1	40.8	40,7	81.4	81.5	81.5	30,6	20,3	40,7	40,7	71,2	91,6	132,3	193,4	101,8	244,3	101,8	132,3	193,4	30,5		30,5	40,7								1984,9
	24				3,7			3,4	3,6	7,1		10.6	7.0	7.1	14,1	14.1	14,1	`		7,0	3,6	3,5	7,1	7,0	7,1	7,1	10,6		3,5													141,3
CALADERO	23				1,2		9,0	1.2	9,0	2,0	î	1.9	4,1	2.0	4,0	7.3	9,9	4,0	3,3	2,0	3,3	5,3	2,7	2,0	2,0	1,3	3,3	1,3	3,3	2,0	3,3	4,7	3,3	2,0	2,0	1,3	2,0	3,3	4,0	1,3	0,7	92,6
	7.7				210,7		210,8	210.7		210.8)		843.0	210.8	421.5	1475.3	1264.5	1264.5	1053,8	210,8	843,0	1475,3	421,5	210,7	210,7		421,5	421,5	843,0	632,3	1053,8	1475,3	1053,8	632,3	632,3	421,5	632,3	1053,8	1264,6	421,5	210,8	21918,9
;	21				31,2	31,1		62.2	124,3	93,1	186,3	124,3	31.0	62.2	186.4	372,7	372,7	372,7	745,4	7,698	1832,6	2609,1	2981,8	2764,4	4503,8	5466,6	5715,1	5031,8	3385,6	3106,0	4348,4	2515,9	2050,0	1863,6	1708,3	1025,0	931,8	248,5	217,4	124,2	217,4	56312,7
	70				18,1		44,6	35.8	26,8	71,6	89.4	71,5	134.1	161.0	116.3	125.1	107,3	196,7	125,2	160,9	214,5	286,1	321,8	250,3	295,0	348,6	393,3	187,7	80,5	98,3	125,2	89,4	98,3	196,7	89,4	125,2	71,5	62,6	44,7	8,9	6,8	4881,4
Ş	19												37.2	111.6	223,3	260.5	558,3	781,6	1004,9	1451,5	3461,3	2828,6	3126,3	1674,8	2121,4	2344,7	2568,0	2270,3	1712,0	2344,7	3089,1	1935,3	1414,3	781,6	483,8	297,7	148,9	74,4	74,4	37,2		37217,8
9	18					64,1	127,9	127.8	191,7	191,7	511.3	958,5	2108.6	2811.5	5686.9	7539.9	11118,1	10223,6	10095,7	11884,9	17699,5	20255,4	21213,9	20958,2	25878,4	27603,6	31884,7	30862,3	30159,5	27795,3	35399,0	26964,6	21725,0	12140,4	8753,9	5175,7	3769,9	1150,1	1341,8	702,9	447,3	435523,4
ţ	17																																									0,0
	16	0 17	2,14 C C 8	1	248,9	124,7	746,6	539.0	1202,4	788.0	539.1	456,0	248.8	290.3	414.7	373.2	580,5	456,1	580,5	248,8	290,3	124,4	456,1	622,0	414,7	373,2	207,3	207,3	165,9	82,9	124,4											11030,4
MC		10,5	c,11 5 C1	13.5	14,5	15,5	16,5	17.5	18,5	19.5	20,5	21,5	22.5	23.5	24.5	25.5	26.5	27,5	28,5	29,5	30,5	31,5	32,5	33,5	34,5	35,5	36,5	37,5	38,5	39,5	40,5	41,5	42,5	43,5	44,5	45,5	46,5	47,5	48,5	49,5	>50,5	Total

Abundancia (miles de ejemplares) de **machos** de langostino amarillo (*Cervimunida johni*) por caladero **dentro** de las 5 mn de reserva artesanal entre la II y VIII Región. Enfoque geoestadístico. **Caladeros 1 a 15.** Anexo 4.13.

	15			44.2			44.3		355.2	754.9	710.5	8.9/6	2131.5	2619.9	3596.7	4573.7	8081.6	7904.0	10657.1	10257.4	0.6926	11367.5	8303.7	8037.2	6127.8	4085.2	3108.3	1509.8	399.6	222.0	222.0	44.4	44.4	44.4				107103.3
	14			67.7	67.4	269.7	337.2	6.909	8.909	640.6	1078.9	1550.8	1652.0	1786.8	1888.0	1652.0	1618.3	1281.2	1449.7	1652.0	944.0	1078.8	1483.4	1483.4	1753.1	1348.6	1449.7	8/6.6	640.6	472.0	202.3	134.9	33.7	33.7		22.7	7.60	31085.0
	13					62.5	93.9	249.9	375.1	93.8	437.4	531.2	749.9	531.3	812.4	468.7	62.5	62.5	125.0	156.3	62.5	250.0	250.0	281.2	281.2	468.7	312.5	468.7	02.3	31.2								7374.6
	12			680.1		680.4	680.2	2041.2	1360.8	1360.7	2041.1	1360.8											680.3					7 000	4.000									11566.0
•	11										11.0	11.0	11.0	76.8	142.7	197.5	318.2	142.6	131.7	109.7	8.86	76.8	65.8	87.8	65.9	142.6	98.7	98.7	219.4	98.8	109.7	87.8	43.9	11.0	:	11.0		2644.4
	10										404,4	404,5	1213,5	1213,4	2426,9		1617,9	1213,4	1617,9	404,5	0,608	1213,5	404,5	404,5	808,9			404 5	404,3			404,5						14965,8
0	6																																					0,0
CALADERO	8													34,5	34,6	276,5	138,3	311,1	345,7	311,1	380,3	172,9	103,7	414,8	103,7	242,0	345,7	2,60	54,0 60.1	103.7	69,1	69,1						3629,7
	7												92,0	137,9	183,8	137,9	367,7	229,7		91,9			46,0					0,10	91,9		45,9	46,0	45,9	45,9	0,7	46,0	40,0	1700,3
=	9										61,4	107,3	199,5	245,5	398,9	368,2	475,7	383,6	337,5	230,1	107,4	122,7	30,7	46,0	107,4	15,3	107,4	162.4	133,4	138.1	122,8	122,7	122,8	76,7	7,05			4311,2
•	5									119,4	179,2	417,9	597,1	835,8	1074,7	1134,4	8,959	716,5	59,7	119,4	179,1	59,7	29,7	59,7	59,7		59,7	110.4	119,4	59.7								0,7899
•	4																																					0,0
•	3																																					0,0
-	2							3,4	6,6	10,1	23,3	46,6	26,7	16,6	3,3		9,9		10,0		3,4		13,3	6,7	23,3	36,6	26,6	20,07	13,3		3,3	`						303,1
-	1		9,4								18,9	47,4	75,8	26,8	66,3	104,2	104,2		28,4			9,5					5,65	4,87	0.5),		19,0						587,4
JM	IIIC	10,5	12,5	13,5	15,5	16,5	17,5	18,5	19,5	20,5	21,5	22,5	23,5	24,5	25,5	26,5	27,5	28,5	29,5	30,5	31,5	32,5	33,5	34,5	35,5	36,5	37,5	38,5	29,5	41,5	42,5	43,5	44,5	45,5	40,0 7,1	4 / ۷ د, ۵	48,5 49,5 >50,5	Total

Abundancia (miles de ejemplares) de **machos** de langostino amarillo (*Cervimunida johni*) por caladero **dentro** de las 5 mn de reserva artesanal entre la II y VIII Región. Enfoque geoestadístico. **Caladeros 16 a 30.** Anexo 4.14.

	30		0,0
	29		0,0
	28		0,0
	27		0,0
	26		0,0
	25		0,0
80	24		0,0
ALADER	23		0,0
C	22		0,0
	21	482,9 965,9 2414,7 3380,6 6036,6 5070,8 5070	46120,0
	20		0,0
	19		0,0
	18	60,9 121,6 973,1 1033,8 1155,5 1338,1 3527,5 5899,3 8514,5 9670,1 7480,6 11251,3 12346,0 9487,6 10521,5 13015,0 11859,5 77176,5 7719,8 912,3 912,3 304,1 364,9 121,6	172297,0
	17	99,8 49,9 249,3 398,9 299,1 648,2 398,9 249,3 199,4 199,4 99,7	3739,6
	16	26,3 26,5 79,0 79,1 263,8 632,7 870,0 1107,4 1107,4 1107,4 1107,4 11107,4 1111,1 3348,3 3348,3 3	59321,3
JM		$\begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	Total

Abundancia (miles de ejemplares) de **hembras** de langostino amarillo (*Cervimunida johni*) por caladero **fuera** de las 5 mn de reserva artesanal entre la II y VIII Región. Enfoque geoestadístico. **Caladeros 1 a 15.** Anexo 4.15.

	15	70,8 71,0 283,4 425,2 850,5 2126,4 5144,3 9498,1 15097,6 17436,7 7938,7 7938,7 7938,7 7938,7 7938,7 1564,7 1720,3 1564,7 1720,3 1564,7 1720,3 174,6 17	153882,6
	1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	H
	14		0,0
	13		0,0
	12	93,0 185,5 139,3 417,4 370,8 231,9 139,1 139,1 139,1 139,1 139,1 139,1 139,1	3014,3
	11		0,0
	10		0,0
0	6	1,6 8,8 7,6 7,7 2,0 0,9 0,9	48,9
ALADERO	8		0,0
C	7		0,0
	9		0,0
	5	30,7 93,6 62,4 62,4 62,4 63,5 124,6 186,9 93,5 93,5 11,1 31,2 31,2 62,3 31,2	1432,7
	4	3,1 12,9 10,7 10,7 0,0 0,7 0,0 0,8	59,5
	3	58,1 87,1 203,3 609,8 609,8 522,7 406,6 580,8 116,2 29,0 29,0 29,0 29,0	2729,8
	2	0,4 1,3 10,9 9,6 10,9 3,7 2,5 1,2 4,0 4,0	42,2
	1	0,9 4,4,4 4,4,4,4,6,5 113,2,1 14,0 8,8 8,8 1,7,7 1,7,7 1,7,0 1,0,0 0,0	83,6
JM	JMIC	$\overset{0}{\overset{0}{\circ}}_{0}^{1}$	Total

Abundancia (miles de ejemplares) de hembras de langostino amarillo (Cervimunida johni) por caladero fuera de las 5 mn de reserva artesanal entre la II y VIII Región. Enfoque geoestadístico. Caladeros 16 a 30. Anexo 4.16.

	30			40,5			40,5	81,0	81,0	121,6	364,8	364,8	202,7	445,9	527,0	567,5	527,0	648,6	1256,6	1702,5	2270,0	2634,8	2270,0	2432,2	1743,0	729,7	567,5	810,7	689,1	527,0	243,2	40,5	121,6				22051,5
	29								1,6	1,7		3,3	1,6	1,7	5,0	3,4	1,7	1,7			1,7	1,7	5,0	1,7			1,7										33,3
	2							2			9	9		2		4	∞	4	6	6	4		4		2	4	_	9	5		5						
	28							39,5			118,6	39,		39,	158,	395,	276,	395,	434,	434,	395,4	158,	395,	434,	237,	395,	197,	118,	39,		39,5						4744,5
	27										0,2	0,1		0,1	0,3	1,0	9,0	1,1	1,5	1,2	1,0	0,5	6,0	1,0	9,0	6,0	9,0	0,4	0,1		0,1						12,1
	26															1,5		3,0	6,1	3,1	2,3	2,3	0,7	1,5	1,5	1,5	2,3	1,5									27,4
	25			10,3	10,3	20,4	30,6	30,6	30,7	20,5	10,2	51,1	20,4		20,5	40,9	10,2	51,1	112,4	40,9	30,7	30,6	30,6	20,4	20,4	20,4	30,6	20,4									715,5
0	24			3,7	3,8	7,5	11,1	11,1	11,2	7,4	3,7	18,6	7,4		7,4	7,4	3,7	3,7	11,1				7,4														126,4
ALADER	23			0,7	9,0	1,3	2,1	1,9	4,1	2,0	2,0	6,7	6,0	2,7	0,9	5,4	4,0	2,7	2,7	2,0	2,0	2,0	4,0	1,4		6,7	3,3	2,0	7,4	2,7	2,0	0,7	1,3	2,7		7,0	89,1
CA	22								632,2	210,8	421,5	1053,7	1475,2	843,0	1475,2	1264,5	1053,7	632,2	210,7	632,2	632,2	632,3	843,0	421,5		2107,5	1053,7	632,2	1475,2	843,0	632,2	210,7	421,5	843,0		210,7	20864,0
	21				31,1	62,1	62,2	62,1	93,2	62,2	124,3	93,2	186,4	434,9	838,7	1925,8	3199,3	4597,0	3572,0	2484,9	1832,6	1366,7	1149,3	1087,1	1273,5	869,7	1211,4	652,3	372,7	124,2	62,1	93,2	31,1	62,1	31,1		28048,3
	20	8,8	6,8	17,8	26,8	62,5	35,6	53,5	80,4	98,2	71,4	44,7		26,8	17,8	44,7	71,4	160,7	160,7	178,5	133,9	80,3	17,8	35,7	6,8	17,8	17,8		6,8								1490,5
	19					37,2	37,2	186,0	111,6	74,4	186,1	260,5	893,2	1153,7	1823,6	2679,6	4019,4	3498,4	2568,0	1377,0	1600,3	1228,2	446,6	483,8	260,5	37,2	74,4	111,6	111,6	223,3	148,9	148,9	111,6	74,4			23967,3
	18			63,9	191,7	127,7	1214,0	1277,9	2236,4	4408,9	8114,9	13226,7	17571,6	20638,7	24664,2	28050,7	50734,1	56101,4	45111,2	33865,3	33865,3	22363,9	17827,2	9073,4	5942,4	3514,3	3194,8	1341,8	1341,8	702,9	383,4	127,8	63,9	63,9	9	63,9	407470,2
	17																																				0,0
	16	82,7 82,2 41,1	124.8	207,5	456,6	456,5	373,6	290,5	249,2	332,1	830,3	290,6	373,6	332,1	373,7	207,5	207,6	83,0	166,1	41,5	83,0	41,5	124,5		41,5												5893,3
SN	MIC	10,5 11,5 12,5 13,5	15,5	2,71	18,5	19,5	20,5	21,5	22,5	23,5	24,5	25,5	26,5	27,5	28,5	29,5	30,5	31,5	32,5	33,5	34,5	35,5	36,5	37,5	38,5	39,5	40,5	41,5	42,5	43,5	44,5	45,5	46,5	47,5	48,5	49,5 >50,5	Total

Abundancia (miles de ejemplares) de hembras de langostino amarillo (Cervimunida johni) por caladero dentro de las 5 mn de reserva artesanal entre la II y VIII Región. Enfoque geoestadístico. Caladeros 1 a 15. Anexo 4.17.

	15	44,3 88,8 89,0 133,2 221,9 666,1 1154,6 3108,2 4884,4 7992,6 12477,4 12433,1 8791,9 7726,3 3463,4 2087,0 976,9 532,8 310,8 444,0 88,8	74242,9
	14	67.4 202.3 168.7 168.7 1180.5 1180.9	23536,1
	13	31,4 93,9 375,3 250,3 312,7 125,0 344,0 531,7 500,4 406,6 62,5 62,5 125,1 187,7 187,7 31,3 31,3 31,3 31,3	3847,2
	12	680,2	680,2
	11	11,0 32,9 54,7 109,4 87,5 273,5 142,2 131,3 109,4 65,7 76,6 43,7 43,8 11,0 21,9 10,9	1684,9
	10	1618,5 809,2 1618,3 2022,9 3236,9 2427,7 809,2 809,2 404,6 809,2 404,6	18207,2
0 1	6		0,0
ALADERO	8	34,4 34,5 207,1 207,1 207,1 241,6 310,6 552,3 752,3 752,3 488,7 138,1 34,5	3520,8
C	7	92,1 46,1 184,4 138,3 322,8 230,5 184,4 138,4 92,3 46,1	1475,4
	9	15,4 184,2 215,0 414,5 598,8 1059,3 690,9 7798,3 7798,3 7798,3 138,2 138,2 138,2 138,1 15,4 46,1 30,7	5880,2
	5	59,7 238,8 716,2 1730,9 2745,6 2268,5 835,6 1134,1 835,6 1738,8 179,0 59,7 59,7 59,7 59,7	11281,0
	4		0,0
	3		0,0
	2	10,0 10,0 6,3,4 6,3,5 7,3,5 10,0 10,0 10,0 10,0 10,0 10,0 10,0 10	263,8
	1	2,8,2 46,9 103,3 140,8 197,1 150,2 93,8 18,8 28,2 28,1 37,5 9,4	861,8
SW.) INIC	$\begin{smallmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 1 $	Total

Abundancia (miles de ejemplares) de hembras de langostino amarillo (Cervimunida johni) por caladero dentro de las 5 mn de reserva artesanal entre la II y VIII Región. Enfoque geoestadístico. Caladeros 16 a 30. Anexo 4.18.

	30		0,0
	29		0,0
	28		0,0
	27		0,0
	26		0,0
	25		0,0
	24		0,0
ALADERO	23		0,0
C	22		0,0
	21	482,9 6036,4 6036,4 6277,8 6277,8 6271,3 965,8 724,3 482,9	30423,1
	20	2 6 6 4 1	0,0
	19		0,0
	18	121,6 365,1 1034,0 1034,0 1034,0 1034,0 1034,0 1034,5 1034,3 10378,5 113319,5 113319,5 113319,5 11345,3 11251,6 5108,8 3353,3 1126,4 11216,4 851,5 304,1 121,6 60,8 60,8 60,8	129728,2
	17 1	49,8 49,8 49,8 349,0 52,29,2 77,299,4 113,99,4 1	3190,9 1297
	16 1	26,2 184,7 369,2 764,6 11660,9 11660,9 1951,0 1951,0 1951,0 1951,0 2847,3 3766,4 4112,8 11766,4 11766,4 1105,5 1105,5 1105,5	45794,9 31
MC		$\begin{array}{c} 0.11\\ 0.11\\ 2.64\\$	Щ

Biomasa (tons) de **machos** de langostino colorado (*Pleuroncodes monodon*) por caladero **fuera** de las 5 mn de reserva artesanal entre la II y VIII Región. Enfoque geoestadístico. **Caladeros 1 a 18.** Anexo 4.19.

	18	0,044	0,094	0,117	1,289	10,031	30,719	23,097	17,151	17,892	23,240	28,586	51,017	80,568	88,409	81,673	122,370	132,897	212,792	221,088	225,368	149,237	112,145	986,29	19,590	8,510	4,611	1076	7,091	6.237			101	,			40,599 1764,501
	17		0,014	`		0.030	0,035	0,206	0,095	0,164	0,250	0,425	0,641	0,810	1,309	1,682	1,742	3,578	7,128	5,831	2,920	1,794	1,738	1,653	0,256	1,939	1,495	2,256	0,095	0,798							40,599
	16	0,261 0,733	2,684 5,039	9,609	12,418	8,049 7,719	7,027	13,273	27,435	46,413	72,388	113,990	158,633	199,633	226,925	215,108	208,572	197,015	206,445	143,005	96,422	66,324	32,135	20,323	3,926	1,429	0,778	2,538	0,916							2,135	2109,902
	15	0,031	0,328	4,305	9,919	10,234	79,763	86,414	89,928	860,89	46,628	33,692	33,682	47,341	81,491	109,283	132,740	112,953	131,867	125,359	104,353	115,459	71,567	50,704	11,711	6,408	6,996	5,716	2,0/1		2,629						567,799 1635,501 2109,902
	14		0,048	i c	1,897	6 336	9,007	9,545	9,065	6,097	6,360	5,964	5,888	9,978	20,942	38,516	47,148	64,294	55,673	46,229	44,578	38,196	35,929	44,667	15,874	11,850	5,836	6,310	3,440 1 467	1.577	1,693		3,884				567,799
	13																																				0,000
	12																																				0,000
	11		0,056	0	0,340	1 190	2,045	2,316	2,590	1,686	1,177	0,226	0,781	0,297			1,722		1,078	2,403	1,999	0,737	2,438	1,788	3,921	1,072	2,341	2,550	1,303								36,697
ERO	10			0	0,229			0,434	0,500	0,857	0,973	1,099	4,526	1,841	2,562	10,229	19,466	31,808	38,709	49,835	72,512	62,153	51,412	46,407	26,330	12,170	4,366	3,127	5,533								444,898
CALADERO	6			,	0,164	0,293	0,807	0,312	0,358	0,409	6,277	7,612	8,258	7,586	7,712	8,554	7,652	7,435	5,984	2,381		0,707	0,768														73,499
	8					0.015	0,035	0,081	0,117	0,294	0,152	0,206	0,116						0,142			0,185						7310	0,137								1,500
	7																																				0,000
	9																																				0,000
	2												1,089	1,236	2,095	2,355	3,516	7,843	8,716	9,653	5,328	4,398	1,609	1,761													49,599
	4																																				0,000
	3		0,101				0,598	1,382	7,528	16,709	42,472	93,993	113,181	140,771	175,720	134,147	124,457	115,291	92,105	52,904	63,272	41,261	46,394	35,846	34,820	10,419	4,480	2,404					3,545				1353,800
	2																																				0,000
	1																																				0,000
JM	MIC	10,5 11,5	12,5	14,5	2,5	10,5	18,5	19,5	20,5	21,5	22,5	23,5	24,5	25,5	26,5	27,5	28,5	29,5	30,5	31,5	32,5	33,5	34,5	35,5	36,5	37,5	38,5	39,5	40,5 41,5	42.5	43,5	44,5	45,5	47,5	48,5	49,5 >50,5	Total

Biomasa (tons) de **machos** de langostino colorado (*Pleuroncodes monodon*) por caladero **dentro** de las 5 mn de reserva artesanal entre la II y VIII Región. Enfoque geoestadístico. **Caladeros 1 a 18.** Anexo 4.20.

	18		0,000
	17		0,000
	16	0,010 0,027 0,100 0,188 0,463 0,268 0,262 0,262 1,023 1,731 1,731 2,700 4,252 5,917 7,780 7,780 7,780 7,780 1,199 0,758 0,146 0,053 0,034	78,699
	15		0,000
	14		0,000
	13	0,124 0,531 0,314 0,735 0,427 2,470 1,135 3,889 2,210 2,815 1,052	15,702
	12	0,187 0,840 0,939 1,829 4,927 5,771 4,596 5,054 4,264 1,528	33,201
	11	0,056 0,229 1,270 1,030 3,096 3,689 6,099 6,830 0,600 2,046 4,629 3,475 4,872 13,063 2,046 4,629 3,475 4,872 13,063 2,046 4,629 3,475 4,872 13,063 2,046 4,629 3,475 3,047 2,148 3,092 4,629 3,475 3,092 3,0	399,199
ERO	10		1087,398
CALADERO	6	0,066 0,118 0,092 0,324 0,125 0,144 0,164 2,519 3,045 3,045 3,045 3,045 3,045 0,284 0,284 0,308	29,499
	8	0,077 0,180 0,418 0,601 1,510 0,780 1,056 0,593 0,730 0,730	7,699
	7	0,024 0,085 0,016 0,076 0,022 0,050 0,028	0,301
	9	0,237 1,353 0,921 4,162 2,730 2,183 3,789 1,199 1,199 1,985	24,399
	2	0,550 1,457 3,324 7,545 22,371 10,782 21,457 38,889 23,271 20,250 35,787 35,787 35,787 35,787 35,787 6,947	269,999
	4	0,074 0,302 0,548 1,500 1,851 3,094 2,915 2,210 0,783 0,783 0,798	17,500
	3	0,473 3,885 12,721 38,637 67,516 117,470 117,470 2269,492 2269,492 2269,492 214,295 212,455 117,694 111,834 63,977 39,735 64,623 54,603 33,975 6,789	2325,101
	2	0,895 0,334 1,651 8,660 7,017 8,237 14,993 15,018 15,018 15,018 15,338 9,107 4,459 11,500 4,411 6,599 5,874 2,505 1,417	130,297 2325,101
	1	0,080 0,543 1,375 1,653 1,715 1,400 0,086 0,281	8,401
ON.	MC	10,5 11,5 11,5 11,5 12,5 13,5 14,5 15,5 16,5 16,5 16,5 16,5 16,5 16,5 16	Total

Anexo 4.21. Biomasa (tons) de **hembras** de langostino colorado (*Pleuroncodes monodon*) por caladero **fuera** de las 5 mn de reserva artesanal entre la II y VIII Región. Enfoque geoestadístico. **Caladeros 1 a 18.**

	18		0,223	0,188	1,289	9,359	25,516	27,527	20,790	18,162	22,562	33,969	47,478	49,863	62,234	86,945	69,306	51,530	34,761	18,112	17,489	5,497	4,523	4,948	5,399	3,918			2,494								624,900
	17						0,030	0,142		0,095	0,110	0,125	0,284	0,401	0,992	1,917	3,035	3,492	6,483	6,992	7,014	4,390	1,399	3,048	0,946	0,770	1,388	0,600	0 347	7+5,0							44,000
	16	0,261 0,932	2,364	10,713	10,241	8,748	4,966	7,171	11,061	25,233	37,762	52,055	65,429	73,294	87,393	89,803	83,858	58,799	41,564	33,193	20,256	12,109	5,445	5,991	0,598	0,654		0	0,846							1 000	760,200
	15	0,093	0,738	1,042	9,750	21,118	50,520	690,06	68,151	46,137	30,793	24,770	33,016	00,392	107,507	132,914	146,272	110,931	61,869	43,417	25,071	15,901	20,891	19,407	21,348	1,464	1,602	3,498	3,810	2,071							1179,400
	14	0,022	0100	0,048	1,606	2,296	3,591	4,754	4,699	5,815	4,945	4,998	6,224	11,189	18,627	32,337	56,105	83,099	85,041	78,637	53,833	42,492	28,267	21,727	7,293	9,922	1,077	3,502	2,524	t,','	3,155	1,693					582,799 1179,400
	13																																				0,000
	12																																				0,000
	11	0,063	0,056		0,284	0,420	0,851	1,330	1,829	1,441	1,350	0,589	0,454	0,781	1015	1,015	0,765	0,431		1,619	1,202	0,667	2,212	2,440													19,799
DERO	10		0700	0,0,0	0,229	0,137	0,321	0,187	0,218	0,750	1,428	3,243	5,493	9,464	1,823	14,839	18,753	43,957	48,405	77,421	58,974	77,954	57,223	35,347	27,845	6,269	4,057	4,366									504,801
CALADERO	6				0,164	0,587	0,461	0,538	0,156	0,897	2,868	6,049	9,983	10,921	9,5/3	2,881	5,300	1,802	2,976	1,089	0,596	0,650	0,708														61,199
	8								0,017		0,045	0,077	0,029	0,032																							0,200
	7																																				0,000
	9																																				0,000
	2									0,930	0,721	,	1,433	1,090	3,093	2,096	12,570	17,590	25,504	17,442	9,658	7,996	1,467	1,610													103,200
	4																																				0,000
	3							1,493	4,145	17,040	36,128	0/7,//	151,658	258,702	256,280	264,785	192,782	160,718	142,230	123,986	87,743	94,207	58,073	66,278	25,093	17,411	12,501	4,480									0,000 2053,003
	2																																				0,000
	1																																				0,000
JM	MIC	10,5 11,5	12,5	14,5	15,5	16,5	17,5	18,5	19,5	20,5	21,5	5,72	23,5	ر44, د ، و	25,5	20°5	27,5	28,5	29,5	30,5	31,5	32,5	33,5	34,5	35,5	36,5	37,5	58,5	39,5	41.5	42,5	43,5	44,5 45,5	46,5	47,5 5,5	49,5	Total

Biomasa (tons) de **hembras** de langostino colorado (*Pleuroncodes monodon*) por caladero **dentro** de las 5 mn de reserva artesanal entre la II y VIII Región. Enfoque geoestadístico. **Caladeros 1 a 18.** Anexo 4.22.

	18		0,000
	17		0,000
	16	0,010 0,035 0,088 0,208 0,399 0,381 0,326 0,185 0,267 0,412 0,939 1,406 1,938 2,436 2,803 3,253 3,343 1,547 1,236 0,754 0,754 0,451 0,022 0,022 0,022	28,301
	15		0,000
	14		0,000
	13	0,078 0,265 0,313 1,832 1,704 2,462 5,091 2,585 5,875 2,492 1,305	24,002
	12	0,053 0,187 1,257 4,213 5,993 4,047 1,599 0,353	17,702
	11	0,056 0,092 0,115 0,988 2,918 3,510 3,936 8,135 7,828 7,828 7,522 1,738 6,823 1,738 6,823 1,738	262,704
ERO	10		961,998
CALADERO	6		24,599
	8	0,103 0,270 0,460 0,173 0,194	1,200
	7	0,030 0,107 0,236 0,323 0,299 0,128 0,049	1,200
	9	0,474 1,892 3,680 4,157 3,895 3,925 4,377 3,243 1,796 0,661	28,100
	2	0,635 2,186 11,639 21,700 52,215 43,138 40,244 46,557 62,610 13,425 9,823 5,376 2,936 3,198	404,104
	4	0,054 0,149 0,043 0,043 0,078 0,656 1,490 2,776 1,694 0,827 0,394 0,145	11,899
	3	3,884 11,973 31,769 74,366 1189,708 1189,921 249,447 326,927 105,062 76,758 72,694 100,540 66,227 129,248 62,139 41,916 27,089 14,561 15,624 5,579	2304,505
	2	2,065 10,031 21,060 19,777 14,999 36,570 38,274 40,661 22,363 31,225 31,225 31,225 31,225 31,225 31,225 31,225 31,336 10,578 1,334	357,199 2304,505
	1		6,401
ON.	MC	10,5 11,5 11,5 11,5 11,5 11,5 11,5 11,5	Total

Abundancia (miles) de **machos** de langostino colorado (*Pleuroncodes monodon*) por caladero **fuera** de las 5 mn de reserva artesanal entre la II y VIII Región. Enfoque geoestadístico. **Caladeros 1 a 18.** Anexo 4.23.

	18	9,98	85.8	85,9	4073.3	10718,5	10718,4	8,6589	4373,0	3944,4	4458,9	4801,9	7545,8	10546,9	10289,7	8489,0	11404,5	11147,2	16120,6	15177,3	14062,6	8489,0	5830,9	3001,2	857,5	343,0	5,1/1	65.7	05,7	171,5			25.7	,,,			175698,3
	17		10.4			10,4	10,4	52,3	20,8	31,3	41,8	62,6	83,6	94,0	155,8	156,6	146,2	271,5	490,8	365,4	167,1	94,0	83,6	73,1	10,4	73,1	2,7,7	70.0	3.1 2.03 2.13	20,5							2683,4 175698,3
	16	587,8	3427,8	7572,1	78/9,4	3300,1	2507,0	3990,7	7009,5	10156,0	13660,7	18674,6	22691,0	25070,1	25146,8	21130,5	18239,8	15400,2	14479,2	9030,4	5500,1	3428,0	1509,3	869,8	153,5	51,2	0,07	7.07	0,07							25,6	252337,5
	15	62,4	499,2 2495.9	3993,5	7,363,8	20405,6	32824,3	29828,8	26271,7	16973,6	964,6	6240,4	5429,1	6677,2	10109,3	11981,5	12917,5	9797,3	10234,1	8736,4	6552,4	6552,4	3681,8	2371,3	499,2	249,6	187.0	2,781	124.8) . -	62,4						54166,2 263216,7 252337,5
	14		42.7		2175.4	2559,0	3070,9	2772,3	2260,6	1961,8	1194,1	980,9	853,0	1279,6	2388,5	3923,8	4307,7	5288,6	4137,1	3113,5	2729,7	2132,5	1834,0	2089,9	682,4	469,2	213,3	2,517	42.6	42,6	42,6		85,3				54166,2
	13																																				0,0
	12																																				0,0
	11	;	6,19	0	183,9	429,8	613,9	583,5	552,6	307,0	184,3	30,6	92,1	30,7			122,8		61,4	122,9	92,1	30,7	92,1	61,4	122,8	30,7	01,4	20.7	7,00								4206,4
DERO	10				93,1			92,9	93,1	139,7	139,6	139,7	512,0	186,2	252,7	837,8	1442,9	2141,1	2373,8	2792,7	3723,5	2932,3	2234,1	1861,8	977,4	418,9	139,0	93,1	1,00								23691,2
CALADERO	6			1	, 66, 7 100 1	1,00,1	200,2	8,99	2,99	2,99	8,006	967,5	934,2	767,3	7,00,6	700,6	567,2	500,5	367,0	133,4		33,4	33,4														7239,5
	8					4,3	8,7	17,3	21,8	47,9	21,8	26,2	13,1						8,7			8,7						7	t t								183,0
	7																																				0,0
	9																																				0,0
	2												275,4	275,5	413,4	413,2	551,1	1102,2	1102,2	1102,2	551,1	413,3	137,8	137,8													6475,0
	4																																				0,0
	3		125,5				252,9	505,5	2399,7	4673,8	10484,3	20589,9	22105,7	24631,8	2/663,7	19073,9	16042,4	13515,9	9852,9	5179,1	5684,3	3410,6	3536,9	2526,3	2273,7	631,6	0,767	1.20,3					126,3				195665,9
	2																																				0,0
	1																																				0,0
MC) IVI	10,5	12,5	14,5	2,51	17.5	18,5	19,5	20,5	21,5	22,5	23,5	24,5	25,5	26,5	27,5	28,5	29,5	30,5	31,5	32,5	33,5	34,5	35,5	36,5	37,5	28,0	5,65 5,05	2,04	42,5	43,5	44,5	45,5	47,5	48,5	49,5 >50,5	Total

Anexo 4.24. Abundancia (miles) de **machos** de langostino colorado (*Pleuroncodes monodon*) por caladero **dentro** de las 5 mn de reserva artesanal entre la II y VIII Región. Enfoque geoestadístico. **Caladeros 1 a 18.**

	18		0,0
	17		0,0
	16	22.5 45.2 127,7 187,1 282,1 293,8 167,2 123,1 148,8 261,4 261,4 378,8 378,8 509,5 696,6 846,4 935,1 937,9 788,2 680,4 680,4 574,5 574,5 577,9 563,1 100,0 100,0 100,0	9411,7
	15		0,0
	14		0,0
	13	133,8 67,0 67,0 133,9 66,9 334,6 133,9 401,5 200,8 66,9 66,9	1807,1
	12	13,3 53,4 53,5 93,5 227,1 240,5 173,7 173,6 133,6 93,5 40,1	1295,7
	11	61,9 123,9 557,8 372,0 929,5 929,5 1301,3 1611,2 929,5 867,5 805,6 62,0 1115,4 1115,4 1115,4 1115,4 1125,3 178,0 178,	22246,3
ERO	10		55062,1
CALADERO	6		2905,7
	8	22,3 44,7 88,5 111,9 246,1 111,9 134,2 67,1 67,1 44,8	939,5
	7	12,5 37,8 6,1 6,3 12,6 6,2	106,8
	9	68,4 342,2 205,3 821,2 479,0 342,2 615,9 479,1 136,9 136,9	3832,5
	2	210,3 420,5 840,7 1681,5 4414,2 1891,9 3363,2 5465,0 2942,7 2312,2 3363,1 2102,0 420,4 840,7 2102,0 420,4 840,7 2102,0 420,4 840,7	34262,0
	4		3431,6
	3	273,9 1642,7 4652,9 12316,5 18885,6 25454,2 25454,2 25454,2 25454,2 25727,9 37456,9 37456,9 37456,9 38318,2 10948,0 5747,6 384,4 4926,7 1915,9 1094,8 1642,2 1094,8 1642,2	46779,6
	2	320,7 106,9 427,7 2031,9 1497,1 164,1 2673,5 2459,7 1497,2 2138,9 1176,3 534,7 1283,3 641,7 534,7 106,9	19890,8 346779,6
	1		2499,9
JM		10.5 11.5 11.5 11.5 12.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13	Total

Abundancia (miles) de **hembras** de langostino colorado (*Pleuroncodes monodon*) por caladero **fuera** de las 5 mn de reserva artesanal entre la II y VIII Región. Enfoque geoestadístico. **Caladeros 1 a 18.** Anexo 4.25.

8	257,5 171,7 600,6 771,9 4630,9 10548,2 9604,7 6174,6 4830,8 4974,0 6517,5 7375,1 1200,6 343,0 257,3 171,5 171,5 181,6 18	1365,5
17	10,4 42,0 42,0 42,0 52,0 52,0 64,0 73,3 11,6 73,3 11,6 73,3 11,6 73,3 11,6 73,3 11,6 73,3 11,6 73,3 11,6 73,3 11,6 73,3 11,6 73,3 73,3 73,3 73,3 73,3 73,3 73,3 73	3139,7 101365,5
16	287,8 1561,1 1561,1 8442,1 8442,1 8442,1 10072,0 10072,0 100779,1 100779,1 100779,1 1279,1 25,6 281,4 281,4 25,6 25,6 25,6 25,6 25,6 27,6 281,4	Щ
75	187,1 1934,0 3931,4 25022,4 25022,4 25022,4 37065,4 37065,4 23524,7 23	128,9 126
4	42,7 42,7 110,9,0 110,9,0 110,9,0 110,0 110,0,0 110,0	55322,1 231128,9 126735,1
13	1113386733311	0,0
12		0,0
1	92,0 61,9 61,9 307,3 307,4 307,4 245,9 92,2 92,2 92,2 92,2 92,2 92,2 92,2 9	3011,7
	46,7 93,1 46,8 93,0 46,4 46,4 46,7 139,6 139,6 1349,8 1536,0 3258,3 3258,3 3258,3 3258,3 3258,2 1349,8 1536,0 1117,1 232,7 139,6 139,6 139,6 139,6 139,6	31093,2 3
CALADERO 9 10	66,7 200,7 1133,6 1133,5 33,4 167,0 167,0 1888,1 11288,8 1133,4 133,4 133,4 133,4 133,4 133,4 133,4 133,4 133,4 133,4 133,4 133,6 134,6 13	7011,9 31
ບ ∞	3,6 11,1 3,7 3,6 1	29,3
7		0,0
9		0,0
v.	413,5 275,7 413,6 275,7 689,3 413,6 2205,7 2757,1 3584,0 2205,6 1102,8 827,1 137,9	15439,3
4	77. 77. 6 7. 6 7. 6 7. 6 7. 6 7. 6 7. 6	0,0 15
3	631,3 1516,1 5431,9 19074,3 33221,9 50527,7 44843,4 41685,3 27411,1 13263,4 8589,6 8465,5 8465,5 8465,5 1136,9 1768,5 1136,9 757,9 252,6	24,7
2	274 101 101 102 132 332 332 207 106 106 108 88 88 88 88 111 111 111 111 111 111	0,0 315924,7
		0,0
1C	\$0,1,2,8,4,8,8,6,7,8,8,0,0,1,2,8,4,8,8,6,0,1,2,8,4,8,8,8,6,0,1,2,8,4,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8	>50,5 Total
MC	0 1 1 2 1 4 1 5 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	C 0 C \

Abundancia (miles) de **hembras** de langostino colorado (*Pleuroncodes monodon*) por caladero **dentro** de las 5 mn de reserva artesanal entre la II y VIII Región. Enfoque geoestadístico. **Caladeros 1 a 18.** Anexo 4.26.

	18		0.0
	17		0.0
	16	22.5 58.6 112.4 207.0 314.4 241.8 168.7 79.1 123.9 307.7 365.7 399.1 400.9 408.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.9 370.5	4719.7
	15		0.0
	14		0.0
	13	66.8 66.8 66.8 333.6 600.5 533.8 600.5 66.7	2802.4
	12	13.4 79.9 23.9.8 306.4 186.5 66.6 13.3	919.4
	11	61.9 62.1 62.2 433.9 1053.8 1053.7 991.7 1425.6 1177.7 310.0 371.9 124.0 62.0 62.0 124.0 371.9 124.0 433.9 1301.7 116.0 124.0 62.0 124.0 433.9 1301.7 1611.6 186.0 186.0 186.0	18038.3
ERO	10	51.6 241.5 344.8 499.9 362.0 293.1 155.2 120.7 317.9 120.7 517.2 1724.0 4103.0 7326.7 1210.0 10757.4 6395.8 3568.6 2637.6 172.0 172.	54079.8
CALADERO	6	26.8 80.6 53.6 53.6 67.0 13.5 67.0 349.0 510.0 174.5 53.7 80.5 13.4 13.4	2818.5
	8	22.1 44.0 66.0 22.0 21.9	176.0
	7	18.5 55.7 104.9 123.5 99.0 36.9 6.2 6.2	457.2
	9	136.8 478.5 820.1 820.2 683.5 615.2 615.1 410.1 205.1 68.4	4853.0
	2	210.3 630.9 2943.6 4836.2 10302.9 7569.4 6307.8 7569.4 5887.3 7148.9 3574.5 1261.6 841.1 420.5 210.3	59925.1
	4		2323.7
	3	1642.3 4379.3 10127.2 20801.7 34487.3 44163.7 48720.1 57205.1 38592.7 26823.4 16148.9 12316.8 8211.2 7116.4 9032.4 5474.2 9032.4 5474.2 1642.3 1642.3 1642.3 1642.3 1642.3	63210.8
	2	213.9 535.0 2353.6 4493.3 3851.4 2674.6 5777.2 5877.2 5888.5 3744.5 4386.3 11604.7 962.9	50603.4 363210.8
	1	18.3 108.4 216.7 22.89.1 524.2 253.0 307.3 118.1	1951.8
SW.	MC	10.5 10.5	Total

Anexo 4.27. Biomasa (toneladas) de machos y hembras de langostino amarillo (*Cervimunida johni*) por región **fuera** de las **5 mn** de reserva artesanal entre la II - VIII Regiones. Enfoque geoestadístico.

	VIII						0,117			0,191	0,659	0,520	0,888	3,961	3,781	2,134	5,707	670,6	14,067	12,999	18,648	33,232	46,119	63,033	72,155	75,138	87,761	65,721	40,421	29,770	38,906	32,837	25,520	14,691	2,256	7,239				_
	VII						0,060	0,070	0,160	0,276	0,314	2,949	1,242	2,338	6,941	698'6	6,011	12,067	11,831	10,280	7,772	5,351	8,857	9,315	10,067	14,386	7,828	0,804	41,665	23,227	15,004	34,945	21,290	17,003	6,025	12,794	27,135		6	X
	ΛI	600'0			0.003	,,	0,067	0,287	0,717	999,0	0,893	4,109	2,552	4,418	7,846	12,205	13,561	27,153	50,502	82,248	121,761	101,169	84,542	70,059	58,303	56,013	51,678	54,928	81,433	82,514	48,487	56,376	28,676	20,903	12,394	14,984	31,788	2,559	100	X5 /
HEMBRAS	Λ						0,164	0,577	0,688	5,203	7,534	12,971	27,425	57,573	104,810	163,990	216,203	294,806	382,859	743,917	879,855	767,955	613,361	675,037	490,143	403,756	232,503	161,920	97,763	97,578	48,243	51,682	38,896	24,382	15,444	10,913	8,721		3,366	
	IV	0,077	0,100	0,064	0,12)	1,151	2,267	5,723	12,602	34,046	66,937	121,972	169,573	262,703	301,466	328,119	358,274	307,548	329,961	519,951	593,937	535,042	424,949	448,097	321,420	280,466	149,032	109,297	67,891	63,268	28,526	30,571	17,133	9,985	3,551	1,891	2,011		2,268	
	III		0,025	0,141	0.348	1,152	1,220	1,367	1,634	2,123	4,499	5,923	5,726	689'6	3,671	3,423	1,098	0,102	1,341	2,187	0,571	1,129			0,011															
	II								0,004		0,016	0,030	0,075	0,117	0,184	0,157	0,110	0,024	0,041	0,045		0,073			0,024															
	VIII					0,195		0,139	0,324	0,574	1,552	1,786	2,621	3,321	4,518	6,775	12,804	18,104	11,204	20,935	22,317	36,534	55,826	48,132	59,590	80,949	74,410	100,437	113,201	141,126	130,926	158,906	129,022	62,875	31,307	26,427	15,402	13,541	, ,	•
	IΙΛ			0.317	0,10,0	0,367	0,531	0,117	0,852		0,529	3,856	1,426	3,197	9,670	9,396	9,485	8,637	2,672	8,883	16,943	7,122	6,229	8,500	3,328	15,008	10,774	20,506	20,380	23,304	32,770	26,563	18,245	17,028	12,075	19,203	33,925	43,129	15,203	7/4×
	VI			0.378	0.01	0,505	0,849	0,787	1,537	1,889	1,533	4,830	3,145	5,639	14,975	15,098	18,138	24,004	22,407	53,062	85,192	92,076	89,510	153,328	197,909	231,555	214,616	163,625	159,879	243,112	170,750	146,852	141,313	133,349	91,699	92,867	58,295	64,785	26,813	407.04
MACHOS	Λ				0.115	0,276	0,328	0,577	0,673	2,075	4,468	11,575	18,185	41,479	61,273	103,657	110,631	125,474	168,679			412,525		544,249	633,362	787,595	815,754	838,521	867,744	1193,083	953,138	814,529	486,360	369,431				72,691	40,242	
	IV	0,039	0,180	0,308	0,860	4,161	4,038	9,487	15,103	17,107	46,632	63,695	108,332	189,881	210,393	252,033	283,275	244,180	223,351	264,098	294,695	361,190	386,447	480,980	550,449	713,835	707,021	634,151	563,557	783,316	591,834	515,025	300,273	232,626	143,789	116,917	36,211	44,885	24,948	17.75
	Ш			0.348	1 485	2,046	2,746	1,528	2,842	4,300	6,494	7,759	11,205	12,455	12,999	10,206	4,573	2,995	4,456	3,483	0,631	2,481	0,683	4,468	5,679	7,470	14,070	9,535	3,478	3,119	2,011	0,020	0,033	`						
	П		0,001								0,010	0,029	0,052	0,044	0,059	0,103	0,115		0,039			0,017					0,027	0,087		0,034			0,083							
	MC	10,5	12,5	13,5	2,51	16,5	17,5	18,5	19,5	20,5	21,5	22,5	23,5	24,5	25,5	26,5	27,5	28,5	29,5	30,5	31,5	32,5	33,5	34,5	35,5	36,5	37,5	38,5	39,5	40,5	41,5	42,5	43,5	45.5	45,5	46,5	47,5	48,5	49,5	\ \ \

Biomasa (toneladas) de machos y hembras de langostino amarillo (*Cervimunida johni*) por región **dentro** de las **5 mn** de reserva artesanal entre la II - VIII Regiones. Enfoque geoestadístico. Anexo 4.28.

	VIII		0,000
	VII		0,000
	VI	7,174 39,842 110,218 131,259 138,921 117,095 38,382 27,883 22,730 8,216 17,778	659,498
HEMBRAS	Λ	0,304 1,062 3,481 3,481 3,988 8,050 8,372 8,373 8,372 111,875 121,875 121,875 121,875 121,875 121,875 121,875 121,875 120,920 84,902 116,984 120,920 116,984 120,920 117,225 120,920 84,902 117,225 120,920 117,225 120,920 117,875 120,920 12	1468,009
	IV	0,166 0,877 2,150 11,986 11,986 11,986 11,986 11,986 11,090 30,124 49,830 148,891 232,796 222,511 30,178,282 163,260 109,921 92,774 30,186 33,415 33,	3108,187
	III	0,161 0,708 0,984 3,173 3,873 11,114 9,441 115,978 1115,978 1115,978 1115,978 1115,978 1115,978 1115,978 1117,214 95,813 87,779 117,201 6,869 6,869 0,331 0,449	1016,396
	II	0,042 0,168 0,321 1,244 1,964 1,173 0,261 0,480 0,485 0,485 0,485	9,601
	VIII		0,000
	VII		0,000
	VI	9,723 21,374 58,551 89,564 118,509 159,121 205,409 186,681 201,543 124,086 111,200 83,556 127,912 95,789 58,467 62,357 16,603	1749,201
MACHOS	Λ	0,152 0,354 3,276 3,276 3,997 5,099 6,700 19,940 37,460 60,463 62,049 84,851 120,544 120,541 145,098 150,993 150,993 177,912 177,912 177,912 177,912 177,912 177,913 1	2616,917
	IV	0,087 0,052 0,192 0,192 1,054 1,054 1,054 12,871 12,963 113,77 113,77 113,77 113,77 113,77 113,77 113,77 113,77	5827,977
	Ш	1,155 0,161 2,835 3,764 11,396 11,396 12,955 26,157 31,703 36,496 69,000 58,376 84,324 84,324 84,324 107,800 107,	1903,401
	П	0,0113 0,324 0,592 0,661 1,165 1,303 0,439 0,301 0,379 0,379	7,902
	MC	$\begin{array}{c} 101\\ 101\\ 101\\ 101\\ 101\\ 101\\ 101\\ 101$	Total

Abundancia (miles de individuos) de machos y hembras de langostino amarillo (*Cervimunida johni*) por región **fuera** de las **5 mn** de reserva artesanal entre la II - VIII Regiones. Enfoque geoestadístico. Anexo 4.29.

	88 14,2 13,5 14,5 14,5 14,5 14,5 14,5 14,5 14,5 14			••••••	122 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8.8 8.9 8.79 11.78 11.86 11.89 11.88	8,8 8,9 17,8 57,9 124,6 97,8 115,6 489,7 265,7 406,5 664,7 924,0 883,2 1594,1 1594,1 2602,7 2602,7 2602,7 2602,7 1594,1 163,1 1783,6 1783,6 1783,6 1783,1 1783,1 1783,1 1783,1 1783,1 1783,1 1784,1 178
				38,2 114,5 113,5 762,5 949,5 1447,7 2708,5 5034,3 8162,7 11391,3 11391,3 1148,4 16559,1 19438,4 29519,4 21609,7 21609,7 11697,4	38,2 114,5 113,5 762,5 949,5 1447,7 178,5 8162,7 11391,3 11391,3 11391,3 1148,4 16559,1 19438,4 29519,4 2015,9 2015,9 2015,9 2015,9 2016,0 201	38,2 114,5 762,5 762,5 949,5 1447,7 178,5 178,6 11391,3 11391,3 11391,4 16559,1 16559,1 16559,1 16589,4 11097,4 20115,9 20115,9 20115,9 20115,9 11097,4 11097,	38,2 114,5 762,5 762,5 762,5 113,6 113,9 113,9 113,9 113,9 113,9 110,9 10,9
70,8 70,8 71,0 408,3 658,4 658,4 2634,3 6036,7 6036,7				38,2 114,5 113,5 762,5 949,5 1447,7 2708,5 5034,3 8162,7 11391,3 13484,2 16559,1 19438,4 34330,2 37015,9 29519,4 21609,7 21833,0 14589,4 11097,4	38,2 114,5 113,5 762,5 949,5 1447,7 2708,5 5034,3 8162,7 11391,3 13484,2 16559,1 19438,4 34330,2 37015,9 29519,4 11097,4 5904,6 3810,8	38,2 114,5 113,5 762,5 949,5 1447,7 2708,5 5034,3 8162,7 11391,3 13484,2 16559,1 19438,4 34015,9 29519,4 11097,4 5904,6 3810,8 11983,2 913,3 913,3	38.2 114.5 113.5 762.5 949.5 1447.7 2708.5 5034.3 8162.7 11391.3 13484.2 16559.1 16559.1 1943.8 29519.4 29519.4 2961.6 3810.8 3810.8 913.3 913.3 913.3 913.3 913.3 913.3 913.3 913.3
	71,0 408,3 658,4 1384,2 2634,3 6036,7 10303,0 16247,1 19543,7 26353,6 26383,3	71,0 408,3 658,4 1384,2 2634,3 6036,7 10303,0 16247,1 19543,7 26353,6 26383,3 25167,4 24305,1 18241,0	71,0 408,3 658,4 1384,2 2634,3 6036,7 10303,0 16247,1 19543,7 26353,6 26383,3 25167,4 24305,1 17453,5 25484,4 25288,4	71,0 408,3 658,4 11384,2 2634,3 6036,7 10303,0 16247,1 19543,7 26383,3 25167,4 24305,1 18241,0 17453,5 2289,5 2289,5 20806,6 15091,7 14566,3 9611,2	71,0 408,3 658,4 11384,2 2634,3 6036,7 10303,0 16247,1 19543,7 26383,3 25167,4 24305,1 11453,5 25289,5 20806,6 15091,7 14566,3 9611,2 7726,3 1485,6	71,0 408,3 658,4 11384,2 2634,3 6036,7 10303,0 16247,1 19543,7 26383,3 25167,4 2430,1 17453,5 24458,4 25289,5 26383,6 17453,5 17453,5 14566,3 9611,2 7726,3 3794,3 3794,3 2575,4 1485,6 1286,1 540,2 540,2	71,0 408,3 658,4 11384,2 2634,3 6036,7 10303,0 16247,1 19543,7 26383,3 25167,4 24305,1 17453,5 24458,4 25289,5 26389,5 26389,5 26389,5 26389,5 26389,5 26458,4 17453,5 17453,5 1756,3 3794,3 37
	777		0000000	370,8 383,7 384,5 384,5 384,5 444,2 6036 808,9 10303 808,9 10303 808,9 10303 808,9 10303 808,9 10303 808,9 10303 808,9 10303 808,9 10303 808,9 104,0 105			
0,0 7,4,0	0 740 E8.	0, 2,4,0,5,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	0	0, 2,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0, 2,4,0,E1 0, 2,	0	0
80,1 121,6 283,8 283,7	80,7 121,6 283,8 283,7 363,9 405,3 487,2	80,7 121,6 283,8 283,7 363,9 405,3 487,2 648,6 1093,0	80,7 121,6 283,8 283,7 363,9 405,3 487,2 648,6 1093,0 1383,7 769,6 1297,1 1251,4	80,7 121,6 283,8 283,7 363,9 405,3 487,2 648,6 1093,0 1383,7 769,6 1257,1 1251,4 1859,6 2587,3 2036,6 2308,0	80,7 121,6 283,8 283,7 363,9 405,3 487,2 648,6 1093,0 1383,7 769,6 1251,4 1859,6 2587,3 2036,6 2432,3 3026,3	80,7 121,6 283,8 283,7 363,9 405,3 487,2 648,6 1093,0 1383,7 769,6 1257,1 1859,6 2308,0 2308,0 2432,3 3127,4 3127,4 3526,2	80,7 283,8 283,7 363,9 405,3 405,3 487,2 648,6 1093,0 1383,7 769,6 1297,1 1251,4 1859,6 2387,3 2036,6 2387,3 3127,4 3127,4 3127,4 356,2 2664,2 1210,1
							1297,0 1791,3 3 4 5 6 9,8 3 6 6 9,8 4 7 6 5,1 4 7 6 5,1 6 8 8 9,6 7 0 3 6,5 1 1 1 2 4 9,9 1 1 1 3 1 4 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8
	9 1 8 5	9 8 6 7	12 8 9 9 4 7 7 7 7				
	1303,6 1452,5 1432,4	452,5 432,4 955,0 396,1	25,5 452,5 432,4 955,0 396,1 233,9 217,2 34,2	253, 253, 253, 253, 253, 253, 253, 253,	253 396 396 396 223 396 396 396 396 396 396 396 396 396 39	24408222211122242	
, o,						4.0 % 2.824 2	

Abundancia (miles de individuos) de machos y hembras de langostino amarillo (*Cervimunida johni*) por región **dentro** de las **5 mn** de reserva artesanal entre la II - VIII Regiones. Enfoque geoestadístico. Anexo 4.30.

V VII	IA
0,0	58,0
0,	79,0
,1	79,1
482.2	
4 (4 (
., ¬	., ¬
3707.0	3707.0
5575,5	5575,5
6118,0	6118,0
4701,5	4701,5
4219	4219,3
5213.9	5213.9
6449,5	6449,5
5876,9	5876,9
3556,3	3556,3
3676,8	3676,8
3616	3616,5
2,169.9	2,169.9
1054,8	1054,8
452	452
150	150
1	180
06	06
60,3	61,4 60,3 61,4 60,3
0.20	l
	58,0 26,5 79,0 79,0 79,0 79,0 663,5 1189,1 2146,0 2777,4 3401,2 4357,7 6285,5 8697,7 11013,1 14001,3 14731,5 15182,8 16873,9 17816,2 16916,1 13916,1 1

Anexo 4.31. Biomasa (toneladas) de machos y hembras de langostino colorado (*Pleuroncodes monodon*) por región **fuera** de las **5 mn** de reserva artesanal entre la II - VIII Regiones. Enfoque geoestadístico.

	VIII	0,261	3,325	7,409	21.280	39,225	81,032	124,909	100,002	89,627	91,227	110,919	146,207	185,950	258,126	331,579	302,471	224,752	144,677	101,714	69,830	37,897	32,258	33,394	28,291	908'9	2,990	4,098	7,150	2,418							1 887	2608,500
	VII	0,022		0,048	1.606	2,296	3,591	4,754	4,699	5,815	4,945	4,998	6,224	11,189	18,627	32,537	56,105	83,099	85,041	78,637	53,833	42,492	28,267	21,727	7,293	9,922	1,077	3,502	2,524	2,724	2 1 6	3,155	1,695					582,799
	VI																																					0,000
HEMBRAS	Λ																																					0,000
	IV	0.063	0,056	0,078	0.677	1,144	1,633	2,055	2,203	3,088	5,646	9,881	15,930	21,166	17,396	21,755	24,818	46,190	51,381	80,129	60,772	79,271	60,143	37,787	27,845	6,269	4,057	4,366										585,799
	III							1,051	2,936	12,931	26,210	54,497	108,271	183,320	183,585	188,578	148,342	130,780	125,673	104,762	71,453	74,344	42,366	48,288	17,672	12,262	8,804	3,155										1549,281
	II							0,442	1,226	5,039	10,684	22,850	44,849	76,504	75,788	78,303	57,010	47,528	42,061	36,666	25,948	27,859	17,174	19,600	7,421	5,149	3,697	1,325										607,122
	VIII	0,305	3,012	7,266	23.626	34,954	74,876	117,544	122,990	134,609	132,567	142,506	176,693	243,973	328,352	398,134	407,746	465,424	446,443	558,232	495,283	429,063	332,814	217,585	135,666	35,483	18,286	13,880	10,510	6,373	5,610	650,7	679,7		4,104		2 135	5550,503
	VII			0,048	1.897	4,503	6,336	6,007	9,545	9,065	6,097	6,360	5,964	5,888	8/6'6	20,942	38,516	47,148	64,294	55,673	46,229	44,578	38,196	35,929	44,667	15,874	11,850	5,836	6,310	5,448	1,46/	1,5/1	1,693	3,884				567,799
	VI																																					0,000
MACHOS	Λ																																					0,000
	IV		0,056		0.733	0,852	1,420	2,852	3,062	3,448	2,952	8,427	8,937	13,565	9,724	10,274	18,783	28,840	39,243	45,771	54,619	74,511	63,597	54,618	48,195	30,251	13,242	6,707	5,677	4,738								555,094
	Ш		0,071				0,015	0,456	1,054	5,419	12,061	30,062	66,400	80,912	100,373	125,844	96,827	91,163	89,036	73,722	46,910	49,886	33,641	34,281	27,005	24,522	7,337	3,155	1,693	0,157				2,496				1004,498
	П		0,030					0,177	0,409	2,226	4,942	12,562	27,799	33,474	41,634	51,971	39,675	36,810	34,098	27,241	15,647	18,714	12,203	13,722	10,602	10,298	3,082	1,325	0,711					1,049				400,401
	MIC	10,5	12,5	13,5	15.5	16,5	17,5	18,5	19,5	20,5	21,5	22,5	23,5	24,5	25,5	26,5	27,5	28,5	29,5	30,5	31,5	32,5	33,5	34,5	35,5	36,5	37,5	38,5	39,5	40,5	41,5 5,7	4,7,5 5,7	45,5 C, A	45,5	46,5	6,74 6,75 7,0	49,5	Total

Anexo 4.32. Biomasa (toneladas) de machos y hembras de langostino colorado (*Pleuroncodes monodon*) por región **dentro** de las **5 mn** de reserva artesanal entre la II - VIII Regiones. Enfoque geoestadístico.

	VIII	0,010 0,035 0,088	0,208	0,381	0,185	0,267	0,412	1.406	1,938	2,436	2,803	3,233	2,543	2,122	1,547	1,236	0,754	0,451	0,203	0,223	0,022	0,024		1000	0,031								0 0 0 0	28,301
	VII																																	0,000
	VI																																	0,000
HEMBRAS	Λ																																	0,000
	IV	0,056	0,078	0,308	4,293	5,741	6,008	10,362	12,499	9,034	13,328	11,228	15,297	58,002	118,122	224,866	231,022	151,726	96,862	87,299	59,375	38,585	20,340	10,00	10,036	9,010	3.283	3.546						1251,005
	III					3,647	11,196	68.868	129,778	178,193	243,301	326,857	284,068	160.811	155,464	120,620	131,249	127,465	74,189	128,409	62,389	42,089	28,052	13,360	14,333	5,119								2560,910
	II				0,035	0,558	1,524	7.772	12,406	18,918	31,455	48,028	40,092	20,200	46,940	46,993	28,499	39,519	44,769	60,012	21,629	14,036	4,741	2,535	1,289	0,401								553,698
	VIII	0,010 0,027 0,100	0,188	0,463	0,288	0,262	0,495	1,023	2,700	4,252	5,917	7,446	8,464	7,780	7,349	7,700	5,334	3,597	2,474	1,199	0,758	0,146	0,053	0,029	0,095	0,034							080	78,699
	VII																																	0,000
	VI																																	0,000
MACHOS	Λ																																	0,000
	IV	0,056	0,035	0,504	1,776	5,366	8,130	11.333	9,363	13,149	12,803	9,068	10,767	24,270	44,066	106,644	170,418	223,520	225,360	219,404	169,941	120,589	78,122	45,2/2	16,148	7,142	2,027	0.758	0,808					1564,999
	Ш			0.434	0,077	3,744	12,114	64.327	96,017	111,794	170,116	206,971	276,883	263,699	240,087	136,562	124,351	93,999	74,650	83,843	55,260	34,812	32,193	38,121	19,114	616,16		6.229	`					2453,287
	П			0.039	6,0	0,401	1,592	7.554	10,217	12,603	24,734	24,1/2	30,737	34.272	27,437	25,043	18,328	9,734	14,777	9,440	11,082	7,947	5,111	5,468	3,133	7,700		0.560						330,410
SW.	MC	10,5 11,5 12,5	13,5 14,5	15,5	17,5	18,5	19,5	20,5	22,5	23,5	24,5	6,62	20,07 27,7	ر ۲۷ د ۲۸	29,5	30,5	31,5	32,5	33,5	34,5	35,5	36,5	37,5	58,5	5,65	40,5	41,5	43.5	5,44	45,5	46,5 47.5	48,5	49,5 >50,5	Total

Abundancia (miles de ejemplares) de machos y hembras de langostino colorado (*Pleuroncodes monodon*) por región **fuera** de las **5 mn** de reserva artesanal entre la II - VIII Regiones. Enfoque geoestadístico. Anexo 4.33.

	VIII	587,8	1748,3	4400,0	12021,0	129/4,0	14508,3	21888,2	37704,0	49270,4	33024,9	24577,0	20933,2	21666,0	24851,5	27931,9	34400,1	39239,3	31760,6	21032,6	12023,0	7551,1	4666,5	2283,3	1797,6	1683,6	1323,1	290,9	114,7	145,7	236,1	72,9								956	462369,2
	VII	42,1		ţ	7,74	7,527,7	9,38,0	1109,2	1450,3	1620,9	1364,8	1450,1	1066,4	938,4	1023,7	1620,9	2388,7	3710,9	5715,7	7592,4	6995,2	5843,6	3625,6	2601,9	1578,2	1109,0	341,2	426,6	42,6	128,0	85,3	85,3		85,3	45,6						55322,1
	VI																																								0,0
HEMBRAS	Λ																																								0,0
	IV		92,0	61,9	46,/	7 212	515,4	431,7	533,9	579,1	540,9	614,1	946,0	1425,7	2028,5	2398,1	1759,7	1976,3	2031,6	3422,6	3458,6	4906,7	3399,7	4067,1	2825,3	1628,2	1117,1	232,7	139,6	139,6											41116,8
	Ш									444,6	1071,5	4239,1	7400,3	13444,7	23814,7	35864,8	32271,5	29771,5	21510,6	17347,2	15327,2	11546,7	7152,2	6787,7	3518,5	3696,4	1245,5	800,7	533,7	177,9											237966,9
	П									186,7	448,3	1606,4	2988,5	5640,7	9824,5	14942,2	13261,2	12327,3	8106,1	6126,3	4930,9	3922,3	2540,2	2502,8	1419,5	1494,2	523,0	336,2	224,1	74,7											93426,4
	VIII	674,5	1290,2	3927,1	7606,0	1,501,5	1,6015,1	19247,5	34434,7	46060,0	40731,5	37675,0	31105,3	28146,0	29779,6	35749,5	42388,2	45681,6	41757,6	42707,9	36616,2	41324,8	33309,6	26282,2	18563,3	11105,5	6315,4	1520,6	716,9	498,9	337,0	194,6	156,1	192,4	62,4		0	7,00		950	6,52,6
	VII			t	7,74	11007	1108,	2175,4	2559,0	3070,9	2772,3	2260,6	1961,8	1194,1	6,086	853,0	1279,6	2388,5	3923,8	4307,7	5288,6	4137,1	3113,5	2729,7	2132,5	1834,0	2089,9	682,4	469,2	213,3	213,2	170,6	42,6	42,6	42,6	(85,3				54166,2
	VI																																								0,0
MACHOS	Λ																																								0,0
	IV		,	61,9		1 0 7 7	343,7	345,6	496,4	814,1	743,2	712,3	513,4	1224,8	1137,8	1538,3	984,2	933,3	1538,5	2132,9	2641,6	2802,1	3049,0	3815,7	2996,4	2359,6	1923,2	1100,3	449,6	201,0	154,5	123,8									35137,1
	Ш		1	87,7					4,3	186,8	373,3	1711,8	3339,5	7405,3	14526,5	15856,2	17622,2	19895,2	13845,9	11848,8	10620,6	8049,7	4749,5	4554,2	2823,9	2628,6	6,9161	1601,3	444,8	177,9	0,68	4,4				0	6,88				144453,2
	П		1	37,8						74,8	149,5	709,7	1382,3	3100,9	9,6809	6538,0	7285,1	8181,9	5641,3	4744,7	3997,5	2914,1	1531,8	1681,2	1008,7	1046,1	747,2	672,5	186,8	74,7	37,4						37,4				57870,8
JM	MIC	10,5	11,5	12,5	2,51	C, 51	C, C,	16,5	17,5	18,5	19,5	20,5	21,5	22,5	23,5	24,5	25,5	26,5	27,5	28,5	29,5	30,5	31,5	32,5	33,5	34,5	35,5	36,5	37,5	38,5	39,5	40,5	41,5	42,5	43,5	2, <u>1</u>	5,5	40,5 47,5	48,5	49,5	Total

Abundancia (miles de ejemplares) de machos y hembras de langostino colorado (*Pleuroncodes monodon*) por región dentro de las **5 mn** de reserva artesanal entre la II - VIII Regiones. Enfoque geoestadístico. Anexo 4.34.

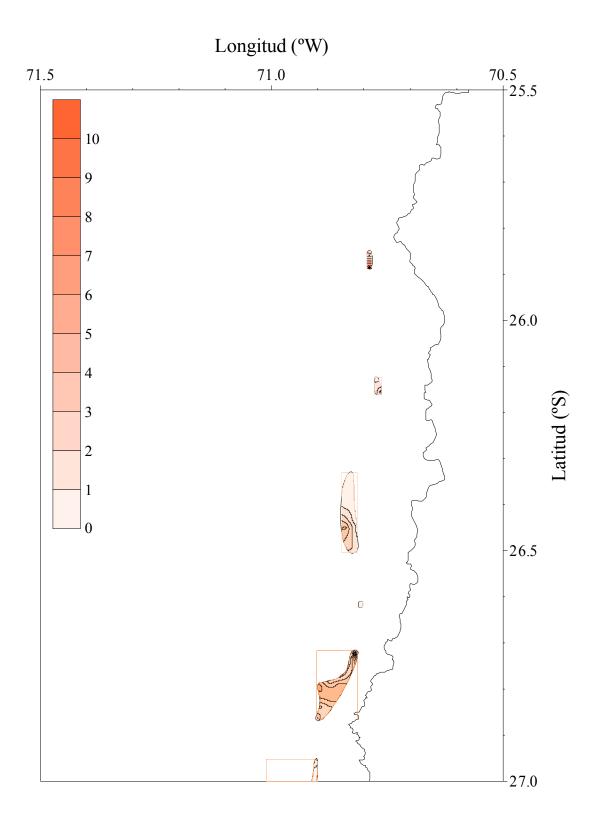
	VIII	22,5	58,6	112,4	207,0	314,4	241,8	168,7	79,1	95,3	123,9	239,9	307,7	365,7	399,1	400,6	408,5	370,5	306,7	191,4	120,9	86,7	47,6	25,7	10,5	10,5	6,0	6,0			6,0									4	1,0	4719,7
	VIII																																								4	0,0
	VI																																								4	0,0
HEMBRAS	Λ																																								4	0,0
	IV			61,9	8,99	1,29	140,7	756,0	1452,2	1607,2	1447,3	2162,5	2102,3	1914,2	1188,0	1545,0	1148,7	1389,7	2160,6	4293,9	7921,1	13670,4	12755,6	7649,5	4454,4	3642,7	2215,8	1340,6	637,5	272,2	254,9	203,2	17,2	62,0	62,0						0	78658,3
	Ш									1558,4	4095,9	9463,0	19269,9	32084,2	39280,6	48323,6	58480,9	47080,1	33179,0	22005,3	19601,5	13881,1	13899,9	11930,2	6284,3	9881,8	4438,7	2771,4	1717,1	753,4	753,4	251,1									6	400984,6
	П								18,3	243,9	577,9	1338,4	2240,0	3097,9	4274,2	6571,2	9212,1	7053,0	4887,2	7323,3	6793,2	6347,5	3493,6	4489,6	4837,9	5948,1	1966,0	1188,7	349,4	174,7	8'29	22,6										82516,3
	VIII	22,5	45,2	127,7	187,1	282,1	293,8	167,2	123,1	93,5	148,8	261,4	378,8	509,5	9,969	846,4	935,1	937,9	788,2	680,4	574,5	540,0	336,8	205,2	127,9	56,3	32,4	5,7	1,9	1,0	2,9	6,0								,	1,0	9411,7
	VII																																								4	0,0
	VI																																								4	0,0
MACHOS	Λ																																								4	0,0
	IV			6,19	1	17,2	252,3	787,6	588,1	1492,6	1900,3	1808,8	2030,4	1426,8	1745,6	1486,8	926,7	978,1	1170,2	1775,7	2941,1	6478,2	9433,9	11289,1	10346,3	9182,6	6487,4	4165,2	2457,2	1252,9	451,5	182,6	113,7	51,7	17,2	17,2					,	83316,9
	Ш						i	251,2	22,3	1551,8	4371,2	11483,6	17906,4	23674,0	24599,1	33535,8	36710,8	44771,6	38041,2	31676,3	29198,0	15117,8	12527,4	8924,7	6558,4	6622,4	3936,2	2347,6	1968,1	2178,3	1004,5	1529,1			251,1							360758,9
	П						(22,7		172,1	8,209	1828,9	2193,1	2591,3	2877,5	5226,3	4607,2	5156,8	5833,0	4942,1	3550,9	3177,0	2079,0	1008,6	1554,2	834,0	9,226	670,1	371,8	371,8	197,2	135,4			22,6						4	50983,9
JM) IVI	10,5	11,5	12,5	13,5	2,5 2,5	15,5	16,5	17,5	18,5	19,5	20,5	21,5	22,5	23,5	24,5	25,5	26,5	27,5	28,5	29,5	30,5	31,5	32,5	33,5	34,5	35,5	36,5	37,5	38,5	39,5	40,5	41,5	42,5	43,5	2,5	45,5	2,04 2,74	48,5	49,5	>50,5	Total

Anexo 5. Fechas y lugares geográficos de los muestreos

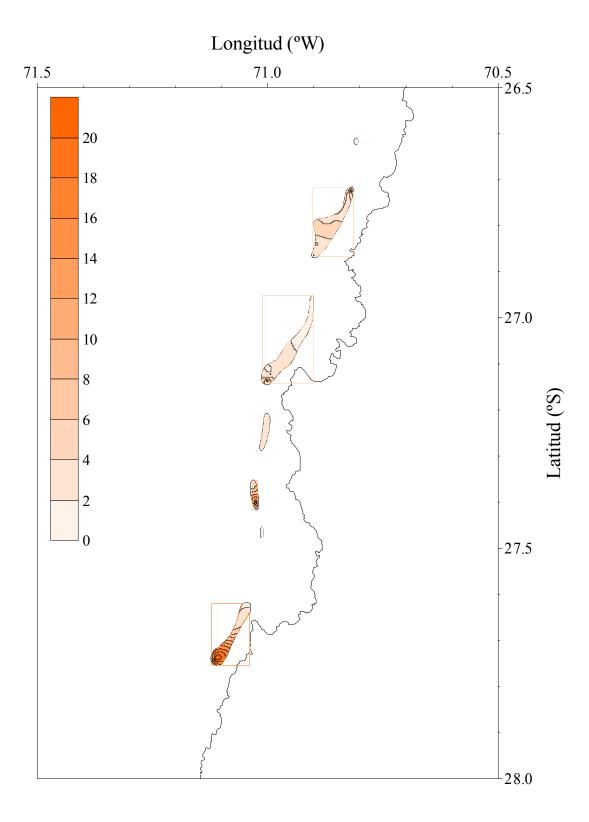
ANEXO 5

FECHAS Y LUGARES GEOGRÁFICOS DE LOS MUESTREOS

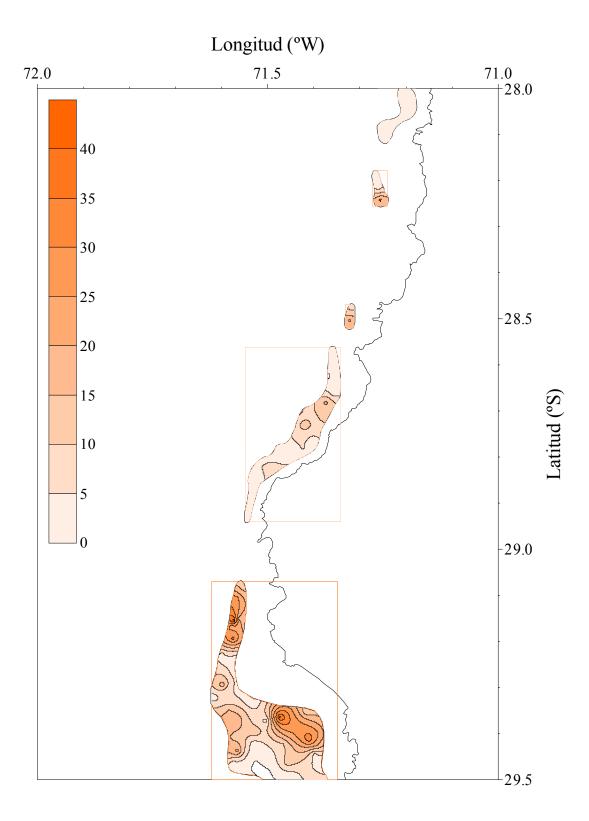
Anexo 5. Fechas y lugares geográficos de los muestreos.

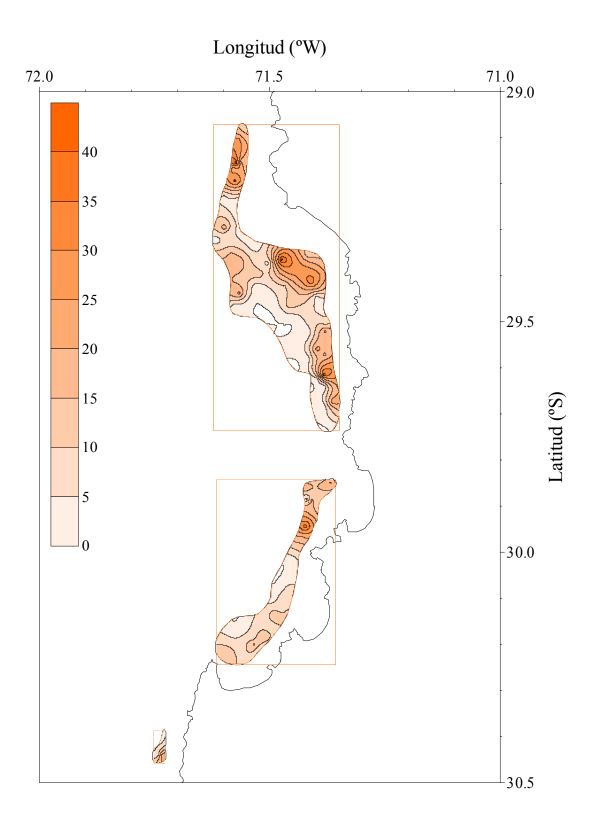

11/04/2004	FECHA	REGIÓN	LUGAR DE MUESTREO	EMBARCACIÓN
1204/2004	11/04/2004		Caldera	FOCHE
13/04/2004	11/04/2004	IV		FOCHE
13/04/2004	12/04/2004	III	Caldera	FOCHE
14/04/2004	13/04/2004	III	Caldera	ISABEL-S
15/04/2004	13/04/2004	III	Caldera	FOCHE
15/04/2004	14/04/2004	III	Caldera	ISABEL-S
16/04/2004	15/04/2004	III	Caldera	ISABEL-S
16/04/2004	15/04/2004	III	Caldera	FOCHE
16/04/2004		III	Caldera	
18/04/2004	16/04/2004	IV	Coquimbo	FOCHE
18/04/2004		III		
19/04/2004	18/04/2004	IV		FOCHE
19/04/2004				
20/04/2004				
20/04/2004				
21/04/2004				
21/04/2004				
23/04/2004				
24/04/2004 II Taltal ISABEL-S 24/04/2004 IV Coquimbo FOCHE 25/04/2004 II Taltal ISABEL-S 25/04/2004 IV Coquimbo FOCHE 26/04/2004 IV Coquimbo FOCHE 27/04/2004 II Taltal ISABEL-S 27/04/2004 IV Coquimbo FOCHE 28/04/2004 IV Coquimbo FOCHE 28/04/2004 IV Coquimbo FOCHE 29/04/2004 IV Coquimbo FOCHE 29/04/2004 IV Coquimbo FOCHE 02/05/2004 IV Coquimbo FOCHE 03/05/2004 IV Coquimbo FOCHE 07/05/2004 IV Coquimbo FOCHE 09/05/2004 IV Coquimbo FOCHE 10/05/2004 IV Coquimbo FOCHE 11/05/2004 V San Antonio FOCHE 12/05/2004 V <td< td=""><td></td><td></td><td>•</td><td></td></td<>			•	
24/04/2004 IV Coquimbo FOCHE 25/04/2004 II Taltal ISABEL-S 25/04/2004 IV Coquimbo FOCHE 26/04/2004 IV Coquimbo FOCHE 27/04/2004 II Taltal ISABEL-S 27/04/2004 IV Coquimbo FOCHE 28/04/2004 II Taltal ISABEL-S 28/04/2004 IV Coquimbo FOCHE 29/04/2004 IV Coquimbo FOCHE 29/04/2004 IV Coquimbo FOCHE 29/04/2004 IV Coquimbo FOCHE 03/05/2004 IV Coquimbo FOCHE 03/05/2004 IV Coquimbo FOCHE 08/05/2004 IV Coquimbo FOCHE 10/05/2004 IV Coquimbo FOCHE 11/05/2004 IV Coquimbo FOCHE 11/05/2004 V San Antonio FOCHE 13/05/2004 V <td< td=""><td></td><td></td><td></td><td></td></td<>				
25/04/2004 II Taltal ISABEL-S 25/04/2004 IV Coquimbo FOCHE 26/04/2004 IV Coquimbo FOCHE 27/04/2004 IV Coquimbo FOCHE 27/04/2004 IV Coquimbo FOCHE 28/04/2004 II Taltal ISABEL-S 28/04/2004 IV Coquimbo FOCHE 29/04/2004 IV Coquimbo FOCHE 03/05/2004 IV Coquimbo FOCHE 07/05/2004 IV Coquimbo FOCHE 09/05/2004 IV Coquimbo FOCHE 11/05/2004 IV Coquimbo FOCHE 12/05/2004 V San Antonio FOCHE 13/05/2004 V				
25/04/2004			•	
26/04/2004 IV Coquimbo FOCHE 27/04/2004 II Taltal ISABEL-S 27/04/2004 IV Coquimbo FOCHE 28/04/2004 IV Coquimbo FOCHE 28/04/2004 IV Coquimbo FOCHE 28/04/2004 IV Coquimbo FOCHE 02/05/2004 IV Coquimbo FOCHE 03/05/2004 IV Coquimbo FOCHE 03/05/2004 IV Coquimbo FOCHE 08/05/2004 IV Coquimbo FOCHE 09/05/2004 IV Coquimbo FOCHE 11/05/2004 IV Coquimbo FOCHE 11/05/2004 IV Coquimbo FOCHE 12/05/2004 IV Coquimbo FOCHE 13/05/2004 V San Antonio FOCHE 14/05/2004 V San Antonio FOCHE 15/05/2004 V San Antonio FOCHE 17/05/2004 V <				
27/04/2004 II Taltal ISABEL-S 27/04/2004 IV Coquimbo FOCHE 28/04/2004 II Taltal ISABEL-S 28/04/2004 IV Coquimbo FOCHE 29/04/2004 IV Coquimbo FOCHE 29/04/2004 IV Coquimbo FOCHE 03/05/2004 IV Coquimbo FOCHE 07/05/2004 IV Coquimbo FOCHE 08/05/2004 IV Coquimbo FOCHE 09/05/2004 IV Coquimbo FOCHE 10/05/2004 IV Coquimbo FOCHE 11/05/2004 IV Coquimbo FOCHE 11/05/2004 V San Antonio FOCHE 13/05/2004 V San Antonio FOCHE 14/05/2004 V San Antonio FOCHE 15/05/2004 V San Antonio FOCHE 16/05/2004 V San Antonio FOCHE 18/05/2004 V				
27/04/2004 IV Coquimbo FOCHE 28/04/2004 II Taltal ISABEL-S 28/04/2004 IV Coquimbo FOCHE 29/04/2004 IV Coquimbo FOCHE 02/05/2004 IV Coquimbo FOCHE 03/05/2004 IV Coquimbo FOCHE 03/05/2004 IV Coquimbo FOCHE 08/05/2004 IV Coquimbo FOCHE 09/05/2004 IV Coquimbo FOCHE 10/05/2004 IV Coquimbo FOCHE 11/05/2004 IV Coquimbo FOCHE 11/05/2004 V San Antonio FOCHE 13/05/2004 V San Antonio FOCHE 14/05/2004 V San Antonio FOCHE 15/05/2004 V San Antonio FOCHE 16/05/2004 V San Antonio FOCHE 18/05/2004 V San Antonio FOCHE 19/05/2004 V				
28/04/2004 II Taltal ISABEL-S 28/04/2004 IV Coquimbo FOCHE 29/04/2004 IV Coquimbo FOCHE 29/04/2004 IV Coquimbo FOCHE 02/05/2004 IV Coquimbo FOCHE 03/05/2004 IV Coquimbo FOCHE 08/05/2004 IV Coquimbo FOCHE 08/05/2004 IV Coquimbo FOCHE 10/05/2004 IV Coquimbo FOCHE 11/05/2004 IV Coquimbo FOCHE 11/05/2004 V San Antonio FOCHE 13/05/2004 V San Antonio FOCHE 14/05/2004 V San Antonio FOCHE 15/05/2004 V San Antonio FOCHE 16/05/2004 V San Antonio FOCHE 18/05/2004 V San Antonio FOCHE 19/05/2004 V San Antonio FOCHE 21/05/2004 IV				
28/04/2004 IV Coquimbo FOCHE 29/04/2004 IV Coquimbo FOCHE 02/05/2004 IV Coquimbo FOCHE 03/05/2004 IV Coquimbo FOCHE 08/05/2004 IV Coquimbo FOCHE 09/05/2004 IV Coquimbo FOCHE 09/05/2004 IV Coquimbo FOCHE 10/05/2004 IV Coquimbo FOCHE 11/05/2004 IV Coquimbo FOCHE 11/05/2004 V San Antonio FOCHE 13/05/2004 V San Antonio FOCHE 14/05/2004 V San Antonio FOCHE 15/05/2004 V San Antonio FOCHE 15/05/2004 V San Antonio FOCHE 17/05/2004 V San Antonio FOCHE 18/05/2004 V San Antonio FOCHE 19/05/2004 V San Antonio FOCHE 21/05/2004 IV				
29/04/2004 IV Coquimbo FOCHE 02/05/2004 IV Coquimbo FOCHE 03/05/2004 IV Coquimbo FOCHE 07/05/2004 IV Coquimbo FOCHE 08/05/2004 IV Coquimbo FOCHE 09/05/2004 IV Coquimbo FOCHE 10/05/2004 IV Coquimbo FOCHE 11/05/2004 IV Coquimbo FOCHE 11/05/2004 V San Antonio FOCHE 13/05/2004 V San Antonio FOCHE 14/05/2004 V San Antonio FOCHE 15/05/2004 V San Antonio FOCHE 16/05/2004 V San Antonio FOCHE 18/05/2004 V San Antonio FOCHE 18/05/2004 V San Antonio FOCHE 19/05/2004 V San Antonio FOCHE 21/05/2004 IV Coquimbo FOCHE 23/05/2004 IV				
02/05/2004 IV Coquimbo FOCHE 03/05/2004 IV Coquimbo FOCHE 07/05/2004 IV Coquimbo FOCHE 08/05/2004 IV Coquimbo FOCHE 09/05/2004 IV Coquimbo FOCHE 10/05/2004 IV Coquimbo FOCHE 11/05/2004 V San Antonio FOCHE 12/05/2004 V San Antonio FOCHE 13/05/2004 V San Antonio FOCHE 14/05/2004 V San Antonio FOCHE 15/05/2004 V San Antonio FOCHE 17/05/2004 V San Antonio FOCHE 18/05/2004 V San Antonio FOCHE 18/05/2004 V San Antonio FOCHE 19/05/2004 V San Antonio FOCHE 21/05/2004 V San Antonio FOCHE 23/05/2004 IV Coquimbo FOCHE 25/05/2004 IV<				
03/05/2004 IV Coquimbo FOCHE 07/05/2004 IV Coquimbo FOCHE 08/05/2004 IV Coquimbo FOCHE 09/05/2004 IV Coquimbo FOCHE 10/05/2004 IV Coquimbo FOCHE 11/05/2004 V San Antonio FOCHE 12/05/2004 V San Antonio FOCHE 13/05/2004 V San Antonio FOCHE 14/05/2004 V San Antonio FOCHE 15/05/2004 V San Antonio FOCHE 16/05/2004 V San Antonio FOCHE 17/05/2004 V San Antonio FOCHE 18/05/2004 V San Antonio FOCHE 19/05/2004 V San Antonio FOCHE 21/05/2004 V San Antonio FOCHE 22/05/2004 IV Coquimbo FOCHE 23/05/2004 IV Coquimbo FOCHE 25/05/2004 IV<				II .
07/05/2004 IV Coquimbo FOCHE 08/05/2004 IV Coquimbo FOCHE 09/05/2004 IV Coquimbo FOCHE 10/05/2004 IV Coquimbo FOCHE 11/05/2004 V San Antonio FOCHE 12/05/2004 V San Antonio FOCHE 13/05/2004 V San Antonio FOCHE 14/05/2004 V San Antonio FOCHE 15/05/2004 V San Antonio FOCHE 16/05/2004 V San Antonio FOCHE 18/05/2004 V San Antonio FOCHE 18/05/2004 V San Antonio FOCHE 19/05/2004 V San Antonio FOCHE 21/05/2004 V San Antonio FOCHE 21/05/2004 IV Coquimbo FOCHE 23/05/2004 IV Coquimbo FOCHE 24/05/2004 IV Coquimbo FOCHE 25/05/2004 IV<				
08/05/2004 IV Coquimbo FOCHE 09/05/2004 IV Coquimbo FOCHE 10/05/2004 IV Coquimbo FOCHE 11/05/2004 V San Antonio FOCHE 12/05/2004 V San Antonio FOCHE 13/05/2004 V San Antonio FOCHE 14/05/2004 V San Antonio FOCHE 15/05/2004 V San Antonio FOCHE 16/05/2004 V San Antonio FOCHE 17/05/2004 V San Antonio FOCHE 18/05/2004 V San Antonio FOCHE 19/05/2004 V San Antonio FOCHE 21/05/2004 IV Coquimbo FOCHE 23/05/2004 IV Coquimbo FOCHE 24/05/2004 IV Coquimbo FOCHE 25/05/2004 IV Coquimbo FOCHE 25/05/2004 IV Coquimbo FOCHE 25/05/2004 IV <td></td> <td></td> <td></td> <td></td>				
09/05/2004 IV Coquimbo FOCHE 10/05/2004 IV Coquimbo FOCHE 11/05/2004 V San Antonio FOCHE 12/05/2004 V San Antonio FOCHE 13/05/2004 V San Antonio FOCHE 14/05/2004 V San Antonio FOCHE 15/05/2004 V San Antonio FOCHE 16/05/2004 V San Antonio FOCHE 17/05/2004 V San Antonio FOCHE 18/05/2004 V San Antonio FOCHE 19/05/2004 V San Antonio FOCHE 21/05/2004 IV Coquimbo FOCHE 22/05/2004 IV Coquimbo FOCHE 24/05/2004 IV Coquimbo FOCHE 25/05/2004 IV Coquimbo FOCHE 26/05/2004 IV Coquimbo FOCHE 27/05/2004 IV Coquimbo FOCHE 29/05/2004 IV <td></td> <td></td> <td></td> <td></td>				
10/05/2004 IV Coquimbo FOCHE 11/05/2004 V San Antonio FOCHE 12/05/2004 V San Antonio FOCHE 13/05/2004 V San Antonio FOCHE 14/05/2004 V San Antonio FOCHE 15/05/2004 V San Antonio FOCHE 16/05/2004 V San Antonio FOCHE 18/05/2004 V San Antonio FOCHE 18/05/2004 V San Antonio FOCHE 19/05/2004 V San Antonio FOCHE 21/05/2004 IV Coquimbo FOCHE 23/05/2004 IV Coquimbo FOCHE 24/05/2004 IV Coquimbo FOCHE 25/05/2004 IV Coquimbo FOCHE 25/05/2004 IV Coquimbo FOCHE 25/05/2004 IV Coquimbo FOCHE 27/05/2004 IV Coquimbo FOCHE 29/05/2004 IV <td></td> <td></td> <td></td> <td></td>				
11/05/2004 V San Antonio FOCHE 12/05/2004 V San Antonio FOCHE 13/05/2004 V San Antonio FOCHE 14/05/2004 V San Antonio FOCHE 15/05/2004 V San Antonio FOCHE 16/05/2004 V San Antonio FOCHE 17/05/2004 V San Antonio FOCHE 18/05/2004 V San Antonio FOCHE 19/05/2004 V San Antonio FOCHE 21/05/2004 IV Coquimbo FOCHE 22/05/2004 IV Coquimbo FOCHE 23/05/2004 IV Coquimbo FOCHE 25/05/2004 IV Coquimbo FOCHE 25/05/2004 IV Coquimbo FOCHE 26/05/2004 IV Coquimbo FOCHE 27/05/2004 IV Coquimbo FOCHE 29/05/2004 IV Coquimbo FOCHE 31/05/2004 V <td></td> <td></td> <td></td> <td></td>				
12/05/2004 V San Antonio FOCHE 13/05/2004 V San Antonio FOCHE 14/05/2004 V San Antonio FOCHE 15/05/2004 V San Antonio FOCHE 16/05/2004 V San Antonio FOCHE 17/05/2004 V San Antonio FOCHE 18/05/2004 V San Antonio FOCHE 19/05/2004 V San Antonio FOCHE 21/05/2004 IV Coquimbo FOCHE 22/05/2004 IV Coquimbo FOCHE 24/05/2004 IV Coquimbo FOCHE 25/05/2004 IV Coquimbo FOCHE 25/05/2004 IV Coquimbo FOCHE 27/05/2004 IV Coquimbo FOCHE 27/05/2004 IV Coquimbo FOCHE 29/05/2004 IV Coquimbo FOCHE 31/05/2004 V San Antonio FOCHE				
13/05/2004 V San Antonio FOCHE 14/05/2004 V San Antonio FOCHE 15/05/2004 V San Antonio FOCHE 16/05/2004 V San Antonio FOCHE 17/05/2004 V San Antonio FOCHE 18/05/2004 V San Antonio FOCHE 19/05/2004 V San Antonio FOCHE 21/05/2004 IV Coquimbo FOCHE 22/05/2004 IV Coquimbo FOCHE 23/05/2004 IV Coquimbo FOCHE 25/05/2004 IV Coquimbo FOCHE 25/05/2004 IV Coquimbo FOCHE 26/05/2004 IV Coquimbo FOCHE 27/05/2004 IV Coquimbo FOCHE 29/05/2004 IV Coquimbo FOCHE 31/05/2004 V San Antonio FOCHE				
14/05/2004 V San Antonio FOCHE 15/05/2004 V San Antonio FOCHE 16/05/2004 V San Antonio FOCHE 17/05/2004 V San Antonio FOCHE 18/05/2004 V San Antonio FOCHE 19/05/2004 V San Antonio FOCHE 21/05/2004 IV Coquimbo FOCHE 22/05/2004 IV Coquimbo FOCHE 23/05/2004 IV Coquimbo FOCHE 24/05/2004 IV Coquimbo FOCHE 25/05/2004 IV Coquimbo FOCHE 26/05/2004 IV Coquimbo FOCHE 27/05/2004 IV Coquimbo FOCHE 29/05/2004 IV Coquimbo FOCHE 31/05/2004 V San Antonio FOCHE				
15/05/2004 V San Antonio FOCHE 16/05/2004 V San Antonio FOCHE 17/05/2004 V San Antonio FOCHE 18/05/2004 V San Antonio FOCHE 19/05/2004 V San Antonio FOCHE 21/05/2004 IV Coquimbo FOCHE 22/05/2004 IV Coquimbo FOCHE 23/05/2004 IV Coquimbo FOCHE 24/05/2004 IV Coquimbo FOCHE 25/05/2004 IV Coquimbo FOCHE 26/05/2004 IV Coquimbo FOCHE 27/05/2004 IV Coquimbo FOCHE 29/05/2004 IV Coquimbo FOCHE 31/05/2004 V San Antonio FOCHE				
16/05/2004 V San Antonio FOCHE 17/05/2004 V San Antonio FOCHE 18/05/2004 V San Antonio FOCHE 19/05/2004 V San Antonio FOCHE 21/05/2004 IV Coquimbo FOCHE 22/05/2004 IV Coquimbo FOCHE 23/05/2004 IV Coquimbo FOCHE 24/05/2004 IV Coquimbo FOCHE 25/05/2004 IV Coquimbo FOCHE 26/05/2004 IV Coquimbo FOCHE 27/05/2004 IV Coquimbo FOCHE 29/05/2004 IV Coquimbo FOCHE 31/05/2004 V San Antonio FOCHE 01/06/2004 V San Antonio FOCHE				
17/05/2004 V San Antonio FOCHE 18/05/2004 V San Antonio FOCHE 19/05/2004 V San Antonio FOCHE 21/05/2004 IV Coquimbo FOCHE 22/05/2004 IV Coquimbo FOCHE 23/05/2004 IV Coquimbo FOCHE 24/05/2004 IV Coquimbo FOCHE 25/05/2004 IV Coquimbo FOCHE 26/05/2004 IV Coquimbo FOCHE 27/05/2004 IV Coquimbo FOCHE 29/05/2004 IV Coquimbo FOCHE 31/05/2004 V San Antonio FOCHE 01/06/2004 V San Antonio FOCHE				
18/05/2004 V San Antonio FOCHE 19/05/2004 V San Antonio FOCHE 21/05/2004 IV Coquimbo FOCHE 22/05/2004 IV Coquimbo FOCHE 23/05/2004 IV Coquimbo FOCHE 24/05/2004 IV Coquimbo FOCHE 25/05/2004 IV Coquimbo FOCHE 26/05/2004 IV Coquimbo FOCHE 27/05/2004 IV Coquimbo FOCHE 29/05/2004 IV Coquimbo FOCHE 31/05/2004 V San Antonio FOCHE 01/06/2004 V San Antonio FOCHE				
19/05/2004 V San Antonio FOCHE 21/05/2004 IV Coquimbo FOCHE 22/05/2004 IV Coquimbo FOCHE 23/05/2004 IV Coquimbo FOCHE 24/05/2004 IV Coquimbo FOCHE 25/05/2004 IV Coquimbo FOCHE 26/05/2004 IV Coquimbo FOCHE 27/05/2004 IV Coquimbo FOCHE 29/05/2004 IV Coquimbo FOCHE 31/05/2004 V San Antonio FOCHE 01/06/2004 V San Antonio FOCHE				1
21/05/2004 IV Coquimbo FOCHE 22/05/2004 IV Coquimbo FOCHE 23/05/2004 IV Coquimbo FOCHE 24/05/2004 IV Coquimbo FOCHE 25/05/2004 IV Coquimbo FOCHE 26/05/2004 IV Coquimbo FOCHE 27/05/2004 IV Coquimbo FOCHE 29/05/2004 IV Coquimbo FOCHE 31/05/2004 V San Antonio FOCHE 01/06/2004 V San Antonio FOCHE				
22/05/2004 IV Coquimbo FOCHE 23/05/2004 IV Coquimbo FOCHE 24/05/2004 IV Coquimbo FOCHE 25/05/2004 IV Coquimbo FOCHE 26/05/2004 IV Coquimbo FOCHE 27/05/2004 IV Coquimbo FOCHE 29/05/2004 IV Coquimbo FOCHE 31/05/2004 V San Antonio FOCHE 01/06/2004 V San Antonio FOCHE				
23/05/2004 IV Coquimbo FOCHE 24/05/2004 IV Coquimbo FOCHE 25/05/2004 IV Coquimbo FOCHE 26/05/2004 IV Coquimbo FOCHE 27/05/2004 IV Coquimbo FOCHE 29/05/2004 IV Coquimbo FOCHE 31/05/2004 V San Antonio FOCHE 01/06/2004 V San Antonio FOCHE			•	
24/05/2004 IV Coquimbo FOCHE 25/05/2004 IV Coquimbo FOCHE 26/05/2004 IV Coquimbo FOCHE 27/05/2004 IV Coquimbo FOCHE 29/05/2004 IV Coquimbo FOCHE 31/05/2004 V San Antonio FOCHE 01/06/2004 V San Antonio FOCHE				
25/05/2004 IV Coquimbo FOCHE 26/05/2004 IV Coquimbo FOCHE 27/05/2004 IV Coquimbo FOCHE 29/05/2004 IV Coquimbo FOCHE 31/05/2004 V San Antonio FOCHE 01/06/2004 V San Antonio FOCHE				
26/05/2004 IV Coquimbo FOCHE 27/05/2004 IV Coquimbo FOCHE 29/05/2004 IV Coquimbo FOCHE 31/05/2004 V San Antonio FOCHE 01/06/2004 V San Antonio FOCHE				
27/05/2004 IV Coquimbo FOCHE 29/05/2004 IV Coquimbo FOCHE 31/05/2004 V San Antonio FOCHE 01/06/2004 V San Antonio FOCHE			•	
29/05/2004 IV Coquimbo FOCHE 31/05/2004 V San Antonio FOCHE 01/06/2004 V San Antonio FOCHE			•	
31/05/2004 V San Antonio FOCHE 01/06/2004 V San Antonio FOCHE	27/05/2004	IV		FOCHE
01/06/2004 V San Antonio FOCHE			Coquimbo	
	31/05/2004	V	San Antonio	FOCHE
02/06/2004 V Son Antonio EOCHE	01/06/2004	V	San Antonio	FOCHE
02/00/2004 V San Antonio FOCHE	02/06/2004	V	San Antonio	FOCHE

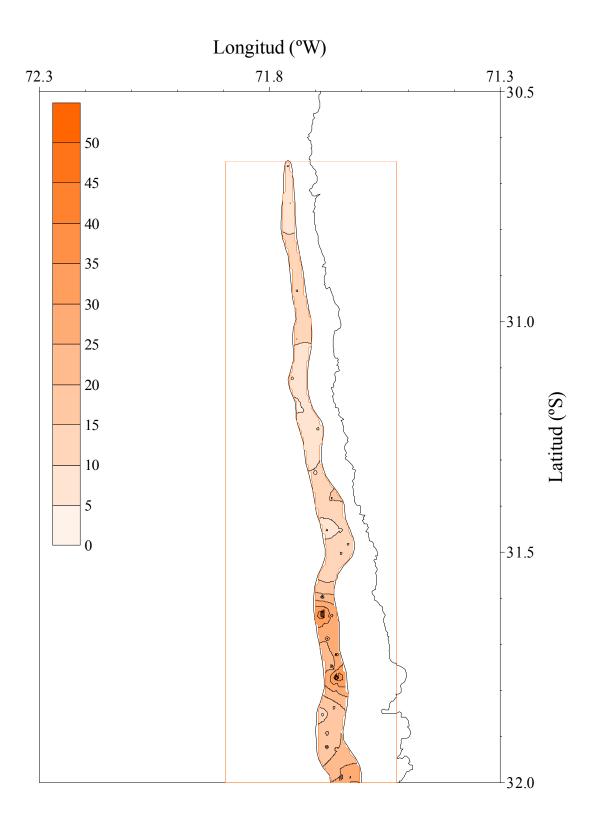
03/06/2004	VI	San Antonio	FOCHE
04/06/2004	VI	San Antonio	FOCHE
05/06/2004	VI	San Antonio	FOCHE
06/06/2004	VI	San Antonio	FOCHE
08/06/2004	VI	San Antonio	FOCHE
09/06/2004	VI	San Antonio	FOCHE
10/06/2004	VI	San Antonio	FOCHE
11/06/2004	VI	San Antonio	FOCHE
11/06/2004	IV	Coquimbo	ISABEL-S
12/06/2004	IV	Coquimbo	ISABEL-S
13/06/2004	VII	Concepción	FOCHE
13/06/2004	IV	Coquimbo	ISABEL-S
14/06/2004	VII	Concepción	FOCHE
14/06/2004	IV	Coquimbo	ISABEL-S
15/06/2004	VII	Concepción	FOCHE
16/06/2004	VII	Concepción	FOCHE
16/06/2004	V	San Antonio	ISABEL-S
17/06/2004	V	San Antonio	ISABEL-S
18/06/2004	VIII	Concepción	FOCHE
20/06/2004	VIII	Concepción	FOCHE
21/06/2004	VIII	Concepción	FOCHE
22/06/2004	VIII	Concepción	FOCHE
23/06/2004	VIII	Concepción	FOCHE
24/06/2004	VIII	Concepción	FOCHE
25/06/2004	VI	San Antonio	ISABEL-S
25/06/2004	VIII	Concepción	FOCHE
26/06/2004	VIII	Concepción	FOCHE
26/06/2004	V	San Antonio	ISABEL-S
27/06/2004	VIII	Concepción	FOCHE
27/06/2004	V	Pichidangui	ISABEL-S
27/06/2004	IV	Pichidangui	ISABEL-S
27/06/2004	V	Pichidangui	ISABEL-S
28/06/2004	IV	Pichidangui	ISABEL-S
29/06/2004	VIII	Concepción	FOCHE
30/06/2004	VIII	Concepción	FOCHE
30/06/2004	IV	Coquimbo	ISABEL-S
01/07/2004	VIII	Concepción	FOCHE
02/07/2004	VIII	Concepción	FOCHE
03/07/2004	VIII	Concepción	FOCHE
04/07/2004	VIII	Concepción	FOCHE
05/07/2004	VIII	Concepción	FOCHE
06/07/2004	VIII	Concepción	FOCHE
07/07/2004	VIII	Concepción	FOCHE
08/07/2004	VIII	Concepción	FOCHE
09/07/2004	VIII	Concepción	FOCHE
10/07/2004	VIII	Concepción	FOCHE
11/07/2004	VIII	Concepción	FOCHE
15/07/2004	VIII	Concepción	FOCHE
16/07/2004	VIII	Concepción	FOCHE
17/07/2004	VIII	Concepción	FOCHE

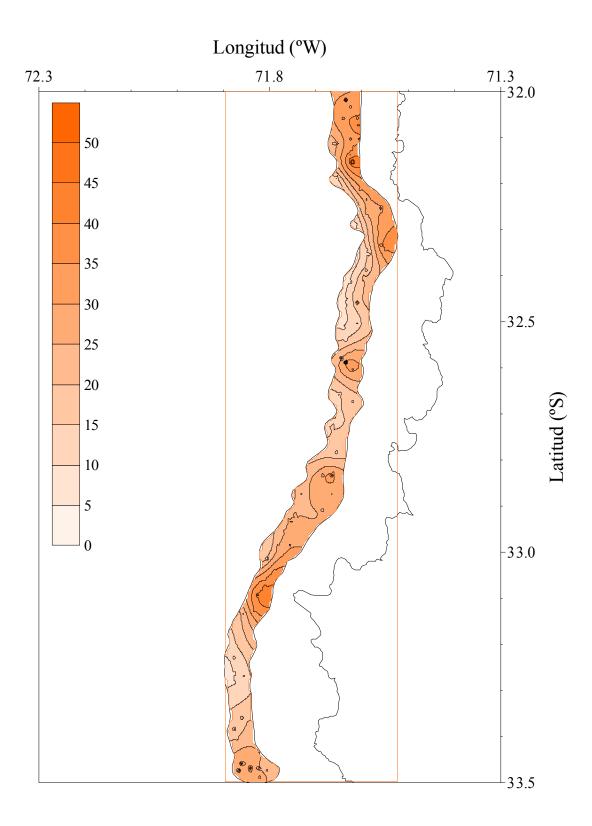

Anexo 6. Mapas de distribución espacial de densidad poblacional y superficie de densidad de langostino amarillo y langostino colorado.

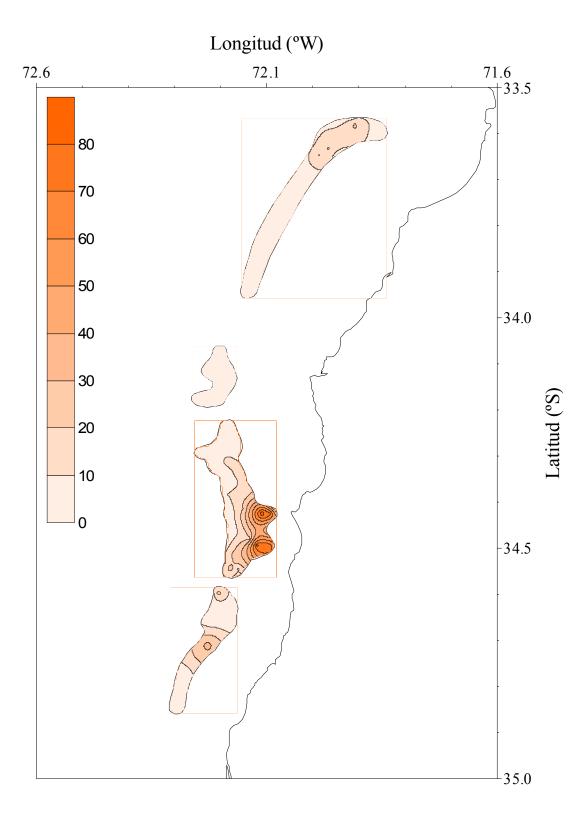
ANEXO 6

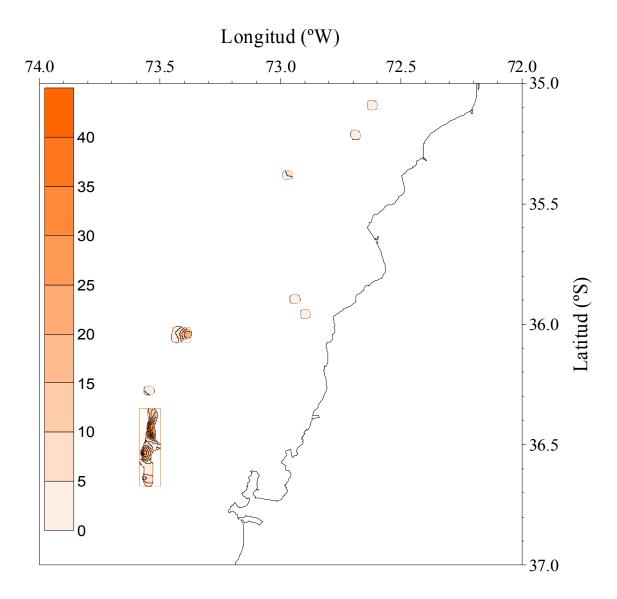

MAPAS DE DE DISTRIBUCIÓN ESPACIAL Y SUPERFICIE DE DENSIDAD DE LANGOSTINO AMARILLO Y LANGOSTINO COLORADO

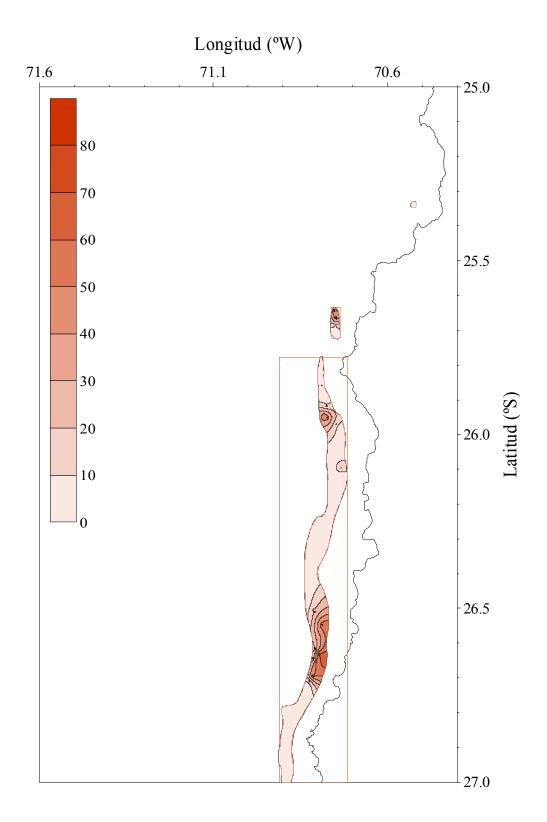

Anexo 6. 1 Distribución espacial de la densidad poblacional (tons/km²) de langostino amarillo (*Cervimunida johni*) en los Focos 1 a 5 (26°30' a 27°00' S).

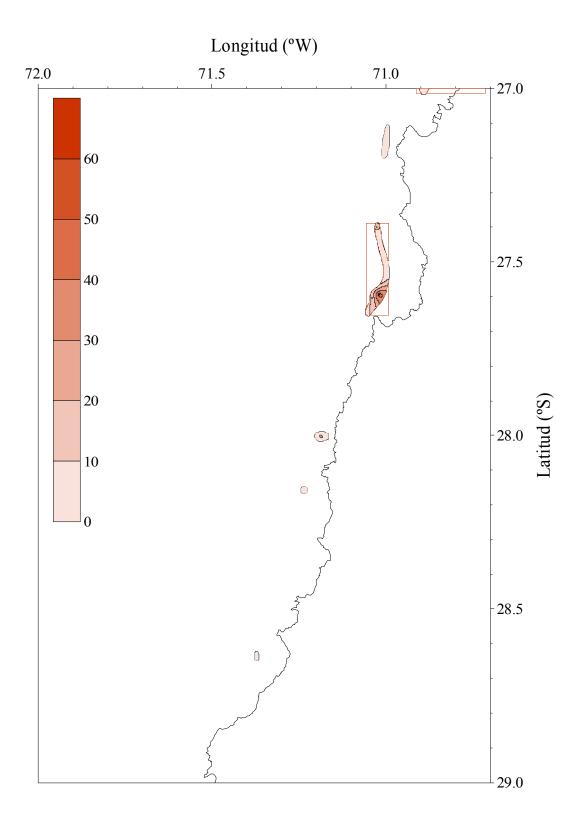

Anexo 6. 2 Distribución espacial de la densidad poblacional (tons/km²) de langostino amarillo (*Cervimunida johni*) en los Focos 4 a 10 (26°30' a 28°00' S).

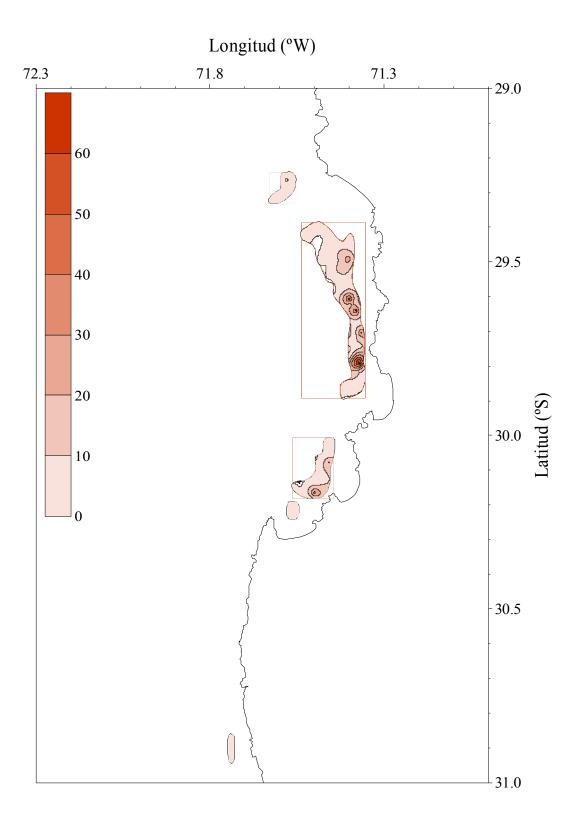

Anexo 6. 3 Distribución espacial de la densidad poblacional (tons/km²) de langostino amarillo (*Cervimunida johni*) en los Focos 11 a 14 y parte del Foco 15 (28°00' a 29°30' S).

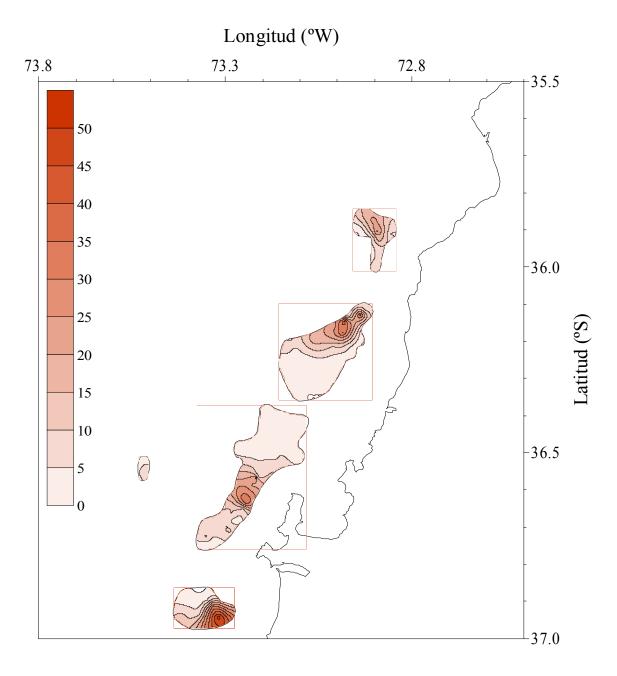

Anexo 6. 4 Distribución espacial de la densidad poblacional (tons/km²) de langostino amarillo (*Cervimunida johni*) en los Focos 15 a 17 (29°00' a 30°30' S).

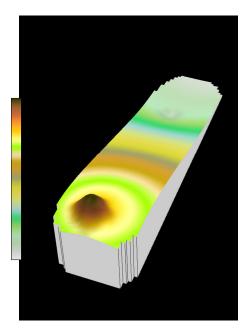

Anexo 6. 5 Distribución espacial de la densidad poblacional (tons/km²) de langostino amarillo (*Cervimunida johni*) en parte del Foco 18 (30°30' a 32°00' S).

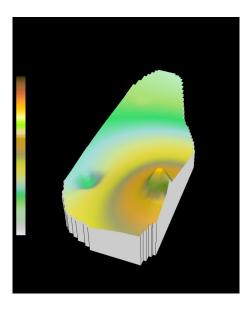

Anexo 6. 6 Distribución espacial de la densidad poblacional (tons/km²) de langostino amarillo (*Cervimunida johni*) en parte del Foco 18 (32°00' a 33°30' S).


Anexo 6. 7 Distribución espacial de la densidad poblacional (tons/km²) de langostino amarillo (*Cervimunida johni*) en los Focos 19 a 22 (33°30' a 35°00' S).

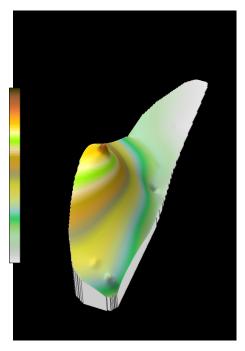

Anexo 6. 8 Distribución espacial de la densidad poblacional (tons/km²) de langostino amarillo (*Cervimunida johni*) en los Focos 23 a 30 (35°00' a 37°00' S).

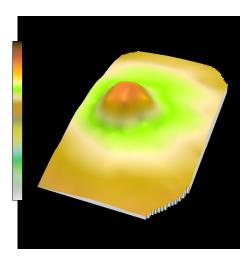

Anexo 6. 9 Distribución espacial de la densidad poblacional (tons/km²) de langostino colorado (*Pleuroncodes monodon*) en los Focos 1 a 3 (25°00' a 27°00' S).

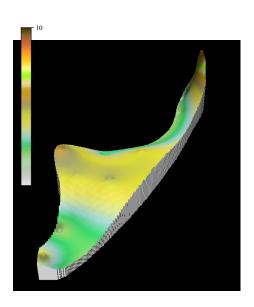

Anexo 6. 10 Distribución espacial de la densidad poblacional (tons/km2) de langostino colorado (Pleuroncodes monodon) en los Focos 4 a 8 (27°00' a 29°00' S).

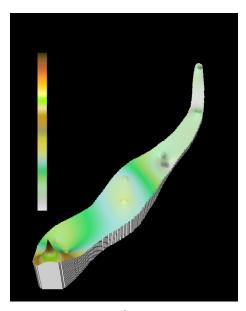


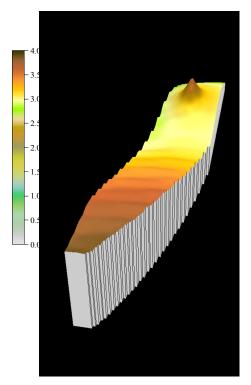
Anexo 6. 11 Distribución espacial de la densidad poblacional (tons/km²) de langostino colorado (*Pleuroncodes monodon*) en los Focos 9 a 13 (29°00' a 31°00' S).

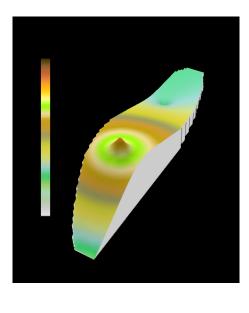


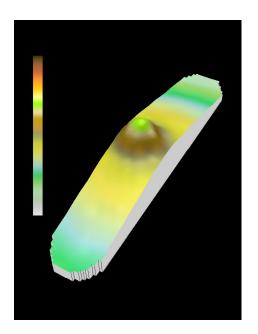

Anexo 6. 12 Distribución espacial de la densidad poblacional (tons/km²) de langostino colorado (*Pleuroncodes monodon*) en los Focos 14 a 18 (35°30' a 37°00' S).

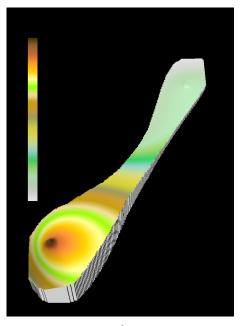


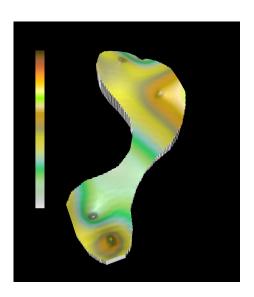

Anexo 6. 13 Mapa de superficie de la densidad poblacional (tons/km²) de langostino amarillo (*Cervimunida johni*). Foco 1 y 2.

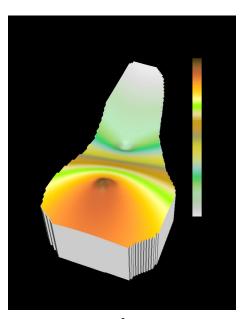


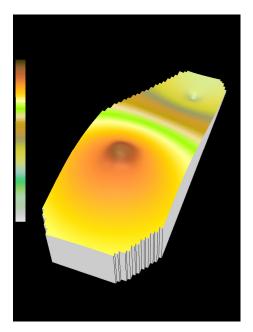

Anexo 6. 14 Mapa de superficie de la densidad poblacional (tons/km²) de langostino amarillo (*Cervimunida johni*). Foco 3 y 4.

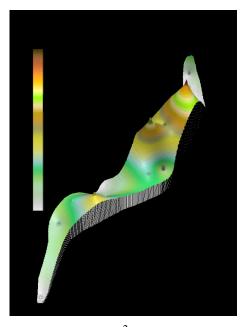


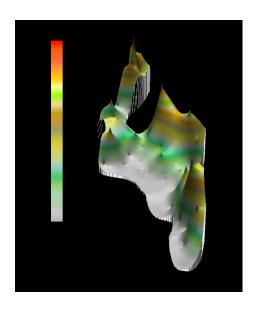

Anexo 6. 15 Mapa de superficie de la densidad poblacional (tons/km²) de langostino amarillo (*Cervimunida johni*). Foco 5 y 6.

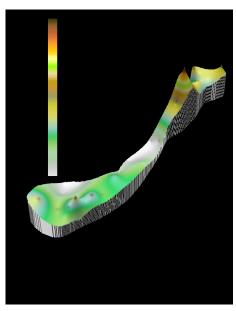


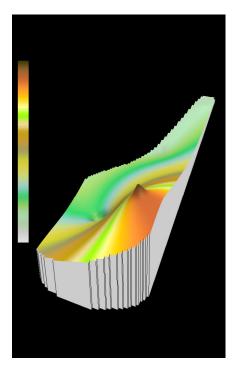

Anexo 6. 16 Mapa de superficie de la densidad poblacional (tons/km²) de langostino amarillo (*Cervimunida johni*). Foco 7 y 8.

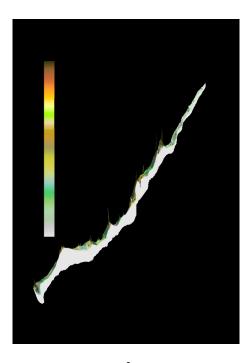


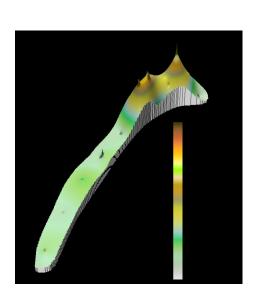

Anexo 6. 17 Mapa de superficie de la densidad poblacional (tons/km²) de langostino amarillo (*Cervimunida johni*). Foco 9 y 10.

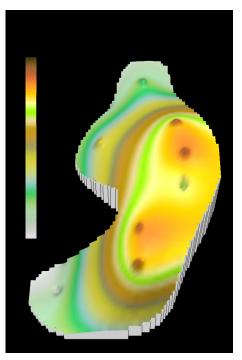


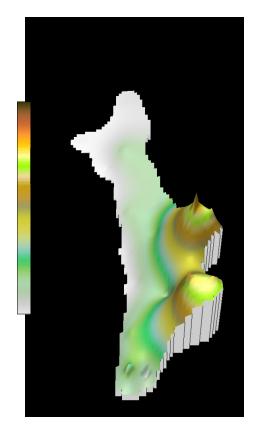

Anexo 6. 18 Mapa de superficie de la densidad poblacional (tons/km²) de langostino amarillo (*Cervimunida johni*). Foco 11 y 12.

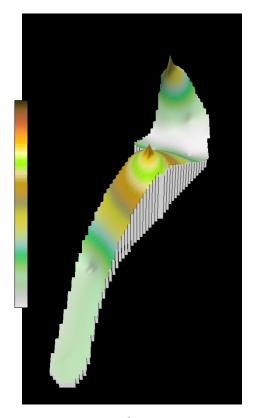


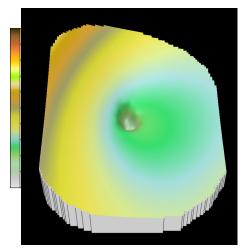

Anexo 6. 19 Mapa de superficie de la densidad poblacional (tons/km²) de langostino amarillo (*Cervimunida johni*). Foco 13 y 14.

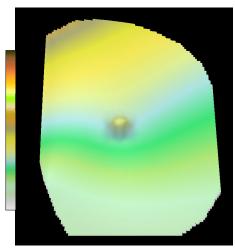


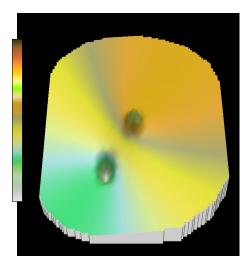

Anexo 6. 20 Mapa de superficie de la densidad poblacional (tons/km²) de langostino amarillo (*Cervimunida johni*). Foco 15 y 16.

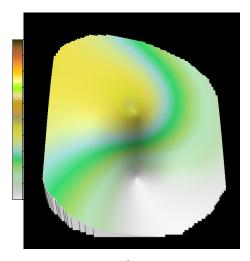


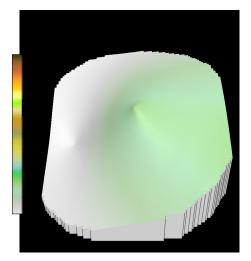

Anexo 6. 21 Mapa de superficie de la densidad poblacional (tons/km²) de langostino amarillo (*Cervimunida johni*). Foco 17 y 18.

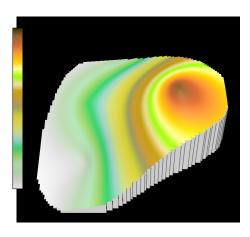


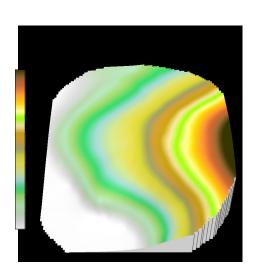

Anexo 6. 22 Mapa de superficie de la densidad poblacional (tons/km²) de langostino amarillo (*Cervimunida johni*). Foco 19 y 20.

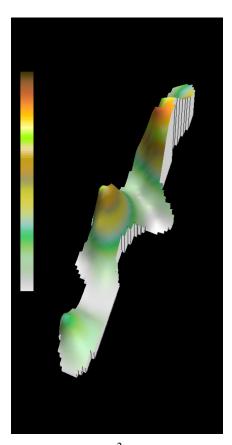


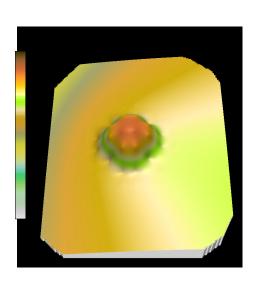

Anexo 6. 23 Mapa de superficie de la densidad poblacional (tons/km²) de langostino amarillo (*Cervimunida johni*). Foco 21 y 22.

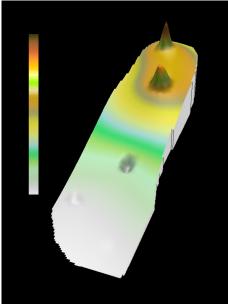


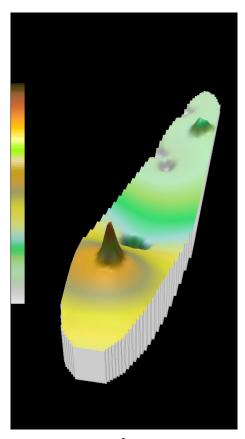

Anexo 6. 24 Mapa de superficie de la densidad poblacional (tons/km²) de langostino amarillo (*Cervimunida johni*). Foco 23 y 24.

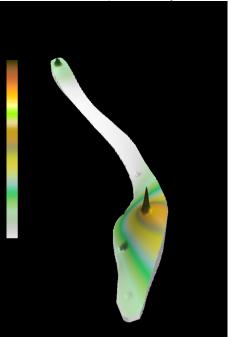


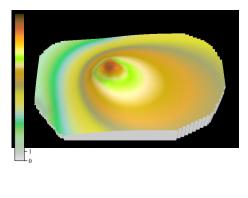

Anexo 6. 25 Mapa de superficie de la densidad poblacional (tons/km²) de langostino amarillo (*Cervimunida johni*). Foco 25 y 26.

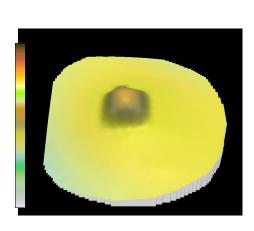


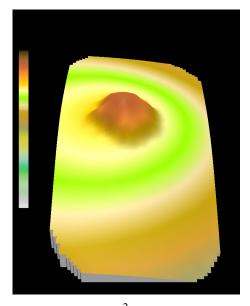

Anexo 6. 26 Mapa de superficie de la densidad poblacional (tons/km²) de langostino amarillo (*Cervimunida johni*). Foco 27 y 28.

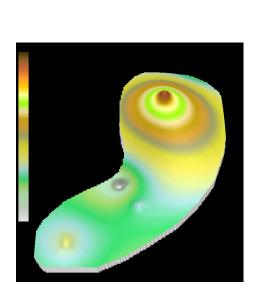

Anexo 6. 27 Mapa de superficie de la densidad poblacional (tons/km²) de langostino amarillo (*Cervimunida johni*). Foco 29 y 30.

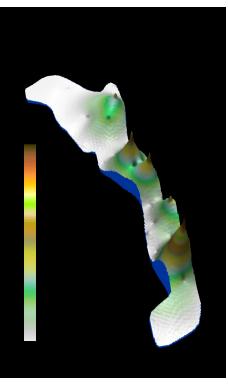


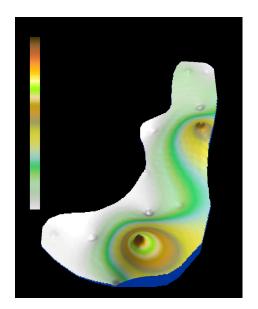

Anexo 6. 28 Mapa de superficie de la densidad poblacional (tons/km²) de langostino colorado (*Pleuroncodes monodon*). Foco 1 y 2.

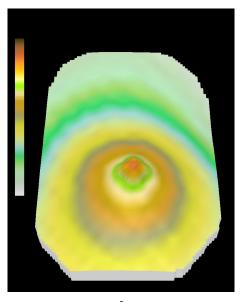


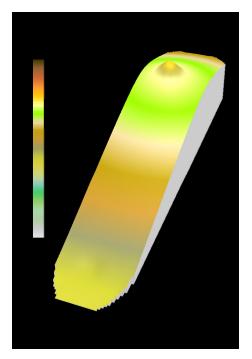

Anexo 6. 29 Mapa de superficie de la densidad poblacional (tons/km²) de langostino colorado (*Pleuroncodes monodon*). Foco 3 y 4.

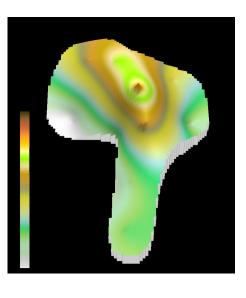


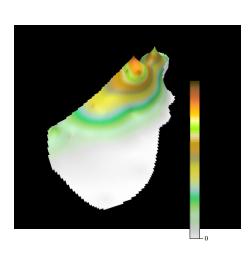

Anexo 6. 30 Mapa de superficie de la densidad poblacional (tons/km²) de langostino colorado (*Pleuroncodes monodon*). Foco 5 y 6.

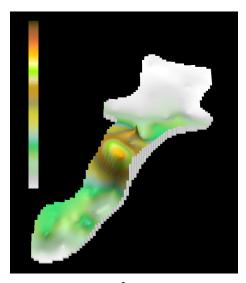


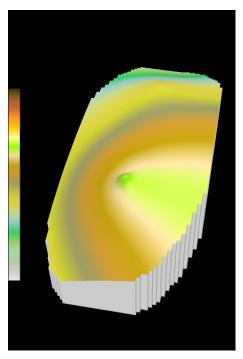

Anexo 6. 31 Mapa de superfície de la densidad poblacional (tons/km²) de langostino colorado (*Pleuroncodes monodon*). Foco 7 y 8.

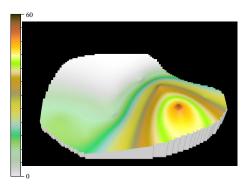



Anexo 6. 32 Mapa de superficie de la densidad poblacional (tons/km²) de langostino colorado (*Pleuroncodes monodon*). Foco 9 y 10.




Anexo 6. 33 Mapa de superficie de la densidad poblacional (tons/km²) de langostino colorado (*Pleuroncodes monodon*). Foco 11 y 12.




Anexo 6. 34 Mapa de superficie de la densidad poblacional (tons/km²) de langostino colorado (*Pleuroncodes monodon*). Foco 13 y 14.

Anexo 6. 35 Mapa de superficie de la densidad poblacional (tons/km²) de langostino colorado (*Pleuroncodes monodon*). Foco 15 y 16.

Anexo 6. 36 Mapa de superficie de la densidad poblacional (tons/km²) de langostino colorado (*Pleuroncodes monodon*). Foco 17 y 18.

8. Plan detallado de asignación del personal profesional y técnico.

9.1. Objetivo específico 1

Determinar la distribución espacial de los recursos langostino amarillo y langostino colorado, en el área de estudio.

UNIVERSIDAD CATÓLICA DEL NORTE

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Enzo Acuña			42	28		70
Pilar Haye						0
Andrés Bodini		25	40	35		100
Ana Olivares		20	10	5		35
Ximena Bennett		20	10	5		35
Rodrigo Grau	125	10	10			145
Alex Cortés	125	10	10			145
Manuel Andrade	125	10	10			145
Danny Rivera	125	10				135
Claudia Valenzuela	50	50				100
TOTAL	550	155	132	73	0	910

UNIVERSIDAD DE CONCEPCIÓN

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Hugo Arancibia			30	40		70
Luis Cubillos						0
Rafael León						0
Sergio Neira						0
Luis Poblete		50	10			60
TOTAL	0	50	40	40	0	130

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Luis Cid		40	60	40		140
Rubén Alarcón		30	40	25		95
Guillermo Martínez		50	50	30		130
TOTAL	0	120	150	95	0	365

9.2. Objetivo específico 2.

Determinar la biomasa vulnerable total (en peso) y la abundancia vulnerable total (en número), según talla y sexo, del langostino amarillo y langostino colorado en el área de estudio, por región y focos de abundancia, según corresponda.

UNIVERSIDAD CATÓLICA DEL NORTE

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Enzo Acuña			25	28		53
Pilar Haye						0
Andrés Bodini		25	40	35		100
Ana Olivares		20	10	5		35
Ximena Bennett		20	10	5		35
Rodrigo Grau	125	10				135
Alex Cortés	125	10				135
Manuel Andrade	125	10				135
Danny Rivera	125	10				135
Claudia Valenzuela	50					50
TOTAL	550	105	85	73	0	813

UNIVERSIDAD DE CONCEPCIÓN

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Hugo Arancibia			45	60		105
Luis Cubillos		30	40	30		100
Rafael León						0
Sergio Neira						0
Luis Poblete		50				50
TOTAL	0	80	85	90	0	255

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Luis Cid		40	50	40		130
Rubén Alarcón		40	50	25		115
Guillermo Martínez						0
TOTAL	0	80	100	65	0	245

9.3. Objetivo específico 3.

Determinar la condición reproductiva del langostino amarillo y langostino colorado, en el área y período de estudio.

UNIVERSIDAD CATÓLICA DEL NORTE

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Enzo Acuña			20	22		42
Pilar Haye						0
Andrés Bodini						0
Ana Olivares		20	10	5		35
Ximena Bennett		20	10	5		35
Rodrigo Grau	125	10				135
Alex Cortés	125	10	10	5		150
Manuel Andrade	125	10		5		140
Danny Rivera	125	10				135
Claudia Valenzuela	50		•			50
TOTAL	550	80	50	42	0	722

UNIVERSIDAD DE CONCEPCIÓN

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Hugo Arancibia						0
Luis Cubillos						0
Rafael León						0
Sergio Neira						0
Luis Poblete		50	10			60
TOTAL	0	50	10	0	0	60

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Luis Cid						0
Rubén Alarcón						0
Guillermo Martínez						0
TOTAL	0	0	0	0	0	0

9.4. Objetivo específico 4.

Determinar la composición e importancia relativa de las especies que constituyan fauna acompañante de estos dos recursos durante los cruceros de evaluación.

UNIVERSIDAD CATÓLICA DEL NORTE

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Enzo Acuña			15	23		38
Pilar Haye						0
Andrés Bodini						0
Ana Olivares		20	10	5		35
Ximena Bennett		20	10	5		35
Rodrigo Grau	125	10	10			145
Alex Cortés	125	10		5		140
Manuel Andrade	125	10	10	5		150
Danny Rivera	125	10				135
Claudia Valenzuela	50					50
TOTAL	550	80	55	43	0	728

UNIVERSIDAD DE CONCEPCIÓN

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Hugo Arancibia						0
Luis Cubillos						0
Rafael León		50	40	30		120
Sergio Neira						0
Luis Poblete		50	10			60
TOTAL	0	100	50	30	0	180

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Luis Cid						0
Rubén Alarcón						0
Guillermo Martínez						0
TOTAL	0	0	0	0	0	0

9.5. Objetivo específico 5.

Analizar la situación actual de los recursos en la zona de estudio, considerando los antecedentes de la pesquería y los resultados del proyecto.

UNIVERSIDAD CATÓLICA DEL NORTE

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Enzo Acuña			15	23	45	83
Pilar Haye					10	10
Andrés Bodini					20	20
Ana Olivares						0
Ximena Bennett						0
Rodrigo Grau						0
Alex Cortés					10	10
Manuel Andrade					10	10
Danny Rivera						0
Claudia Valenzuela						0
TOTAL	0	0	15	23	95	133

UNIVERSIDAD DE CONCEPCIÓN

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Hugo Arancibia			25	30	20	75
Luis Cubillos		30	60	30	20	140
Rafael León					10	10
Sergio Neira					10	10
Luis Poblete						0
TOTAL	0	30	85	60	60	235

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Luis Cid					30	30
Rubén Alarcón		10	10	10	20	50
Guillermo Martínez						0
TOTAL	0	10	10	10	50	80

9.6. Objetivo específico 6.

Estimar coeficientes de mortalidad natural (M) y mortalidad por predación (M2) para los stocks de langostino amarillo y colorado, y simular tendencias de su biomasa por cambios en la mortalidad por pesca (F) y por predación (M2).

UNIVERSIDAD CATÓLICA DEL NORTE

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Enzo Acuña			12	23		35
Pilar Haye						0
Andrés Bodini						0
Ana Olivares						0
Ximena Bennett						0
Rodrigo Grau						0
Alex Cortés						0
Manuel Andrade						0
Danny Rivera						0
Claudia Valenzuela						0
TOTAL	0	0	12	23	0	35

UNIVERSIDAD DE CONCEPCIÓN

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Hugo Arancibia			20	15		35
Luis Cubillos						0
Rafael León						0
Sergio Neira		100	80	40		220
Luis Poblete						0
TOTAL	0	100	100	55	0	255

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Luis Cid						0
Rubén Alarcón						0
Guillermo Martínez						0
TOTAL	0	0	0	0	0	0

9.7. Objetivo específico 7.

Analizar la variabilidad y diferenciación genética dentro y entre los morfos de langostino colorado presentes en Chile, y determinar si las distintas formas encontradas corresponden a una única especie polimórfica y/o stocks.

UNIVERSIDAD CATÓLICA DEL NORTE

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Enzo Acuña			6	23		29
Pilar Haye		20	35	45		100
Andrés Bodini						0
Ana Olivares						0
Ximena Bennett						0
Rodrigo Grau						0
Alex Cortés						0
Manuel Andrade						0
Danny Rivera						0
Claudia Valenzuela			•			0
TOTAL	0	20	41	68	0	129

UNIVERSIDAD DE CONCEPCIÓN

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Hugo Arancibia						0
Luis Cubillos						0
Rafael León						0
Sergio Neira						0
Luis Poblete						0
TOTAL	0	0	0	0	0	0

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Luis Cid						0
Rubén Alarcón						0
Guillermo Martínez						0
TOTAL	0	0	0	0	0	0