INFORME FINAL

PROYECTO FIP Nº 2001-05

EVALUACION DIRECTA DE CAMARON NAILON ENTRE LA II Y VIII REGIONES, AÑO 2001

Abril 2002

Nombre	Título/Grado	Función en el Proyecto
Enzo Acuña	M.Sc. Oceanógrafo	Coordinación. Jefe de Proyecto. Análisis y elaboración de informes.
Hugo Arancibia	Dr. Cs. Naturales	Distribución CPUE, cálculo de abundancia y biomasa Coordinación muestreos zona Sur.
Luis Cid	Ph.D. Estadística	Análisis estadísticos, diseño muestreo. Estimación Biomasa.
Rubén Alarcón	M.C. Pesquerías	Distribución CPUE, cálculo de abundancia y biomasa Método Geoestadístico.
Luis Cubillos	M.C. Oceanógraficas	CPUE, cálculo de abundancia y biomasa.
Aquiles Sepúlveda	M.C. Oceanógraficas	CPUE, cálculo de abundancia y biomasa Método GAM.
Andrés Bodini	Ing. en Acuacultura	Distribución espacial de los lances y caladeros a través del Sistema de Información Geográfico.
Ximena Bennett	Biólogo	Coordinadora muestreos a bordo, laboratorio, planificación. Digitación datos.
Andrés Bodini	Ing. Acuicultura	Digitación datos. Sistema de Información Geográfico.
M. T. Cabrera	Lic. Cs. del Mar	Aspectos reproductivos, función fecundidad y estados madurez de los huevos.
J.C. Villarroel	Biólogo Marino	Muestreo frecuencia y biológico- específico. Digitación datos.
Rafael León	Biólogo Marino	Fauna acompañante, importancia relativa.
Rodrigo Wiff	Biólogo Marino	Estimación de productividad secundaria.
Rodrigo Grau	Biólogo Marino	Muestreo frecuencia y biológico-específico. Digitación datos en laboratorio.
Manuel Andrade	Biólogo Marino	Muestreo a bordo II-IV regiones, frecuencia y biológico- específico. Digitación datos en laboratorio.
Luis Casas	Biólogo Marino	Muestreo a bordo II-IV regiones y en laboratorio.
Danny Rivera	Técnico Pesquero	Muestreo a bordo II-IV regiones y en laboratorio.
Luis Poblete	Ing. Ejecución Pesca	Muestreo a bordo V-VIII regiones y en laboratorio.
Germán Vásquez	Técnico	Muestreo a bordo V-VIII regiones y en laboratorio.

COMPOSICIÓN Y ORGANIZACIÓN DEL EQUIPO PROFESIONAL Y TÉCNICO

RESUMEN EJECUTIVO

Para la evaluación directa de camarón nailon (*Heterocarpus reedi*) se efectuó dos cruceros cuasisimultáneos a bordo de dos PAMs. Con el PAM "FOCHE" se realizó 230 lances de pesca en dirección norte-sur de la II a la IV Regiones, del 9 de junio al 4 de agosto de 2001, desde 21°39'21" hasta 32°09'05" S, en un rango batimétrico entre 75 y 650 m.

Con el PAM "NISSHIN MARU III" se realizó 176 lances de pesca y se operó en dirección surnorte de la VIII a la V Regiones, del 23 de junio al 27 de julio de 2001, desde 38°29'12" hasta 32°12'10" S, en un rango batimétrico entre 101 y 580 m.

Adicionalmente, con la L/M "PIONERO" se operó en la extensión de las transectas de la zona de reserva de la pesca artesanal del límite norte de la III Región a Caleta Pajonales, por el sur, del 27 al 29 de junio de 2001, desde 26°08'S" hasta 27°44'S, en un rango batimétrico entre 109 y 433 m.

Contrariamente a lo esperado, de acuerdo a información histórica de otros estudios y registros de la actividad pesquera, en esta oportunidad la distribución espacial del recurso camarón nailon se presentó discontinua, formando 15 agregaciones o caladeros desde 22°19,86' S hasta 36°36,72' S, en un rango batimétrico entre 83 y 620 m. Además, a partir de la mitad sur de la V Región hacia el sur, este recurso se encuentra prácticamente ausente, confirmándose estudios anteriores, aunque ahora se acentuó la disminución de la biomasa de la V a la VIII Regiones. En términos distribucionales, en esta área el recurso se encuentra formando relictos de moderada a baja densidad.

La biomasa de camarón nailon se estimó mediante varios métodos, siendo los más conocidos el enfoque geoestadístico (diseño basado) y el método de la Distribución Delta (modelo basado), con los cuales se determinó que la biomasa del stock alcanza a 19.573 ton y 22.425 ton, respectivamente. En cuanto a ambos estimadores, la varianza de estimación de la biomasa según el método de la Distribución Delta es significativamente mayor que el enfoque geoestadístico, por lo se considera a este último más preciso, escogiéndolo como estimador global de la biomasa de camarón nailon entre la II y VIII regiones. Los estimados de biomasa con el método

geoestadístico quedan incluidos en los límites de confianza de la estimación de biomasa de efectuados con la Distribución Delta.

Adicionalmente, también se determinó la biomasa de camarón nailon con otros dos métodos modelo basados. En efecto con el modelo GAM la biomasa total de camarón nailon se determinó en 20.265,8 ton y con el modelo de Thompson en 27.218 ton, siendo este último el método que produjo la mayor estimación, aunque queda dentro del rango del intervalo de confianza del Método de la Distribución Delta. Comparativamente, con el modelo cuasi-diseño basado bootstrap se determinó la biomasa de camarón nailon en 20.616 ton.

Consecuentemente, tomando en consideración todos los modelos de evaluación de este estudio, con excepción del Thompson (1982), se puede fijar en alrededor de 20 mil a 21 mil ton la biomasa del stock de camarón nailon de la II a la VIII Regiones, aunque con un acentuado desbalance distribucional. En efecto, el 84% de la biomasa del stock se ubica de la II a la IV Regiones, siendo la más importante la IV Región (45%), seguida de la III Región (25%) y la II Región (14%). Hacia el sector centro-sur, la V Región aporta el 6% de la biomasa del stock de camarón nailon, por lo que sólo el 10% restante se ubica en la extensa zona de la VI a la VIII Regiones.

Se construyó un modelo que demuestra que la variable de mayor importancia para explicar la varianza de la biomasa, es la captura del lance, que representa el 85,9% de ésta. En segundo lugar de importancia relativa, está el área de influencia del lance, que explica un 7,78% de varianza adicional. En tercer lugar está la distancia de barrido de la red, con un 2,59 % adicional y en último lugar el APA, con un 0,37% de la varianza total.

La biomasa del stock de camarón nailon dentro de las 5 mn de reserva a la pesca artesanal se determinó en 7.437,7 ton, representando el 38% del total. Sin embargo, de la VI a la VIII Regiones no se registró biomasa dentro de las primeras 5 mn. Las regiones que más aportan durante el estudio (invierno de 2001) a la biomasa del stock de camarón nailon dentro de las 5 mn son la III Región con 2.936 ton (15% del total) y la IV Región con 2.740,2 ton (14%), seguidas de la II Región con 1.761,6 ton (9%).

De la forma de la curva de rendimiento por recluta (Y/R) se desprende que el recurso camarón nailon está sometido actualmente a sobrepesca por crecimiento, siendo recomendable incrementar la longitud media de primera captura. No obstante, la talla de primera captura al nivel del 50% aquí determinada coincide con la encontrada por Canales *et al.* (1999) para muestras obtenidas en el año 1998, de tal manera que el efecto de la sobrepesca por crecimiento podría ser consecuencia del nivel más bajo de mortalidad natural utilizado en este estudio.

Desde el punto de vista de la sobrepesca por reclutamiento, la mortalidad por pesca actual es mayor al $F_{20\%}$, que se considera un punto biológico de referencia límite. Esto implica alto riesgo de sobrepesca por reclutamiento, especialmente cuando la relación stock-recluta es incierta, como es el caso para este recurso.

Los ejemplares de la parte norte de este estudio (II a IV Regiones) se presentan más pequeños (21,4 a 21,8 mm de longitud cefalotorácica promedio, LCT) que los ejemplares del sector sur (V a VIII Regiones), los que presentan LCT promedio de 24,5 a 25,7 mm. En general, para el conjunto de datos, LCT promedio se registró en 23,2 mm y la moda en 22 mm LCT. Las hembras (23,8 mm LCT promedio) son levemente más grandes en tamaño que los machos (22,8 mm LCT promedio).

En los ejemplares de camarón nailon medidos por región y sexo predominan las hembras en la mayoría de las regiones, exceptuándose la VII Región. En términos globales, las capturas estuvieron representadas por 58% en número de hembras y 42% de machos. En el caso de las hembras, se registró que el 72% se encontraban portando huevos. En todas las regiones se registró que las hembras ovíferas superaban el 58%, siendo más notorio de la V Región al sur, donde superó el 99%.

El registro de capturas en peso de la especie objetivo y del by-catch señala que éstas estuvieron compuestas principalmente por camarón nailon (30%), seguido de pejerratas (24%), merluza común (17%) y langostinos colorado (7,6) y amarillo (7,4%), confirmándose la baja diversidad específica en este tipo de pesquerías, pues, en este caso, el 86% de las capturas en peso lo constituyen solamente 5 grupos específicos.

Con el uso de la CPUE especie-específica y análisis de clasificación comunitaria, se identificó latitudinalmente dos zonas con estructuras específicas diferentes, tanto en sentido latitudinal como batimétrico, ubicándose la primera zona de 24,65 a 36,15° S y la otra de 21,82 a 37,98° S. La asociación específica en la zona 1 presenta características propias de comunidades estables, sin perturbaciones importantes. La asociación de la zona 2 presenta características de comunidades inestables. En sentido batimétrico, la zona 1 presenta grupos de gran similitud (sobre 60%), con características de comunidad estable. En cambio, en la zona 2 se distingue dos grupos importantes de estaciones que se diferencian en su composición, constituyendo una asociación distribuida entre 100 y 200 m, y otra entre 200 y 300 m.

La evaluación de stock indirecta revela que el stock del recurso camarón nailon está siendo impactado por un nivel de mortalidad por pesca excesivo, ya que supera, incluso, el nivel de mortalidad por pesca de referencia $F_{20\%}$, lo que implica alto riesgo de sobrepesca por crecimiento. Asimismo, el modelo de evaluación tiene verosimilitud para niveles de captura del orden de 10 mil ton, prácticamente el doble de la cuota de pesca establecida para el año 2001. Se considera altamente necesario evaluar estas consideraciones utilizando un modelo de evaluación dinámico e integrado que permita analizar la situación del recurso camarón nailon, considerando tanto las variaciones en el reclutamiento como en la capturabilidad y en las tasas de explotación. El hecho de que la biomasa vulnerable del stock sea del orden de 20 mil a 21 mil ton durante los últimos 3 años, en comparación con niveles de 30 a 50 mil ton entre 1993 y 1997, implica que ha ocurrido cambios dinámicos en el stock que deben ser considerados en diagnósticos futuros de la situación del recurso y de la pesquería. Sin embargo, nuestra evaluación indirecta confirma la deteriorada situación del stock de camarón nailon de la II a la VIII Regiones, lo que es dramático de la V a la VIII Regiones.

TABLA DE CONTENIDOS

	COMPOSICIÓN Y ORGANIZACIÓN DEL EQUIPO PROFESIONAL Y TÉCNICO	D i
	RESUMEN EJECUTIVO	ii
	TABLA DE CONTENIDOS	vii
	INDICE DE TABLAS	xi
	INDICE DE FIGURAS	XV
	INDICE DE ANEXOS	xix
1.	OBJETIVO GENERAL	1
2.	OBJETIVOS ESPECÍFICOS	1
	 2.1. OBJETIVO ESPECIFICO 1	1 1 1 1
3.	ANTECEDENTES	2
4.	METODOLOGIA	3
	4.1. Diseño de muestreo4.2. Estrategia general de muestreo	3 4
	4.2.1. Diseño muestreal adaptativo4.2.2. Plan de muestreo4.2.3. Número de transectas y número de lances	5 8 9
	 4.3. Programa de Uso de Naves 4.4. Determinación de la densidad 4.5. Determinación de la Captura 4.6. Determinación del área barrida 	10 10 11 11
	 4.6.1. Determinación de la distancia de barrido	12 12 12 16
	4 7 OBJETIVO ESPECÍFICO 1	19 21

	21
4. /.2. Enfoque geoestadístico	
4.7.3. Análisis estructural	
4.7.4. Ajuste mínimo cuadrático de Cressie	
4./.5. Validacion cruzada	
4.7.6. Mapeo por kriging	
4.8. OBJETIVO ESPECÍFICO 2	
4.8.1. Propiedades estadísticas de los estimadores	
4.8.2. Estimadores modelo-basados	
4.8.2.1. Estimador geoestadístico	
4.8.2.2. Estimador GAM	
4.8.2.3. Estimador log-normal. Distribución Delta	40
4.8.2.4. Analisis de la distribución de probabilidades de la CPUE	42
4.8.3. Estimadores diseño-basados	45
4.8.3.1. Estimador cuasi-diseño-basado bootstrap	45
4.8.4. Estimaciones de la densidad media y varianza por el metodo de Thor (1992)	npson 46
4.8.5. Abundancia y biomasa a la talla	48
4.9. OBJETIVO ESPECÍFICO 3	50
4.9.1 Fecundidad y madurez de los huevos	
	50
4.9.2. Determinación del potencial reproductivo	50 51
4.9.2. Determinación del potencial reproductivo	50 51
4.9.2. Determinación del potencial reproductivo4.10. OBJETIVO ESPECÍFICO 4	50 51 52
 4.9.2. Determinación del potencial reproductivo 4.10. OBJETIVO ESPECÍFICO 4	50 51 52
 4.9.2. Determinación del potencial reproductivo 4.10. OBJETIVO ESPECÍFICO 4	50 51 52 53 53
 4.9.2. Determinación del potencial reproductivo 4.10. OBJETIVO ESPECÍFICO 4 4.10.1. Análisis descriptivo	50 51 52 53 53
 4.9.2. Determinación del potencial reproductivo	50 51 52 53 53 54
 4.9.2. Determinación del potencial reproductivo	50 51 52 53 53 54 55
 4.9.2. Determinación del potencial reproductivo	50 51 52 53 53 54 58
 4.9.2. Determinación del potencial reproductivo	50 51 52 53 53 54 58 58
 4.9.2. Determinación del potencial reproductivo	50 51 52 53 53 53 54 58 58 58 58 58
 4.9.2. Determinación del potencial reproductivo	50 51 51 52 53 53 53 53 54 55 58 60 64

5.	RESULTADOS	67
	5.1. Aspectos operacionales de los cruceros	7
	5.2. Lances, registros de posición y distancia recorrida en cada lance	8
	5.3. Determinación del ancho de barrido de la red (APA)	i9
	5.4. OBJETIVO ESPECÍFICO 1	2
	5.4.1. Identificación de caladeros y Enfoque geoestadístico	2
	5.5. OBJETIVO ESPECÍFICO 2	9
	5.5.1. Estimadores modelo-basados7	9
	5.5.1.1. Estimador geoestadístico	'9 81
	5.5.1.3. Distribución de frecuencias de tamaños	5
	5.5.1.4. Estimación de la biomasa del recurso mediante modelo GAM 9	14
	5.5.1.4.1. Selección del modelo95.5.1.4.2. Estimación de varianza9	4 5
	5.5.1.5. Análisis de la distribución de densidad de la variable aleatoria CPUA	8
	5.5.2. Estimación de la biomasa con el estimador cuasi-diseño-basado bootstrap)1
	 5.5.3. Estimación de biomasa por el método de Thompson (1992) 5.5.4. Influencia de la variabilidad del APA en la variabilidad del estimador de Biomasa 	106 108
	5.6. OBJETIVO ESPECÍFICO 3 11	0
	 5.6.1. Proporción sexual por región	0 0 1 2
	5.7. OBJETIVO ESPECÍFICO 4	5
	5.7.1. Identificación de comunidades 11	5

	5.7.1.1. Composición específica de la fauna acompañante	115
	5.7.2. Distribución de la fauna acompañante en sentido latitudinal5.7.3. Identificación de asociaciones específicas en sentido latitudinal	116 118
	 5.7.3.1. Determinación de diferencias entre asociaciones específicas en sentido latitudinal 5.7.3.2. Comparación abundancia/biomasa (Curvas <i>ABC</i>) de las asociaciones específicas en sentido latitudinal 	119 120
	5.7.4. Distribución de la fauna acompañante en sentido batimétrico	122
	5.7.5. Identificación de asociaciones específicas en sentido batimétrico	125
	5.7.5.1. Diferenciación y caracterización de asociaciones específicas en sentido batimétrico	126
	5.8. SITUACIÓN DEL STOCK	130
	5.8.1. Producción secundaria.5.8.2. Análisis de la situación del recurso	130 . 131
6.	DISCUSION	135
7.	CONCLUSIONES.	141
8.	REFERENCIAS BIBLIOGRAFICAS.	143
9.	ANEXOS	152
	Anexo 1. Registros de Posición, distancia recorrida, abertura de punta de alas, captura de especie objetivo y CPUE	152
	Anexo 2. Planos de las redes Anexo 3. Estructura de tallas por sexo, para cada caladero Anexo 4. Relación longitud/peso por sexo Anexo 5. Biomasa y abundancia a la talla, por sexo, caladero, región,	165 169 174
	dentro y fuera de las 5 mn, según el enfoque geoestadístico y Distribución Delta	177

INDICE DE TABLAS

		Pág.
Tabla 1.	Variables espaciales y temporales utilizadas en el proceso de selección de modelo GAM	38
Tabla 2.	Parámetros de crecimiento de la ecuación de von Bertalanffy usados en la estimación de producción secundaria de camarón nailon. Los errores estándar se muestran en paréntesis. K es la tasa intrínseca de crecimiento, $L\infty$ es la	60
	longitud asintotica, β es el parametro de la relacion longitud-peso	60
Tabla 3.	Parámetros de crecimiento en longitud de camarón nailon	62
Tabla 4.	Programa de operación de las naves, transectas, zonas, número de lances y período de actividades	67
Tabla 5.	Número de lances efectuados por Región para la captura de camarón nailon	68
Tabla 6.	Tabla 6. Abertura de punta de alas (APA, m) promedio y otros estadígrafos para los PAMs "FOCHE" y "NISSHIN MARU III" y de la L/M "PIONERO" en los lances positivos utilizados en la evaluación	70
Tabla 7.	Límites latitudinales de los caladeros de pesca de camarón nailon y área (mn^2 y km^2) correspondiente	72
Tabla 8.	Fracción de área (mn ²) de los caladeros dentro y fuera de las 5 mn de reserva de la pesca artesana l	75
Tabla 9.	Parámetros del variograma teórico según el modelo esférico. SCR= suma de cuadrados de los residuos, VNE= Varianza no explicada	77
Tabla 10.	Indice de densidad promedio (D_g ; ton/mn ²), área por caladero (mn ²) y varianza de estimación (Var(D_g); ton ² /mn ⁴). Enfoque geoestadístico	79
Tabla 11.	Estimador de biomasa (B _g ; tons), varianza de estimación (Var(B _g); ton ²), estimador de abundancia (A _g ; miles de ejemplares) y varianza de estimación (Var(A _g), N ^o x10 ¹²) según el enfoque geoestadístico	80
Tabla 12.	Indice de densidad promedio (D_D ; ton/mn2), área por caladero (mn ²) y varianza de estimación (Var(D_D); ton ² /mn ⁴). Distribución Delta	81
Tabla 13.	Estimador de biomasa (B _D ; ton), varianza de estimación (Var(B _D); ton ²), estimador de abundancia (A _D ; miles de ejemplares) y varianza de estimación (Var(A _D) N ^o x10 ¹²) según la Distribución Delta	87
Tabla 14.	Biomasa (ton) y abundancia (miles de ejemplares), por región , según el enfoque geoestadístico y Distribución Delta	83

Tabla 15.	Biomasa (ton) y abundancia (miles de ejemplares), por caladero , dentro y fuera de las 5 mn de reserva a la pesca artesanal. Enfoque geoestadístico	83
Tabla 16.	Biomasa (ton) y abundancia (miles de ejemplares) por caladero dentro y fuera de las 5 mn de reserva a la pesca artesanal. Distribución Delta	84
Tabla 17.	Biomasa (ton) y abundancia (miles de ejemplares) por caladero dentro y fuera de las 5 mn de reserva a la pesca artesanal. Distribución Delta	84
Tabla 18.	Biomasa (ton) y abundancia (miles de ejemplares) por región dentro y fuera de las 5 mn de reserva a la pesca artesanal. Enfoque geoestadístico	85
Tabla 19.	Esfuerzo total del muestreo de frecuencia (medidos) y biológico-específicos (pesados) de la captura de camarón nailon, en la evaluación directa de camarón nailon entre la II y VIII regiones, según embarcación. s/h: hembras sin huevos ; c/h: hembras con huevos	86
Tabla 20.	Número de ejemplares de camarón nailon medidos por rango de latitud, sexo y condición reproductiva. s/h: hembras sin huevos; c/h: hembras con huevos	86
Tabla 21.	Número de los ejemplares medidos de camarón nailon para el análisis de frecuencia de tallas, por estrato de profundidad, sexo y condición reproductiva. s/h: hembras sin huevos; c/h: hembras con huevos	87
Tabla 22.	Porcentaje de los ejemplares medidos de camarón nailon para el análisis de frecuencia de tallas, por estrato de profundidad, sexo y condición reproductiva. s/h: hembras sin huevos; c/h: hembras con huevos	87
Tabla 23.	II Región , distribución de frecuencias de tamaños (longitud cefalotorácica, LC), total y por sexo	92
Tabla 24.	III Región , distribución de frecuencias de tamaños (longitud cefalotorácica, LC), total y por sexo	92
Tabla 25.	IV Región , distribución de frecuencias de tamaños (longitud cefalotorácica, LC), total y por sexo	92
Tabla 26.	V Región, distribución de frecuencias de tamaños (longitud cefalotorácica, LC), total y por sexo	92
Tabla 27.	VI Región , distribución de frecuencias de tamaños (longitud cefalotorácica, LC), total y por sexo	93
Tabla 28.	VII Región , distribución de frecuencias de tamaños (longitud cefalotorácica, LC), total y por sexo	93
Tabla 29.	Total Regiones, distribución de frecuencias de tamaños (longitud	

	cefalotorácica, LC), total y por sexo	93
Tabla 30.	Estimados de densidad media y biomasa por caladero y total de camarón nailon, obtenidas mediante el estimador modelo basado GAM	98
Tabla 31.	Estimación máximo verosímiles de α , μ , y σ^2 para la distribución de la CPUA.	100
Tabla 32.	Estimados de densidad media (ton/mn ²) y biomasa (ton) por caladero y total, obtenidas de 1000 iteraciones bootstrap	101
Tabla 33.	Resultado de los test de normalidad (Kolmorov-Smirnov y Chi cuadrado), aplicado a la distribución de la densidad promedio por caladero y total, obtenida del proceso de remuestreo bootstrap ($n.s = no$ existe diferencia significativa con la distribución normal)	102
Tabla 34.	Valores estimados de densidad media y abundancia por caladero y total, obtenidos de 1000 iteraciones bootstrap	106
Tabla 35.	Resultados del análisis estadístico de Thompson (1992), para la estimación de biomasa y abundancia de camarón nailon en el área de prospección, considerando los lances de abundancia mayor o igual a 50 kg	107
Tabla 36.	Resultados del análisis estadístico de Thompson (1992), para la estimación de biomasa y abundancia de camarón nailon en el área de prospección, incluyendo además los lances de menor captura (menores que 50 kg)	107
Tabla 37.	Resultados del análisis estadístico de Thompson (1992), para la estimación de biomasa y abundancia de camarón nailon en el área de prospección, incluyendo los lances con captura mayor o igual a 12,5 kg	108
Tabla 38.	Resultados del proceso de selección Stepwise para estimar el porcentaje de varianza de la biomasa explicada por diversas variables	109
Tabla 39.	Proporción sexual en porcentaje de los ejemplares de camarón nailon medidos, por región	110
Tabla 40.	Porcentaje de los ejemplares hembras de camarón nailon medidos en el muestreo de frecuencia de tallas por región, según condición reproductiva. s/h: hembras sin huevos; c/h: hembras con huevos	111
Tabla 41.	Tallas promedio de camarón nailon por región, sexo y condición reproductiva. s/h: hembras sin huevos; c/h: hembras con huevos. LC= longitud cefalotorax (mm)	111
Tabla 42.	Pesos promedios de camarón nailon por región, sexo y condición reproductiva. s/h: hembras sin huevos; c/h: hembras con huevos. PT= peso total	112

Tabla 43.	Parámetros del variograma teórico según el modelo exponencial. SCR: suma de cuadrados de los residuos, VNE: Varianza no explicada	112
Tabla 44.	Indice de densidad promedio (DH _g ; millones de huevos/mn ²) y abundancia (H _g , millones de huevos) por caladero y su varianza de estimación (Var(H _g), N° huevos $*10^{12}$)	113
Tabla 45.	Listado de las especies que conforman la fauna acompañante en las capturas de camarón nailon (<i>Heterocarpus reedi</i>)	115
Tabla 46.	Proporción (%) de la fauna acompañante presente en las capturas de camarón nailon separados por región	116
Tabla 47.	Abundancia relativa promedio (CPUE) las especies de la zonas 1 y 2, cuya diferencia no es tan marcada y resultados de la comparación por medio de la aproximación normal de Mann-Whitney, aplicando inferencia simultanea de Bonferroni. $* =$ significativo a p < 0,007	120
Tabla 48.	Estadístico W promedio obtenido con el método de remuestreo Jacknife y resultados de la prueba de significancia por medio de la aproximación normal de Mann-Whitney. $* =$ significativo a p < 0,05	121
Tabla 49.	Proporción (%) de la fauna acompañante presente en las capturas de camarón nailon en función de estratos de 50 m de profundidad	123
Tabla 50.	Estadístico W promedio obtenido con el método de remuestreo Jacknife y resultados de la prueba de significancia por medio de la aproximación normal de Mann-Whitney. $* =$ significativo a p < 0,05	128
Tabla 51.	Estimaciones de la razón producción-biomasa (P/B) y producción para machos, hembras y el total, con su respectivo intervalo del 95% de confianza ($\alpha = 0.05$) para el año 2002	130
Tabla 52.	Camarón nailon, evaluación indirecta año 2001	133
Tabla 53	. Camarón nailon, mortalidad por pesca actual y su comparación con mortalidades por pesca de referencia	133

INDICE DE FIGURAS

		Pág.
Fig. 1.	Diagrama de flujo del cálculo abertura portalones y abertura punta de alas, basado en metodología de Koyama (1974)	15
Fig. 2.	Esquema de estimación de la biomasa y abundancia mediante estimador GAM	39
Fig. 3.	Esquema de pasos en un análisis multivariado basado en Indice de Similitud para identificar asociaciones específicas (Clarke & Warwick, 1994)	55
Fig. 4.	<i>Curva k-dominancia</i> hipotética para abundancia y biomasa, mostrando distintos grados de perturbación	57
Fig. 5a.	Disposición espacial de los lances de pesca positivos (puntos negros) y negativos (puntos rojos) de camarón nailon entre 21° y 31° S	73
Fig. 5b.	Disposición espacial de los lances de pesca positivos (puntos negros) y negativos (puntos rojos) de camarón nailon entre 31° y 40° S	74
Fig. 6.	Disposición espacial de caladeros de camarón nailon indicando la fracción de área dentro (verde) y fuera (rojo) de las 5 mn de exclusión artesanal entre 21° 27'S y 38°S	76
Fig. 7.	Variograma experimental (puntos negros) y variograma teórico (modelo exponencial, línea continua) ajustado mediante mínimos cuadrados ponderados	77
Fig. 8.	Mapa georreferenciado de la densidad de camarón nailon en los 15 caladeros detectados en este estudio	78
Fig. 9.	Distribución de frecuencia de tallas (longitud cefalotorácica, LC) de camarón nailon, II Región. Número de observaciones: machos =1.255; hembras =1.044; total =2.299	88
Fig. 10.	Distribución de frecuencia de tallas (longitud cefalotorácica, LC) de camarón nailon, III Región. Número de observaciones: machos =1.473; hembras =1.043; total =2.516	89
Fig. 11.	Distribución de frecuencia de tallas (longitud cefalotorácica, LC) de camarón nailon, IV Región. Número de observaciones: machos =1.899; hembras =1055; total =2.954	89
Fig. 12.	Distribución de frecuencia de tallas (longitud cefalotorácica, LC) de camarón nailon, V Región. Número de observaciones: machos =966; hembras =786; total	

	=1.752	90
Fig. 13.	Distribución de frecuencia de tallas (longitud cefalotorácica, LC) de camarón nailon, VI Región. Número de observaciones: machos =1.076; hembras =805; total =1.881	90
Fig. 14.	Distribución de frecuencia de tallas (longitud cefalotorácica, LC) de camarón nailon, VII Región. Número de observaciones: machos =1.287; hembras =741; total =2.028.	91
Fig. 15.	Distribución de frecuencia de tallas (longitud cefalotorácica, LC) de camarón nailon, Total Regiones. Número de observaciones: machos =7.956; hembras =5.474; total =13.430	91
Fig. 16.	Ajuste parcial para las variables consideradas en el modelo GAM de estimación de la Biomasa (Latitud y Longitud). Los gráficos superiores representan los residuales parciales, mientras que en el panel inferior se representa los intervalos de confianza para el ajuste correspondiente (Las marcas verticales a lo largo de la abscisa representan la densidad de observaciones)	96
Fig. 17.	Ajuste parcial para las variables consideradas en el modelo GAM de estimación de la Biomasa (Profundidad media del lance y Caladero). Los gráficos superiores representan los residuales parciales, mientras que en el panel inferior se representa los intervalos de confianza para el ajuste (Las marcas verticales a lo largo de la abscisa representan la densidad de observaciones)	97
Fig. 18.	Histograma de frecuencia relativa y función de densidad ajustada (g(U)) utilizando estimadores máximo verosímiles	99
Fig. 19.	Función de log-verosimilitud ilustrando el estimado máximo verosímil de la media de los datos transformados de CPUA	99
Fig. 20.	Camarón nailon, perfil de log-verosimilitud para el parámetro α que controla la transformación Box-Cox de los datos de CPUA	100
Fig. 21.	Distribución de la densidad promedio obtenida de las iteraciones bootstrap (n=1.000) utilizada para estimar la biomasa por caladero	103
Fig. 22.	Histograma de la frecuencia estimada de densidad promedio de todos los caladeros, obtenida del proceso bootstrap (n=1.000 iteraciones, la línea continua corresponde a la distribución normal esperada)	105
Fig. 23.	Disposición espacial del potencial reproductivo (Nº huevos x 10 ⁹) de camarón nailon en los 15 caladeros detectados en este estudio	114
Fig. 24.	Proporción (%) de la fauna acompañante presente en las capturas de camarón nailon, separados por región	117

Fig. 25.	Análisis de clasificación de la abundancia relativa en peso (cpue) de la fauna acompañante en las capturas de camarón nailon en sentido latitudinal	118
Fig. 26.	Indice de Importancia Relativa de los taxa que conforman la fauna acompañante en las capturas de camarón nailon (<i>Heterocarpus reedi</i>), cuya abundancia relativa (CPUE) es mayor al 1% de la captura de la fauna acompañante. Zona 1 (A) y Zona 2 (B)	119
Fig. 27.	Curva k-dominancia (Curva <i>ABC</i>) para abundancia y biomasa de las principales especies que conforman la fauna acompañante en las capturas de camarón nailon para las zonas 1 (A) y 2 (B)	121
Fig. 28.	Proporción (%) de la fauna acompañante presente en las capturas de camarón nailon en función de estratos de 50 m de profundidad. Ver acrónimos por especie en Tabla 48	124
Fig. 29.	Análisis de clasificación de la abundancia relativa en peso (cpue) de la fauna acompañante en las capturas de camarón nailon (<i>Heterocarpus reedi</i>), en la zona 1, en un sentido batimétrico	125
Fig. 30.	Análisis de clasificación de la abundancia relativa en peso (CPUE) de la fauna acompañante en las capturas de camarón nailon en la zona 2, en sentido batimétrico. Asociación distribuida entre 100 y 150 m de profundidad (A), entre 200 y 300 m (B) y estaciones con escasa similitud o muy pocas para constituir grupos (C)	136
Fig. 31.	Indice de Importancia Relativa de las especies que conforman la fauna acompañante en las capturas de camarón nailon cuya abundancia relativa (CPUE) es mayor al 1% de la captura de la fauna acompañante. Zona 1 (24,65- 36,15° S)	127
Fig. 32.	Curva k-dominancia (Curva <i>ABC</i>) para abundancia y biomasa de las principales especies que conforman la fauna acompañante en las capturas de camarón nailon para la zona 1 (24,65-36,15° S)	127
Fig. 33.	Curva k-dominancia (Curva <i>ABC</i>) para abundancia y biomasa de las principales especies que conforman la fauna acompañante en las capturas de camarón nailon para la zona 2 (21,82-37,98° S) en profundidades de 100 a 200 m (A) y 200 a $_{200}$ m (P)	128
Fig. 34.	Indice de Importancia Relativa de las especies que conforman la fauna acompañante en las capturas de camarón nailon cuya abundancia relativa es mayor al 1% de la captura de la fauna acompañante. Zona 1 (A) y Zona 2 (B)	128
Fig. 35.	Camarón nailon, composición por talla observada y estimada	132
Fig. 36.	Camarón nailon, patrón de explotación a la talla	132

Fig. 37.	Camarón nailon, curvas de rendimiento por recluta (YPR) y biomasa desovante por	
	recluta (SPR)	134

INDICE DE ANEXOS

Anexo 1.1.	Registros de Posición, distancia recorrida, abertura de punta de alas, captura de especie objetivo y CPUE	153
Anexo 1.2.	Datos de los lances positivos utilizados en la evaluación, en este estudio	162
Anexo 2.	Planos técnicos de las redes utilizadas por las embarcaciones que realizaron los muestreos.	165
Anexo 3.1.	Distribución de frecuencias de talla de camarón nailon por caladero. Caladeros 2 a 6 y 9 a 15. Machos	170
Anexo 3.2.	Distribución de frecuencias de talla de camarón nailon por caladero. Caladeros 2 a 6, y 9 a 15. Hembras	171
Anexo 3.3.	Distribución de frecuencias de talla de camarón nailon por región. Machos	172
Anexo 3.4.	Distribución de frecuencias de talla de camarón nailon por región. Hembras	173
Anexo 4.1.	Parámetros de la relación longitud-peso de camarón nailon por caladero. Machos	175
Anexo 4.2.	Parámetros de la relación longitud-peso de camarón nailon por caladero. Hembras	175
Anexo 4.3.	Parámetros de la relación longitud-peso de camarón nailon por caladero. Ambos	176
Anexo 5.1.	Biomasa (tons) a la talla de machos de camarón nailon por caladero dentro de las 5 mn de reserva artesanal. Enfoque geoestadístico	178
Anexo 5.2.	Biomasa (tons) a la talla de hembras de camarón nailon por caladero dentro de las 5 mn de reserva artesanal. Enfoque geoestadístico	179
Anexo 5.3.	Biomasa (tons) a la talla de machos de camarón nailon por caladero fuera de las 5 mn de reserva artesanal. Enfoque geoestadístico.	180
Anexo 5.4.	Biomasa (tons) a la talla de hembras de camarón nailon por caladero fuera de las 5 mn de reserva artesanal. Enfoque geoestadístico	181
Anexo 5.5.	Biomasa (tons) a la talla de machos de camarón nailon por caladero dentro de las 5 mn de reserva artesanal. Distribución Delta	182
Anexo 5.6.	Biomasa (ton) a la talla de hembras de camarón nailon por caladero dentro de	

las 5 mn de reserva artesanal. Distribución Delta	183
Anexo 5.7. Biomasa (ton) a la talla de machos de camarón nailon por caladero fuera de las 5 mn de reserva artesanal. Distribución Delta	184
Anexo 5.8. Biomasa (ton) a la talla de hembras de camarón nailon por caladero fuera de las 5 mn de reserva artesanal. Distribución Delta	185
Anexo 5.9. Biomasa (ton) a la talla de machos de camarón nailon por región dentro de las 5 mn de reserva artesanal. Enfoque geoestadístico	186
Anexo 5.10. Biomasa (ton) a la talla de hembras de camarón nailon por región dentro de las 5 mn de reserva artesanal. Enfoque geoestadístico	187
Anexo 5.11. Biomasa (ton) a la talla de machos de camarón nailon por región fuera de las 5 mn de reserva artesanal. Enfoque geoestadístico	188
Anexo 5.12. Biomasa (ton) a la talla de hembras de camarón nailon por región fuera de las 5 mn de reserva artesanal. Enfoque geoestadístico	189
Anexo 5.13. Biomasa (ton) a la talla de machos de camarón nailon por región dentro de las 5 mn de reserva artesanal. Distribución Delta	190
Anexo 5.14. Biomasa (ton) a la talla de hembras de camarón nailon por región dentro de las 5 mn de reserva artesanal. Distribución Delta	191
 Anexo 5.15. Biomasa (ton) a la talla de machos de camarón nailon por región fuera de las 5 mn de reserva artesanal. Distribución Delta. Anexo 5.16. Biomasa (ton) a la talla de hembras de camarón nailon por región fuera de las 5 mn de reserva artesanal. Distribución Delta. 	192 193
Anexo 5.17. Abundancia (miles de ejemplares) a la talla de machos de camarón nailon por caladero dentro de las 5 mn de reserva artesanal. Enfoque geoestadístico	194
Anexo 5.18. Abundancia (miles de ejemplares) a la talla de hembras de camarón nailon por caladero dentro de las 5 mn de reserva artesanal. Enfoque geoestadístico	195
Anexo 5.19. Abundancia (miles de ejemplares) a la talla de machos de camarón nailon por caladero fuera de las 5 mn de reserva artesanal. Enfoque geoestadístico	196
Anexo 5.20. Abundancia (miles de ejemplares) a la talla de hembras de camarón nailon por caladero fuera de las 5 mn de reserva artesanal. Enfoque geoestadístico	197
Anexo 5.21. Abundancia (miles de ejemplares) a la talla de machos de camarón nailon por caladero dentro de las 5 mn de reserva artesanal. Distribución Delta	198
Anexo 5.22. Abundancia (miles de ejemplares) a la talla de hembras de camarón nailon por	

	caladero dentro de las 5 mn de reserva artesanal. Distribución Delta	199
Anexo 5.23.	Abundancia (miles de ejemplares) a la talla de machos de camarón nailon por caladero fuera de las 5 mn de reserva artesanal. Distribución Delta	200
Anexo 5.24.	Abundancia (miles de ejemplares) a la talla de hembras de camarón nailon por caladero fuera de las 5 mn de reserva artesanal. Distribución Delta	201
Anexo 5.25.	Abundancia (miles de ejemplares) a la talla de machos de camarón nailon por región dentro de las 5 mn de reserva artesanal. Enfoque geoestadístico	202
Anexo 5.26.	Abundancia (miles de ejemplares) a la talla de hembras de camarón nailon por región dentro de las 5 mn de reserva artesanal. Enfoque geoestadístico	203
Anexo 5.27.	Abundancia (miles de ejemplares) a la talla de machos de camarón nailon por región fuera de las 5 mn de reserva artesanal. Enfoque geoestadístico	204
Anexo 5.28.	Abundancia (miles de ejemplares) a la talla de hembras de camarón nailon por región fuera de las 5 mn de reserva artesanal. Enfoque geoestadístico	205
Anexo 5.29.	Abundancia (miles de ejemplares) a la talla de machos de camarón nailon por región dentro de las 5 mn de reserva artesanal. Distribución Delta	206
Anexo 5.30.	Abundancia (miles de ejemplares) a la talla de hembras de camarón nailon por región dentro de las 5 mn de reserva artesanal. Distribución Delta	207
Anexo 5.31.	Abundancia (miles de ejemplares) a la talla de machos de camarón nailon por región fuera de las 5 mn de reserva artesanal. Distribución Delta	208
Anexo 5.32.	Abundancia (miles de ejemplares) a la talla de hembras de camarón nailon por región fuera de las 5 mn de reserva artesanal. Distribución Delta.	209

1. **OBJETIVO GENERAL**

Estimar la biomasa y abundancia de camarón nailon en el litoral comprendido entre la II y VIII Regiones a través de una evaluación directa con el método de área barrida

2. OBJETIVOS ESPECIFICOS

- 2.1. Determinar la distribución espacial del recurso camarón nailon en el área de estudio.
- 2.2. Determinar la biomasa total (en peso) y abundancia (en número) total, y según sexo y talla, del camarón nailon en el área de estudio, y por región y focos de abundancia, según corresponda.
- **2.3.** Determinar la condición reproductiva del camarón nailon en el área y período de estudio.
- **2.4**. Determinar la composición e importancia relativa de las especies que constituyen la fauna acompañante de este recurso durante los cruceros de evaluación.

3. ANTECEDENTES

La pesquería industrial de camarón nailon que se realiza en la Unidad de Pesquería II a VIII Regiones, se encuentra bajo una situación de incertidumbre debido a la, aparentemente, precaria situación del stock por sobreexplotación, luego de un auspicioso período que abarcó la mayor parte de la década de los 90 (FIP 97-23). Este recurso mantenía una imagen de estabilidad de acuerdo con la constancia en los niveles de desembarque durante la primera parte de los años 90, aunque la evaluación directa del mismo, en 1998, reveló niveles de abundancia y biomasa más bajos de lo esperado, de poco más de 9 mil ton, sólo en niveles comerciales entre la III y V Regiones (Roa *et al.*,1999; FIP 98-03). Estos resultados son en general consistentes con los informados después en el Proyecto FIP 99-08 (Acuña *et al.*, 1999), aunque los niveles de abundancia y biomasa fueron mayores que los estimados por Roa *et al.* (1999; FIP 98-03).

En este contexto, el Consejo de Investigación Pesquera efectuó un Llamado Público (04.01.2001) para la presentación de propuestas de evaluación directa del recurso camarón nailon (Proyecto FIP N° 2001-05), independientemente de la evaluación directa del langostino colorado y langostino amarillo (Proyecto FIP N° 2001-06), todos desde la II a la VIII Regiones. Con ambas propuestas se establece una situación más lógica que la ocurrida el año anterior (Proyecto FIP N° 2000-05), en cuanto a que se debe efectuar cruceros independientes para recursos pesqueros con dinámicas y distribuciones diferentes, sin mezclar evaluaciones directas atendiendo razones económicas, por lo que, creemos, ahora se cautela mejor las opciones de evaluaciones más certeras manejándose dos proyectos independientes.

La Universidad Católica del Norte en conjunto con la Universidad de Concepción y el Instituto de Investigación Pesquera de la VIII Región, a través de la amplia experiencia de estos grupos de trabajo, se adjudicaron la ejecución del presente proyecto FIP 2001-5.

4. METODOLOGIA

Durante este proyecto se realizó un crucero de evaluación directa por el método de área barrida (Alverson y Pereyra, 1969) utilizando dos barcos comerciales arrastreros camaroneros, uno de la Empresas Pesqueras, SIRIUS ACHERNAR (PAM Nisshin Maru) e ISLADAMAS (PAM Foche) de Coquimbo, ambas naves de características técnicas similares. Dada la experiencia anterior (Proyecto FIP 2000-05), se utilizó una nave arrastrera artesanal (Pionero) en la sección entre el límite norte de la III Región y Caleta Pajonales correspondiente a la zona de reserva artesanal. Operativamente, el crucero de la parte norte de este proyecto (II a IV Regiones) fue efectuado por el PAM Foche y la zona Sur por el PAM Nisshin Maru. Las tripulaciones estuvieron conformadas por técnicos y gente de mar.

4.1. DISEÑO DE MUESTREO

Se utilizó un diseño de muestreo que comprende toda el área de estudio entre las Regiones II y VIII, intensificándose el muestreo sólo en los focos de mayor abundancia de cada recurso, de acuerdo con lo establecido en las Bases Especiales del proyecto. La intensificación de los muestreos al interior de cada foco de abundancia se realizó inmediatamente después de ser detectado el foco.

Los diseños muestreales se definieron a priori, independientemente de la información obtenida durante el proceso de muestreo, excepto en las estrategias adaptativas (Thompson 1992). Sin embargo, teniendo en cuenta que, según las bases de esta propuesta, se requiere la intensificación del muestreo sobre los focos de abundancia detectados, a diferencia de propuestas anteriores, donde el plan de muestreo consideraba dos fases en cada una de las cuales se desarrollaba la estrategia de muestreo bietápico, esto fue mejorado, en términos del muestreo mismo, del ahorro de tiempo y de los costos, desarrollando la intensificación del muestreo inmediatamente a continuación de ser detectado el foco, sin esperar cubrir primero toda el área de muestreo y regresar muchos días después a completar el muestreo en términos de su intensificación. En este proyecto se utilizó el esquema de muestreo por "transectas sistemáticas adaptativas latitudinales alternadas".

Acá, en términos estadísticos (Cochran 1977, Thompson 1992), las muestras primarias correspondieron a aquellas que permiten delimitar el foco y dentro de ellas el uso de submuestras. En nuestro caso, las muestras primarias correspondieron a las transectas, y las submuestras a las observaciones (lances) dentro de cada transecta. En cada una de las etapas es posible definir cualquier estrategia de muestreo, con la ventaja adicional que es posible estimar la variabilidad de los estimadores para un subconjunto particular de unidades primarias, utilizando para ello los resultados generados por sus respectivas submuestras. Esta propiedad es particularmente útil en este estudio, por cuanto se requiere poner énfasis en la estimación de abundancia por foco.

El enfoque muestral para esta evaluación directa de la biomasa de camarón nailon considera la información existente generada por evaluaciones anteriores (Acuña y Arancibia, 1996; Acuña *et al.*, 2000; Arredondo, 1996 y Roa *et al.*, 1999^a), las que confirman la distribución latitudinalmente continua del camarón nailon, la que se evaluó mediante un muestreo por transectas sistemáticas adaptativas. En el sentido longitudinal, se realizó un muestreo sistemático a lo largo de la transecta que permitió determinar la amplitud de la banda de abundancia en las zonas prospectadas, teniendo en consideración que la base del muestreo está en la distribución espacial de la población y no en el tipo de análisis a realizar, los que pudieran condicionar la estrategia muestral. En términos generales, el tipo de muestreo propuesto implicó una mayor eficiencia en el uso del esfuerzo de muestreo, mayor precisión en la determinación de los bordes de la distribución de abundancia y la obtención de estimadores más eficientes (respecto del error cuadrático medio).

4.2. ESTRATEGIA GENERAL DE MUESTREO

A lo largo de la zona de abundancia definida por Acuña y Arancibia (1996); Acuña *et al.*, (2000); Arredondo (1996) y Roa *et al.*, (1999^a), se realizó un muestreo probabilístico (estocástico) sistemático adaptativo con transectas espaciadas cada 10 minutos. El carácter probabilístico del plan de muestreo latitudinal está dado por la posición de la primera transecta, la que se eligió al azar entre las primeras 10 posibles posiciones en el límite norte de la II Región y la distribución latitudinal de las transectas considera la distribución de la especie. Dentro de cada transecta se definieron cuadrículas de 1 minuto de longitud, asumiendo que al interior de cada cuadrícula la densidad es homogénea, realizándose un lance al interior de una de cada dos cuadrículas. La selección de la cuadrícula a muestrear se hizo sistemáticamente a lo largo de cada transecta, cubriendo la extensión longitudinal de la zona batimétrica entre 100 y 600 m profundidad de la zona en que se ubica la transecta. El carácter aleatorio del muestreo estuvo dado por la selección aleatoria de la primera cuadrícula muestreada, la que fue seleccionada de entre las dos primeras cuadrículas disponibles a partir de los 100 m de profundidad en dirección este-oeste.

Dado que se conoce la distribución latitudinal de la especie, la estrategia adaptativa del muestreo se definió en sentido longitudinal, con el fin de determinar las variaciones, en ese sentido, del gradiente de la densidad y obteniendo así la delimitación del ancho de la banda de abundancia de la especie. El carácter adaptativo del muestreo enfatiza la definición de los márgenes latitudinales de los focos de mayor abundancia del plan de muestreo condicionado a los resultados de los lances realizados en la transecta. En los lances de la transecta que resultaron con capturas igual o superior a 50 kg., entonces se realizó una adaptación de la ubicación de las transectas realizando dos transectas adicionales similares a las iniciales, una al norte y otra al sur de la transecta en cuestión, lo que permitió definir con mayor precisión los límites latitudinales del foco detectado. Para estos efectos, se consideró que 50 kg. del recurso recolectados desde la red son pesca incidental que permite ayudar en la delimitación del caladero.

4.2.1. DISEÑO MUESTREAL ADAPTATIVO

El objetivo típico de este tipo de proyectos fue estimar la abundancia N(A) dentro del área de estudio, basándose en un plan de muestreo del área, el que está, a su vez, condicionado por una función de detectabilidad g(w), lo que proporciona la probabilidad condicional que un individuo que está en la ubicación w sea incluido en la muestra. Esta función de detectabilidad es función del plan de muestreo utilizado. Luego, si se utiliza un muestreo por cuadrantes, entonces la función de detección dentro del cuadrante se asume igual a uno y cero fuera de él.

Para cualquier región A, la variable aleatoria N(A) corresponde al número de animales en A. En el muestreo por transectas lineales basadas en la observación directa, la función vale uno a lo largo

de ésta y decrece gradualmente en la medida que se aleja de ella. En el caso de muestreo por transectas, como es el caso de este estudio, la función vale uno a lo largo de la transecta y cero fuera de ella, lo que significa que, dependiendo de la distribución espacial asumida para la población, se puede modificar la función de detectabilidad, por ejemplo, considerando transectas relativamente más angostas y más frecuentes, en lugar de regiones cuadradas o circulares de gran área.

La mayor parte de los diseños muestrales se definen *a priori*, independientemente de la información obtenida durante el proceso de muestreo. Para este estudio, sin embargo, se propuso utilizar una técnica diferente llamada "muestreo adaptativo", que considera el uso simultáneo, es decir, durante el proceso de muestreo de la información obtenida. Por lo tanto, la probabilidad de elegir una determinada secuencia de sitios de muestreos, depende de las observaciones hechas en los sitios iniciales de la secuencia de muestreo. El objetivo de este diseño muestral es lograr un cuadrado medio del error menor para un esfuerzo de muestreo esperado, condicionado en los resultados observados. Se puede demostrar, al menos teóricamente, que virtualmente cualquier diseño no adaptativo puede ser mejorado (en el sentido del error cuadrático medio), con la incorporación de procedimientos adaptativos, excepto en los casos en que la distribución es completamente uniforme y definida por un proceso de Poisson simple (Thompson, 1982, 1992), lo que, ciertamente no corresponde al caso de la población en estudio.

En la práctica, este tipo de muestreo constituye una variante del muestreo bietápico, por cuanto, al detectar una zona de abundancia, se produce una adaptación del plan de muestreo, la que permite evaluar inmediatamente y en forma exhaustiva las características del foco. Esta es una estrategia de muestreo diseño insesgada (Thompson, 1982), lo que implica que si n(A) es el valor estimado del total poblacional, mediante una muestra "s", entonces

$$E\{n(A)/S = s\} = N(A)$$
(1)

Esto es, dada una determinada distribución espacial de los animales, se obtiene un estimador insesgado total por medio de factores inducidos por el diseño muestral, como por ejemplo, la aleatoriedad de la selección de los sitios de muestreo. Para este tipo de diseño, el área de estudio

A se divide en *N* unidades primarias o subregiones, cada una de las cuales se subdivide en M unidades secundarias, cada una de área "a". El objetivo es estimar la densidad

$$D = N(A)/\mu(A)$$
⁽²⁾

de animales dentro de A, donde $\mu(A)$ es el área de A. La muestra total (S) puede ser escrita entonces como

$$S = (S_i, \dots, S_N), \tag{3}$$

donde S_i es la muestra de la unidad primaria i, y tiene tamaño n(Si). El número de animales de la muestra S_i será denotado por Y_{ij} , de modo que Y_i corresponde al número de animales en la iésima unidad primaria. Luego, la densidad observada en la i-ésima unidad primara será

$$d = Y_i / an(S_i), \tag{4}$$

mientras que la densidad real es

$$D_i = N(A_i) / \mu(A_i) \tag{5}$$

El diseño muestral es entonces el siguiente:

- Se seleccionó al azar un número fijo (1) de unidades secundarias dentro de la primera unidad primaria.
- A continuación, se seleccionó una muestra de unidades secundarias al azar dentro de la segunda unidad primaria, pero el tamaño muestral n(S2) es una muestra aleatoria que depende de la densidad observada d₁ en la primera unidad. Se continua de esta forma seleccionando n(Si) unidades secundarias al azar dentro de la i-ésima unidad, con tamaños muestrales n(Si) que dependen de la densidad observada d_{i-1}.

El estimador de número de animales por unidad de área (densidad) es entonces el promedio de las densidades observadas dentro de cada unidad primaria; es decir,

$$d = \frac{1}{N} \sum_{i=1}^{N} d_i \tag{6}$$

Se pueden observar algunas formas de sesgo en este tipo de diseño muestral. Suponiendo primero que se usa el mismo diseño, pero para un estimador que usa el promedio de todas las observaciones en lugar de promediar dentro de las unidades primarias. Si, por ejemplo, el procedimiento adaptativo resulta en más muestras tomadas en regiones de alta densidad, entonces el estimador indudablemente sobrestimará la densidad real de la población.

4.2.2. PLAN DE MUESTREO

Para este diseño se consideró que la red es arrastrada por una distancia fija a lo largo del fondo del océano y que la densidad es estimada como función de la cantidad de camarón nailon capturada y el área cubierta por la red, tomando en consideración la abertura de punta de alas (APA) de la misma. Para estos efectos, y dado que el camarón nailon pasa la mayor parte del tiempo sobre el fondo y la red tiene una malla de tejido suficientemente fino, se supone que son capturados todos los ejemplares de talla superior al tamaño de la malla en la distribución vertical cubierta por la red.

Se definieron transectas longitudinales, en sentido ortogonal a la banda de abundancia establecida, las que se ubicaron cada 10 minutos, partiendo desde el extremo norte de la II Región. Dentro de cada transecta se definieron entonces unidades primarias de muestreo, de un minuto por lado (1 mn²), de las cuales, dada la estrechez de la banda de abundancia definida (Acuña y Arancibia, 1996; Acuña *et al.*, 2000; Arredondo, 1996 y Roa *et al.*, 1999^a) se muestreó una de cada dos unidades. La ubicación de la primera unidad a muestrear se determinó aleatoriamente de entre las dos primeras posibles en dirección este-oeste. Dentro de cada unidad muestral se realizó un lance de aproximadamente 1 mn de longitud. La ubicación y orientación del lance, dentro de la unidad muestral se determinó al azar, teniendo en consideración las condiciones operacionales de la embarcación. Cada vez que en uno o más de los lances realizados en una transecta dada se obtuvo más de 50 kg de camarón, se realizó una adaptación de la estrategia, seleccionando dos transectas adicionales, paralelas a la que definió tal abundancia pero

ubicadas a 5 minutos al sur y 5 minutos al norte, respectivamente, esto es, exactamente entre 2 de las transectas definidas en el plan de muestreo inicial.

Nosotros supusimos que la banda de abundancia tiene una perfecta distribución norte-sur, por lo que, para disminuir el riesgo de no acertar a realizar el lance sobre ella, la ubicación de los lances sobre la transecta adyacente se realizó en forma *"alternada"*, es decir, si en el proceso de aleatorización de la ubicación de los lances se seleccionó la primera de las dos cuadrículas iniciales, entonces en la adyacente se seleccionó la segunda y viceversa. En los lances que revela un resultado mayor o igual a 50 kg, entonces la transecta siguiente se realizó a 10 minutos de distancia de la anterior, tal como se había planificado inicialmente.

4.2.3. NÚMERO DE TRANSECTAS Y NÚMERO DE LANCES

La prospección y cuantificación del recurso camarón nailon se realizó con la operación simultánea de dos PAMs arrastreros camaroneros, uno operando en la zona norte (Regiones II a IV) y el otro en la zona sur (Regiones V a VIII). También se utilizó una nave arrastrera artesanal en la zona norte (III Región). Debido a que la primera transecta, definida aleatoriamente, fija las otras de manera equidistante cada 10 millas, resultó fácil la fijación de la transecta en el extremo norte de la zona sur de este proyecto. Por su parte, la intensificación del muestreo en cada zona quedó definida por la determinación de cada foco, con transectas ubicados ahora cada 5 minutos.

Los focos de alta densidad se definen como aquellos rangos latitudinales donde la densidad promedio de al menos dos transectas consecutivas es mayor que la densidad promedio a través de toda el área de muestreo por más de una desviación estándar. Este criterio permitió un reconocimiento objetivo y rápido de los focos de alta densidad, y fue aplicado independientemente para el recurso. La intensificación del muestreo en los focos de alta densidad consistió en el despliegue de una nueva transecta ubicada equidistante de las dos transectas vecinas muestreadas en la primera fase. Esta transectas se caracterizan por poseer un número con un componente decimal que indica su posición (Ej. la transecta 22,5 está entre la transecta 22 y la 23). La primera estación en estas nuevas transectas será seleccionada aleatoriamente de la misma manera que se explicó para las estaciones originales, con el espaciamiento entre estaciones

efectuado de manera similar al de las transectas originales. El número de estaciones en las nuevas transectas fue el promedio del número de estaciones de las transectas inmediatamente vecinas de la primera fase si este promedio es un entero, o el número entero inmediatamente superior si el promedio es un número racional. Mediante estos procedimientos en los focos de alta densidad el muestreo resultó el doble de intenso que fuera de los focos, con transectas separadas por 5 millas náuticas en lugar de 10. Para las estimaciones de biomasa y abundancia se consideraron las capturas de ambas fases como provenientes de un mismo y único muestreo.

4.3. PROGRAMA DE USO DE NAVES

Se utilizaron simultáneamente 2 naves de pesca de arrastre camaroneras acondicionadas con los artes de pesca y equipamiento apropiados, lo más similar posible, las que fueron proporcionadas por las Empresas Pesqueras SIRIUS ACHERNAR e ISLADAMAS de Coquimbo, según consta en los Contratos Notariales de Arriendo. Además y como una precaución adicional, dada la experiencia anterior (Proyecto FIP 2000-05), se consideró la utilización de una nave arrastrera artesanal (PIONERO de la Pesquera Playa Blanca) en la sección entre el límite norte de la III Región y Caleta Pajonales correspondiente a la zona de reserva artesanal.

Con respecto al diseño de la red que utilizan estas embarcaciones, corresponde a un solo proveedor de la misma para toda la flota camaronera del Norte.

4.4. DETERMINACIÓN DE LA DENSIDAD

La densidad de camarón nailon (por región y/o foco de abundancia, según corresponda) fue estimada como la captura en peso y en número del recurso por kilómetro cuadrado barrido con la red, esto es,

$$Z_{w(x,y)} = \frac{C_{w(x,y)}}{S_{(x,y)}}$$

$$Z_{n(x,y)} = \frac{C_{n(x,y)}}{S_{(x,y)}}$$
(7)

donde $Z_w(x,y)$ y $Z_n(x,y)$ son la densidad en peso (*w*) y número (*n*) en la localidad *x* (latitud) *y* (longitud), *C* es la captura, *S* es el área barrida en cada lance. En esta propuesta, la densidad es expresada también como CPUE (captura por unidad de esfuerzo, donde el esfuerzo tiene unidades de área barrida).

4.5. DETERMINACIÓN DE LA CAPTURA

La captura en peso (Cw) fue determinada como sigue:

$$C_w = Q\overline{P} \tag{8}$$

donde Q es el número de cajas estándar, \overline{P} es el peso promedio de las cajas (en ésta y en las siguientes expresiones se ha dejado implícito el subíndice de localidad (x, y) para simplificar). Nótese que no se estimó la captura sino que se midió directamente, así que no es necesario aquí ningún diseño de muestreo ya que se supone que la captura se determinó sin error.

4.6. DETERMINACIÓN DEL ÁREA BARRIDA

El área barrida para cada lance de pesca fue

$$S = \sum_{i=1}^{n} d_i a_i \tag{9}$$

donde S es el área barrida por la red en el lance; d_i es la distancia recorrida por el barco; a_i es el ancho de barrido de la red, ambos en un determinado intervalo de tiempo i. La unidad básica de tiempo i (ubt) corresponde a 5 minutos y el tiempo de arrastre efectivo se midió desde el momento en que se frena la salida de los cables de cala en el winche principal hasta que se inicia el izado de la red mediante el virado de los mismos. Esta metodología ha sido aplicada anteriormente por Henríquez y Bahamonde (1982), Henríquez et al. (1983), Arancibia (1993), Acuña et al. (1995, 2000), Roa et al. (1997, 1998) y otros, todos basados en Paloheimo y Dickie (1964) y Alverson y Pereyra (1969).

4.6.1. DETERMINACIÓN DE LA DISTANCIA DE BARRIDO

La distancia recorrida por el barco se obtuvo directamente del receptor del Sistema de Posicionamiento Global (GPS) con que se cuenta, y para cada intervalo *i* asociado a un lance, y dicho valor corresponde al promedio simple de *k* lecturas realizadas debido a las pequeñas diferencias que se presentan entre dos lecturas consecutivas. En caso de no contar con la señal instantánea del GPS, ya sea por problemas atmosféricos, de propagación de la señal o de la geometría de posición de los satélites en el momento (número insuficiente e inclinación inadecuada en el horizonte), entonces se estimará la d_i mediante el registro de velocidad por corredera y del tiempo de arrastre (d=v/t), además de registrar las lecturas correspondientes de la rosa magnética para determinar cambios de rumbo y dirección durante el lance. En todo caso, este último tipo de mediciones son bastante confiables (Arancibia, 1993; Acuña *et al.*, 1995, 2000).

4.6.2. DETERMINACIÓN DEL ANCHO DE BARRIDO DE LA RED (ABERTURA DE PUNTA DE ALAS)

En evaluaciones directas de crustáceos previas realizadas por nuestro grupo de trabajo (FIP 96-23, FIP 97-23, FIP 98-03, FIP 99-08, FIP 99-09, entre otros), para conocer el ancho de barrido de la red se ha utilizado un método geométrico de Koyama (1974), que consiste en realizar sistemáticamente mediciones de los ángulos de ataque de los cables de cala durante el arrastre, a fin de estimar la abertura de punta de alas de la red (APA) asumiendo que existe una proporcionalidad directa entre ésta y la abertura de la red en el fondo, y entendiéndose como tal el ancho de barrido efectivo. En los barcos langostineros -camaroneros que hemos utilizado, el método ha rendido resultados consistentes que han podido ser modelados en función de la profundidad, por lo que ésta fue aplicada en el presente proyecto.

4.6.2.1. METODOLOGÍA DE CÁLCULO DE LA ABERTURA DE PUNTA DE ALAS (APA)

En el presente proyecto se propuso como procedimiento de cálculo del APA la metodología de Koyama (1974). Este método ha sido utilizado en todos los diversos proyectos realizados por el

consultor para el FIP y las Empresas Pesqueras de la IV Región (Acuña *et al.*, 1997, 1998a, 1998b; 2000; Acuña y Arancibia, 1996) en los recursos camarón nailon y langostino amarillo.

El procedimiento de cálculo incorpora la táctica de pesca realizada por las unidades de pesca, incluyendo en su modelo general de cálculo la profundidad de trabajo de la red, características geométricas y operacionales del arte de pesca, entre otras.

Para la aplicación de esta metodología analítica existen ciertos supuestos, como los siguientes:

- Tanto los cables de arrastre entre la embarcación y los portalones como las líneas de unión entre los portalones y la red tienen una configuración recta.
- 2) La configuración de las líneas de unión, la longitud de la red y la distancia entre los portalones conforman un triángulo isósceles con el vértice al inicio del copo.
- El ángulo de abertura de los cables de arrastre, con relación al eje de simetría de la embarcación, es idéntico tanto para los cables de babor como de estribor.

Aunque el método de Koyama (1974) es bastante simple en su concepción considerando los supuestos anteriores, se debe destacar que en su elaboración se consideraron aspectos de pragmatismo que posibilitan su amplio uso para las condiciones de operación que se encuentran a bordo de los arrastreros camaroneros - langostineros por popa de la flota que opera en la zona central de Chile.

Por esta razón su empleo está difundido a nivel mundial, siendo incluso utilizado en las evaluaciones de recursos demersales por el método de área barrida realizadas en forma conjunta por Japón y Estados Unidos en el Mar de Bering (Wakabayashi *et al.*, 1985).

Este procedimiento teórico ha sido validado entre otros por Wakabayashi *et al.* (1985) y Nashida (1990), mediante la utilización de instrumental electrónico dispuesto en las puntas de alas de la red.

El procedimiento considera diversas estimaciones:

i. Estimación de la abertura teórica entre portalones (AP)

La abertura teórica entre los portalones al igual que la abertura en punta de alas, ha sido estudiada entre otros por Crewe (1963) y Carrothers (1980) con el objeto de evaluar los estimados teóricos y adecuarlos a los valores medidos en forma instrumental mediante el uso de factores de corrección. En estos estudios se demuestra que existe una adecuada concordancia entre el estimado teórico evaluado por esta metodología y la medición experimental, siempre y cuando el primero sea corregido por un factor apropiado.

Considerando esto, la estimación de la abertura teórica corregida entre portalones de la red se calcula de la siguiente manera (ver Fig. 1):

1º Se calcula la longitud que proyecta el cable de cala en el eje X. Para ello, conociendo la longitud del cable de cala en metros (L_{cc}) y el ángulo de inclinación del cable de cala (β), se calcula:

$$L_{ccx} = L_{cc} * \cos \beta \tag{10}$$

2º Conociendo la longitud en metros proyectada en X del cable de cala (L_{ccx}), la distancia en metros entre las pastecas que conducen a cada cable de cala (D_{PASTECAS}), dispuestas en la popa de la embarcación y el ángulo de abertura del cable de cala (α), se calcula la abertura teórica corregida entre los portalones:

$$AP = 2 * L_{ccx} * Sen \alpha + D_{PASTECAS}$$
(11)

ii. Estimación de la abertura en punta de alas (APA)

Conociendo la abertura entre portalones, la distancia o abertura horizontal entre punta de alas de la red se calcula entonces como (ver Fig. 1):

- Fig. 1. Diagrama de flujo del cálculo abertura portalones y abertura punta de alas, basado en metodología de Koyama (1974).
- 1º Se debe calcular la longitud de la red de arrastre en condiciones de trabajo. Para ello, dadas las características de diseño de las redes utilizadas en el presente proyecto, se consideró el 60% de la longitud del túnel y copo. Por lo tanto, la longitud trabajando de la red sería:
$$L_{RED} = L_{CABEZAL} * \mu_2 + L_{BELLY} * \mu_2 + L_{TUNEL+COPO} * \mu_2 * 0,60$$
(12)

2º Conociendo la abertura corregida entre portalones en metros, la longitud de la red en metros, la longitud de estándar en metros y la longitud de malleta en metros, se calcula la abertura entre punta de alas:

$$APA = AP * L_{RED} / (Long_{ESTANDAR} + Long_{MALLETA} + Long_{RED})$$
(13)

iii. Dependencia de APA de otras variables

La dependencia de APA en función de la profundidad de operación, se asume a una expresión del tipo:

$$APA = a + b * Z \tag{14}$$

donde, a y b son parámetros del modelo ajustado, Z es la profundidad de operación en metros.

La ventaja de utilizar este tipo de funciones que poseen un nivel asintótico, es que en general reflejan adecuadamente el comportamiento real en operación de pesca, ya sea de la abertura de portalones como de punta de alas de las redes de arrastre.

Por otra parte, también se considera que la relación entre la profundidad de operación y la cantidad de cable utilizado durante el lance de pesca se puede describir por una curva de tipo hiperbólico (Okonski y Martini, 1977), con una asíntota equivalente al nivel máximo de la razón entre el cable filado y la profundidad (w*arp scope ratio*). Esta dependencia explicaría adecuadamente porque la abertura en punta de alas posee el mismo comportamiento de tipo hiperbólico pero en un sentido inverso.

4.6.2.1.1. RANGO DE VARIABILIDAD DE LOS ESTIMADOS DE APA

Se postula que el empleo de un criterio de ingeniería basado en un valor de error relativo, desarrollado por Baranov (1977), que ha sido utilizado por Kondrat'ev (1980) para estimar el error en la abertura de punta de alas estimada para redes de arrastre.

Este método considera que los valores reales en operación de los parámetros AP, L_{net} y L_{ms} , del arte difieren de los aquellos considerados en el cálculo teórico en cantidades pequeñas ΔAP , ΔL_{net} y ΔL_{ms} , por lo que la abertura horizontal real de la red define el estimado teórico en un cierto valor o ΔAPA (Kondrat'ev, 1980).

A partir de la teoría de los errores, es posible establecer que el error límite de una función con diversas variables independientes es igual a la suma de los valores absolutos de las derivadas parciales de la función, y que además éste es máximo cuando todos los errores parciales poseen el mismo signo (Kondrat'ev, 1980).

En términos matemáticos, el elemento diferencial de una función de abertura en punta de alas con las tres variables antes mencionadas es:

$$dAPA = \frac{\sigma APA}{\sigma AP} dAPA + \frac{\sigma APA}{\sigma L_{ms}} dL_{ms} + \frac{\sigma APA}{\sigma L_{net}} dL_{net}$$
(15)

Reemplazando los elementos diferenciales obtenidos al derivar parcialmente la función de abertura de la red propuesta por Koyama (1974), por pequeños incrementos discretos e introduciendo la siguiente notación auxiliar varphi (ϕ) y psi (Ψ):

$$\varphi = \frac{L_{net}}{L_{net} + L_{ms}} \tag{16}$$

$$\Psi = L_{net} + L_{ms} \tag{17}$$

bajo estas condiciones se tiene que el máximo error absoluto para la abertura en punta de alas, de acuerdo a este criterio es:

$$\Delta APA = \phi^* \Delta APA + \frac{\phi}{\psi}^* APA^* \Delta L_{ms} + \phi^* APA^* \Delta L_{ms}$$
(18)

No obstante, es difícil conocer la magnitud de los errores absolutos; por esta razón se recomienda trabajar con los errores relativos o porcentuales, ya que son mucho más fácil de evaluar.

Aplicando la teoría de los errores para determinar el error relativo en las aberturas del arte de pesca, tenemos que este es igual al máximo error absoluto en el logaritmo natural de la función de la abertura, o sea para encontrar el error máximo se debe derivar parcialmente esta función APA, la que previamente ha de ser logaritmizada.

Lo expuesto en el contexto anterior conceptualmente es análogo a considerar la siguiente expresión para el error relativo:

$$\pm \varepsilon = \frac{\pm \Delta A P A}{A P A} * 100 \tag{19}$$

En términos probabilísticos, la expresión precedente es equivalente a fijar un intervalo de confianza igual a una fracción (o porcentaje si se multiplica por 100) del valor de tendencia central, estableciendo *a priori* el valor de ($\alpha/2$) o de (1 - α), esto es:

$$\pm \varepsilon = \pm \frac{Z_{\frac{\alpha}{2}}^{\alpha} * SD_{APA}}{APA}$$
(20)

donde $\alpha/2$ nivel de error para colas dobles; $Z_{\alpha/2}$ valor de distribución normal estándar para ($\alpha/2$); SD_{APA} desviación estándar de la abertura de la red (m).

En este contexto, el error relativo máximo que tendría APA en redes de arrastre de crustáceos, ha sido evaluado y establecido a priori en un valor cercano a 10%, o sea $\epsilon = \pm 10\%$.

Este valor preliminar está de acuerdo con los datos descritos en la literatura técnica como rango de variación máximo de la abertura en punta de alas, ya que por ejemplo también se ha reportado valores comprendidos entre $2,3 \le \epsilon \le 7,0$ % para profundidades inferiores a 150 m y velocidades a arrastre entre 2 a 4 nudos (Nashida, 1990).

Esta magnitud puede ser modificada de acuerdo a los valores reales obtenidos *in situ* durante las mediciones para las redes de crustáceos de diseño nacional.

En este mismo marco conceptual la magnitud absoluta de los rangos máximos y mínimos de los valores estimados de abertura en punta de alas se puede representar mediante las siguientes funciones teniendo en consideraciones la dependencia de APA de la variable profundidad, o sea:

$$\Delta APA = + \epsilon^* (a + \frac{b}{z})$$
(21)

donde \triangle APA corresponde a la magnitud absoluta del error de la abertura entre punta de las expresados en metros. De acuerdo con la expresión anterior, los rangos superior e inferior, se pueden representar mediante:

$$(APA + \Delta APA) = (1 + \varepsilon)^* (a + \frac{b}{z})$$
(22)

Wathne (1977) reporta una función del tipo hiperbólica y sus límites superior e inferior, correspondientes a un error relativo de \pm 10% para un crucero experimental en el cual se graficó la APA versus la profundidad real de operación.

4.6.3. INFLUENCIA DE LA VARIABILIDAD DEL APA EN LA VARIABILIDAD DEL ESTIMADOR DE BIOMASA

Para determinar el porcentaje de varianza de la biomasa debido a la variabilidad del APA se construyó un modelo que considera la estimación de biomasa para cada uno de los lances, cuya forma general es

$$B_L = \frac{AC_L}{APA_L DR_L}$$
(23)

en que

B_L	=	biomasa estimada para el área del caladero considerada. (área asociada al lance)
A	=	área del caladero correspondiente al lance
CL	=	Captura del lance (ton)
APA_{L}	=	abertura de punta de alas (mn) de cada lance en el caladero

 DR_L = distancia de barrido (mn) de cada lance en el caladero.

por lo que una expresión logarítmica para esta relación se puede representar de la forma

$$B'_{L} = a_{0} + a_{1}A' + a_{2}C'_{L} - a_{3}APA'_{L} - a_{4}DR'_{L}$$
(24)

en que el símbolo (') corresponde al logaritmo natural de la variable considerada.

Esta expresión, en que, en términos prácticos, se espera cada uno de los parámetros a_i tenga valor 1, corresponde a un modelo lineal que puede ser ajustado mediante procedimientos habituales, es decir, utilizando estimación máximo verosímil.

Para estimar los porcentajes de la varianza de B que son explicados por cada una de las variables concurrentes se utiliza una descomposición de la varianza total mediante un procedimiento de selección STEPWISE, (Neter *et al.*, 1996), el que jerarquiza el ingreso de las variables al modelo comenzando por la de mayor importancia en función del coeficiente de determinación múltiple R². Esto, en términos de nuestro interés, corresponde a la variable que explica el mayor porcentaje de la varianza de la biomasa.

Para este caso se utiliza todos aquellos lances con captura neta de camarón nailon superior a 5 kg (104 lances), considerando para cada una de las variables las siguientes definiciones específicas:

B_L = biomasa estimada para el área del caladero considerando el método de Thompson.

A = área de influencia del lance, esto es, considerando el número de unidades muestrales (definidas por cuadrícula de una mn por lado).

 C_L = Captura del lance (ton).

 APA_L = abertura de punta de alas (mn) de cada lance en el caladero, estimada por el método de Koyama (1984).

 DR_L = distancia de barrido (mn) de cada lance en el caladero, considerando el tiempo y velocidad de cada lance.

El procedimiento de selección STEPWISE se ejecutó aplicando el procedimiento PROC REG del programa SAS (1996), utilizando como criterio de selección el valor de R² parcial, que representa

precisamente el porcentaje incremental de la varianza de la respuesta (biomasa), que es explicado por cada una de las variables que están incorporadas al modelo.

4.7. OBJETIVO ESPECÍFICO 1

Determinar la distribución espacial del recurso camarón nailon en el área de estudio

4.7.1. IDENTIFICACIÓN DE CALADEROS

Algunos estudios anteriores de la abundancia de camarón nailon (Arredondo, 1996; Acuña y Arancibia, 1996; Acuña *et al.*, 2000), han mostrado que este recurso pesquero se distribuye latitudinalmente en forma casi continua a la forma de una banda de distribución norte-sur con estrecha amplitud este-oeste, con sólo algunas zonas de mayor concentración, particularmente en la zona centro-norte (IV Región). Entonces, conocida esta distribución latitudinal (norte-sur), y dada la estrechez longitudinal (este-oeste) de la banda de abundancia, el presente estudio se enfocó a confirmar o redefinir la ubicación y la densidad de las zonas de distribución del recurso camarón nailon, enfatizando en la delimitación de los bordes de la banda de abundancia mediante el uso de la estrategia de muestreo de transectas sistemáticas adaptativas latitudinales alternadas.

En efecto, la principal ventaja del esquema de muestreo adaptativo es que permite la delimitación de cada zona de pesca mediante la intensificación del esfuerzo de muestreo en las áreas en que la pesca sea exitosa. Este enfoque muestreal para la evaluación directa de la biomasa de camarón nailon considera la información existente generada por evaluaciones anteriores (Acuña y Arancibia, 1996; Arredondo, 1996; Roa *et al.*, 1999; Acuña *et al.*, 2000), las que revelaron en su oportunidad y fueron confirmando la distribución latitudinalmente continua del camarón nailon.

A lo largo de las zonas de abundancia definidas previamente por Acuña y Arancibia (1996), Arredondo (1996), Roa *et al.* (1999) y Acuña *et al.* (2000) se realizó un muestreo probabilístico (estocástico) sistemático adaptativo con transectas espaciadas cada 10 minutos. El carácter probabilístico del plan de muestreo latitudinal estuvo dado por la posición de la primera transecta, la que se eligió al azar entre las primeras 10 posibles posiciones en el límite norte de la II Región, correspondiendo a la milla número 7 del plan original de muestreo.

Los focos de alta densidad o caladeros fueron definidos como aquellos rangos latitudinales donde la densidad promedio (CPUE = CPUA; ton/mn²) de al menos dos transectas consecutivas fue mayor que la densidad promedio a través de toda el área de muestreo por más de una desviación estándar. Este criterio permitió un reconocimiento objetivo y rápido de los focos de alta densidad.

El trazado de los límites de cada caladero estuvo basado en tres fuentes de información, a saber:

- (1) la distribución de los lances con y sin captura,
- (2) la información de la batimetría obtenida de Cartas Náuticas del Servicio Hidrográfico y Oceanográfico de la Armada, más la recopilada durante el crucero de prospección; y,
- (3) lances con pesca positiva para camarón nailon en cruceros de investigación de langostinos colorado y amarillo en el marco del Proyecto FIP 2001-06.

Estas fuentes de información permitieron definir los bordes "costero" y "oceánico" de cada polígono, respectivamente, cuyas superficies fueron estimadas utilizando el Modulo Spatial Stat del Programa S-Plus 2000, y confirmadas por medio del software GIS Arcview de la empresa ESRI.

El propósito de utilizar lances con pesca de camarón nailon como by-catch obtenidos con motivo del Proyecto FIP 2001-06. se debe a que los lances positivos de camarón nailon (>50 kilos/lance) con motivo del Proyecto FIP 2001-05 (este estudio) fueron reducidos. Este tiene como efecto la sub-estimación del área de los caladeros, que es directamente proporcional al estimado final de biomasa. Esta situación emergió de los resultados de biomasa informados en el "Informe de Crucero", entregado en septiembre de 2001.

Por tal razón, se exploró la posible complementación de la información de lances de pesca de camarón nailon en el crucero de langostinos (FIP 2001-06) con el propósito, único y exclusivo, de delimitar caladeros de camarón nailon. Sin embargo, para la estimación de la biomasa de camarón nailon se utilizó, única y exclusivamente, la información de lances de pesca positivos

obtenidos con motivo del proyecto FIP 2001-05 (este estudio). En consecuencia, no se mezclo información proveniente de ambos estudios ni para la delimitación de caladeros ni para la estimación de biomasa por caladero, simplemente porque los diseños muestrales provenían de enfoques distintos.

4.7.2. ENFOQUE GEOESTADÍSTICO

Comúnmente, la biota marina se presenta a la forma de parches (McConaughey, 1991), cuya distribución espacial puede ser modificada debido a respuestas conductuales y/o procesos fisiológicos que afectan su dispersión tales como hábitos alimentarios o conductas reproductivas que modifican la distribución espacial regular de la especie (Epifanio, 1987; Dew, 1990). Las muestras obtenidas de tales poblaciones se caracterizan por la gran variedad de valores de densidad, esto es, gran cantidad de valores pequeños con relación a la media poblacional, y pocos valores muy grandes. Bajo estas circunstancias, los estimadores simples (únicos) de la media poblacional (promedio muestral) pueden ser demasiado bajos debido a que los valores grandes están subrepresentados a los niveles de esfuerzo comunes, además de tener estimadores con varianza muestral extremadamente altos (Otto, 1986).

Al respecto, están disponible numerosos métodos para reducir la varianza asociada a estos estimadores de abundancia, entre ellos, el uso de la Distribución Binomial Negativa Ponderada (Zwifer & Smith, 1981), la Distribución Delta (Pennington, 1983; 1986), y técnicas geoestadísticas (Conan, 1985), siendo estas últimas las que presentan los mejores resultados en cuanto su consistencia.

Las aplicaciones más frecuentes de los enfoques geoestadísticos, en relación al análisis de datos de estudios pesqueros, son:

- el trazado de mapas de la distribución espacial de los recursos en base a estimaciones locales de densidad (Freire *et al.*, 1992; González-Gurriarán *et al.*, 1993; Maravelias *et al.*, 1996); y,
- 2) la estimación de biomasa (Conan, 1985, Simard et al., 1992; Pelletier & Parma, 1994).

En lugar de evitar la autocorrelación espacial entre los datos, la estructura espacial de la especie estudiada es modelada para derivar los estimadores de varianza y abundancia. De esta manera, prácticamente no hay restricciones teóricas en la geoestadística acerca del tipo de diseño muestreal que se utilice (Conan, 1985; Petitgas, 1993, 1996), el único requisito es una buena cobertura global del área (Gunderson, 1993). De acuerdo con esto, el paso más importante en el desarrollo de un estudio directo de la biomasa/abundancia de una determinada especie objetivo es el cabal entendimiento de la distribución espacial de ella y del área de muestreo efectivo en relación con el arte de muestreo que se utilice para su estudio.

Las técnicas de análisis geoestadístico son ideales para describir la distribución espacial de cualquier variable regionalizada, y entre ellas, por cierto, los recursos naturales. Estas son, a la vez, conceptualmente sólidas, estadísticamente rigurosas y visualmente informativas. Por estos motivos están siendo utilizadas con una frecuencia cada vez mayor en investigación pesquera a nivel mundial y se han convertido en una herramienta de alta relevancia tanto en la descripción de la distribución espacial de recursos bentónicos (Freire *et al.*, 1992; González-Gurriarán *et al.* 1993; Comeau *et al.* 1998; Roa y Tapia, *en prensa*) y pelágicos (Maravelias *et al.*, 1996), como en estimaciones de biomasa (Conan 1985, Simard *et al.*, 1992, Pelletier y Parma, 1994, Maynou *et al.*, 1998). Este tipo de análisis ha sido aplicado tanto en estimaciones de biomasa de langostino colorado (Roa *et al.*, 1997) como de langostino amarillo (Roa *et al.*, 1998) y camarón nailon (Roa *et al.*, 1999a), así como en el análisis de la dinámica espacial de la población de langostino colorado en Chile centro-sur (Roa y Tapia *en prensa*, Tapia, 1999).

La estimación geoestadística se basa en la correlación espacial entre los datos en lugar de evitarla, como en el caso de un muestreo aleatorio, y permite obtener resultados insesgados prácticamente desde cualquier tipo de diseño muestral (Conan, 1985; Petitgas, 1996). No obstante, se obtiene una mayor precisión al aplicar este tipo de análisis bajo estrategias de muestreo de tipo regular (Conan, 1985), como es el caso de este estudio. Las estimaciones locales de densidad obtenidas durante la prospección son consideradas como una representación muestral del proceso aleatorio subyacente (*i.e.* distribución de la biomasa de cada recurso).

Para determinar la distribución espacial del recurso camarón nailon en el área de estudio se realiza, en primer lugar, un análisis estructural que permite caracterizar el proceso sobre la base de las propiedades de los datos, modelando el cambio en su disimilitud en función de la distancia entre ellos. Posteriormente, este modelo de correlación espacial es utilizado durante una interpolación por *kriging puntual ordinario* para asignar ponderadores óptimos a las estimaciones de densidad local obtenidas en cada lance y para cada recurso. El procedimiento básico del *kriging* consiste en la interpolación sobre el área no muestreada mediante combinaciones lineales de las observaciones provenientes del área muestreada en la grilla de transectas. Los coeficientes de las combinaciones lineales son óptimos desde el punto de vista de las desviaciones cuadráticas esperadas entre las observaciones y las interpolaciones (Isaaks y Srivastava, 1989). Los mapeos geoestadísticos así generados se aplican sobre la información del recurso pesquero en estudio.

4.7.3. ANÁLISIS ESTRUCTURAL

En este estudio se supone que existe *estacionaridad de segundo orden*, es decir, que la media del proceso aleatorio bajo estudio es constante en toda el área de prospección y la covarianza entre dos puntos de muestreo depende sólo de sus distancias relativas (Isaaks y Srivastava 1989). La herramienta estructural a ser utilizada es el variograma, definido (Journel y Huijbregts, 1978) como la esperanza de la variable aleatoria (Z(x) - Z(x+h))², ó

$$2\gamma(\mathbf{x},\mathbf{h}) = E\left(\left(Z(\mathbf{x}) - Z(\mathbf{x} + \mathbf{h})\right)^2\right)$$
(25)

Bajo la hipótesis intrínseca (*i.e.* estacionaridad de segundo orden), es posible estimar el variograma $2\gamma(\mathbf{h})$ a partir de los datos mediante el variograma experimental $2\gamma^*(\mathbf{h})$, que es la media aritmética de las diferencias al cuadrado entre dos mediciones experimentales, $Z(x_i) - Z(x_i+\mathbf{h})$, realizadas en dos puntos cualesquiera separados por el vector \mathbf{h} , o sea:

$$2\gamma^{*}(\mathbf{h}) = \frac{1}{N(\mathbf{h})} \sum_{i=1}^{N(\mathbf{h})} \left(Z(x_{i}) - Z(x_{i} + \mathbf{h}) \right)^{2}$$
(26)

donde $N(\mathbf{h})$ es el número de pares de datos experimentales separados por el vector \mathbf{h} . Realizamos este cálculo en varias direcciones para investigar así la existencia de diferencias direccionales en la estructura del proceso (*i.e.* anisotropía).

Una vez calculado el variograma experimental, se ajusta un modelo estadístico que permita relacionar la estructura observada con el supuesto proceso generador. Los dos modelos a ser investigados serán el esférico y el exponencial, que han sido apropiados para las estimaciones de biomasa de los recursos pesqueros camarón y langostinos por nuestro grupo. Estos modelos están dados en términos del variograma por Cressie (1993), como

$$\gamma(\mathbf{h}; \theta) = \begin{cases} 0, & \mathbf{h} = 0 \\ c_0 + c \left(\frac{3}{2} \left(\frac{\|\mathbf{h}\|}{r} \right) \right) - \frac{1}{2} \left(\frac{\|\mathbf{h}\|}{r} \right)^3, & 0 < \|\mathbf{h}\| \le r \\ c_0 + c, & \|\mathbf{h}\| \ge r \end{cases}$$
(27)

para el modelo esférico, y

$$\gamma(\mathbf{h};\boldsymbol{\theta}) = \begin{cases} 0, & \mathbf{h} = 0\\ c_0 + c \left(1 - \exp\left(-\frac{\|\mathbf{h}\|}{r}\right)\right), & \mathbf{h} \neq 0 \end{cases}$$
(28)

para el modelo exponencial, donde c_0 es el efecto *nugget*, que caracteriza la variabilidad de microescala, *c* es el valor asintótico o *sill* del variograma menos el *nugget*, y β es el rango del variograma, más allá del cual los datos ya no presentan correlación (para el modelo exponencial, el rango práctico es tres veces el rango teórico r'=3r).

4.7.4. AJUSTE MÍNIMO CUADRÁTICO DE CRESSIE

Los parámetros de cada modelo son estimados a partir del variograma experimental mediante el método de mínimos cuadrados descrito por Cressie (1993), y aplicado por Pelletier y Parma (1994) y por nuestro grupo de trabajo en la evaluación de camarón nailon (Roa *et al.* 1999^a) y en

el análisis de la dispersión de las cohortes de langostino colorado (Roa y Tapia *en prensa*), minimizando la sumatoria

$$\sum_{i=1}^{H} N(h_i) \left(\frac{\hat{\gamma}(h_i)}{\gamma(h_i)} - 1 \right)^2$$
(29)

donde *H* es el número de intervalos en que se divide la distancia entre puntos de muestreo. Con esta función de minimización cada residuo al cuadrado se pondera según $N(h_i)$, que es el número de pares utilizado para calcular $\hat{\gamma}(h_i)$, y según el inverso de $\gamma(h_i)^2$. Este procedimiento tiene la ventaja de disminuir la ponderación de pares menos representados en la muestra y aumentar la de puntos cercanos al origen del variograma, zona crucial en la estimación de los parámetros del modelo (Pelletier y Parma 1994).

4.7.5. VALIDACIÓN CRUZADA

Se realizó una validación cruzada de los parámetros del variograma teórico ajustado y de los parámetros a utilizar en la interpolación por *kriging (i.e.* parámetros del variograma teórico, radio de búsqueda, número máximo de pares a utilizar en la interpolación). El método de validación cruzada (Deutsch y Journel 1998) consiste en eliminar uno a uno los puntos en que se realizó el muestreo y utilizar el resto de los datos para estimar el valor de la variable en ese punto, utilizando el modelo de variograma y parámetros de *kriging* seleccionados (Maravelias *et al.* 1996). De esta forma, se define el error de predicción en cada localidad muestreada como la diferencia entre el valor medido y el estimado a partir del resto de los datos (Isaaks y Srivastava 1989). El objetivo final de este procedimiento es obtener un criterio de decisión para seleccionar una combinación dada de parámetros del variograma teórico y del *kriging*.

Dado que el principal objetivo de esta validación es seleccionar un modelo que entregue estimaciones insesgadas, con una distribución lo más semejante posible a la del conjunto de observaciones, se utilizó como primer criterio de decisión el Indice de Validación Cruzada (*IVC*), cuya expresión es

$$IVC = \left|\sum_{i=1}^{n} \frac{\left(C_{i} - C_{i}^{'}\right)}{n}\right| \times \frac{\sqrt{\sum_{i=1}^{n} \frac{\left(C_{i} - \overline{C}\right)^{2}}{n-1}}}{\sum_{i=1}^{n} \frac{\left|C_{i} - \overline{C}\right|}{n}} \times \frac{max(med_{r} - min_{r}, max_{r} - med_{r})}{min(med_{r} - min_{r}, max_{r} - med_{r})}$$
(30)

 $IVC = |sesgo| \times dispersión \times simetría$

modificado del cuadrado medio del error propuesto por Isaaks y Srivastava (1989), y calculado a partir de la distribución de frecuencias de los residuos ($C_i - C_i$ '), cuyo máximo, mediana y mínimo valor corresponden a *max_r*, *med_r* y *min_r*. Este índice proporciona una medida conjunta del sesgo de las estimaciones, y de la dispersión y simetría en la distribución de residuos (Tapia 1999).

Un buen modelo de continuidad espacial debería entregar estimaciones cuyo sesgo y dispersión de residuos se aproximen a cero, y con una simetría cercana a uno. Por lo tanto, la combinación seleccionada de modelo y parámetros de *kriging* será aquella con el menor *IVC*. Sin embargo, el hecho que la distribución univariada de los residuos cumpla con estas condiciones no es suficiente para garantizar que las predicciones del modelo espacial en localidades no visitadas serán de buena calidad. Por ello, y como ha sido sugerido por Isaaks y Srivastava (1989), se inspeccionó, además, el grado de sesgo condicional (*i.e.* correlación entre las magnitudes de las estimaciones y sus residuos) y de correlación existente entre los estimados y las observaciones. La selección del conjunto de parámetros con mínimo *IVC* está restringida a aquellas combinaciones que cumplan con estos dos requisitos. Como un criterio de selección adicional se incorpora la distribución latitudinal de los residuos, con el objeto de asegurar que las estimaciones no sólo son condicionalmente insesgadas respecto de cualquier rango de valores, sino también respecto de su posición espacial.

4.7.6. MAPEO POR KRIGING

Los parámetros del variograma teórico y del *kriging* seleccionados después de la validación cruzada fueron utilizados para calcular las ponderaciones óptimas a ser asignadas a cada

estimación local de densidad, para así estimar la densidad $Z(x_0, y_0)$ en cada uno de los nodos de la grilla de interpolación (x_0, y_0) utilizando

$$Z^{*}(x_{0}, y_{0}) = \sum_{i=1}^{n} w_{i} Z(x_{i}, y_{i})$$
(31)

donde w_i representa las ponderaciones asignadas a cada localidad muestreada. La suma de estas ponderaciones es igual a 1 (*i.e.* constituyen una combinación lineal convexa), y por lo tanto la estimación es insesgada ($E[Z^*(x_0) - Z(x_0)]=0$). Cada ponderación es estimada de tal forma que el error de estimación ($\sigma_k^{*2}(x_0)$), llamado varianza de kriging, sea minimizado (Simard *et al.* 1992).

Una vez realizada la interpolación, sólo aquellos nodos de la grilla que se encontraban dentro de los polígonos de estimación, delimitados según los criterios dados anteriormente, fueron considerados en el mapeo de la densidad y posterior estimación de la densidad media y biomasa total.

4.8. OBJETIVO ESPECÍFICO 2

Determinar la biomasa (en peso) y la abundancia (en número) total, y según sexo y talla, del camarón nailon en el área de estudio, y por región y focos de abundancia, según corresponda.

4.8.1. PROPIEDADES ESTADÍSTICAS DE LOS ESTIMADORES

En la evaluación directa de la biomasa/abundancia de recursos pesqueros demersales se identifica dos enfoques estadísticamente rigurosos. Con uno se obtiene estimadores de biomasa y abundancia que son insesgados respecto del diseño de muestreo (estimadores diseño-insesgados), y con el otro se obtiene estimadores que son insesgados respecto de un modelo de la distribución espacial de la densidad (estimadores modelo-insesgados) (Smith 1990). Los primeros se derivan de la teoría diseño-basada y permiten obtener estimadores que con un mismo resultado respecto de todas las posibles muestras dado un diseño de muestreo con algún elemento de aleatoriedad. Los segundos, derivados de la teoría modelo-basada, entregan estimadores que dan un único resultado que es óptimo dada una muestra bien tomada y un modelo matemático que explique los valores obtenidos en la muestra (Thompson 1992). Ambas clases de estimadores pueden ser usados con una misma muestra, si tal muestra cumple con los requisitos establecidos por ambas clases de estimadores.

4.8.2. ESTIMADORES MODELO-BASADOS

Los estimadores modelo-basados siguen la tradición pesquera del método del área barrida (Alverson y Pereyra, 1969; Roa y Bahamonde, 1993), donde se evalúa la densidad media y el área, y el producto de ambas, habida cuenta del coeficiente de capturabilidad local, corresponde al estimador de la biomasa del stock. El método del área barrida supone que la abundancia relativa media o densidad, medida apropiadamente, es una función estrictamente lineal de la abundancia global, a través de la relación (Ricker 1975):

$$Z = q \frac{\mathrm{B}}{A}$$
(32)

donde Z es la densidad (o CPUE, captura por unidad de esfuerzo, este último en unidades de área), q es la fracción del stock que es capturada dentro del área que barre la red, B es la abundancia global, y A es el área global que ocupa la fracción retenida. En este estudio se asume que q=1, esto es que todos los ejemplares de camarón presentes al paso de la red serán capturados, por lo que no hay escape. Entonces, el estimado de biomasa de camarón nailon es conservativo, lo que es ampliamente deseable en recursos pesqueros sobreexplotados. Adicionalmente, puede ser cierto que la velocidad del camarón nailon puede alcanzar hasta 0,5 m/seg, pero en distancias cortas, lo que es prácticamente la mitad respecto de la velocidad de la red sobre el fondo (aproximadamente 1 m/seg, pues la velocidad promedio de barrido del barco es de 2 nudos) y además resulta inadecuado extrapolar experiencias en otras especies de camarones con mayores capacidades físicas que H. reedi a su realidad pesquera.

A partir del supuesto de linealidad de la expresión anterior se tiene que

$$\mathbf{B} = Z \frac{A}{q} \tag{33}$$

El razonamiento precitado se fundamenta en suponer que la distribución espacial de la abundancia relativa representa un volumen sobre un área geográfica. Este volumen es irregular en el sentido que existen zonas con alta densidad y zonas con baja densidad del recurso, tal como si se tratara de cumbres y valles en un paisaje tridimensional, lo que se puede representar según Foote y Stefansson (1993) por

$$B = \frac{1}{q} \int_{x} \int_{y} Z(x, y) dx dy$$
(34)

donde la biomasa es un volumen que se obtiene al integrar una función espacial de la densidad o abundancia relativa sobre un área determinada. El enfoque descrito por las ecuaciones anteriores pretende aplanar el contorno tridimensional descrito por la función Z(x,y), de tal manera que esa función sea aproximada por una constante independiente de la posición espacial (*i.e.* una altitud promedio del paisaje). Es en el concepto básico del modelo para la densidad media en que las dos aproximaciones modelo-basadas que se presentan a continuación se diferencian: sea la densidad en un punto del área de estudio la suma de un elemento determinista (ζ) y un elemento aleatorio (ε)

$$Z(x, y) = (\zeta + \varepsilon)_{x, y}$$
(35)

si se supone que el elemento aleatorio es espacialmente variable mientras que el elemento determinista es espacialmente fijo

$$Z(x, y) = \zeta + \varepsilon(x, y)$$
(36)

entonces se podrá derivar un estimador geoestadístico. En cambio, si se supone que el elemento determinista es espacialmente variable, mientras que el elemento aleatorio es espacialmente fijo se tiene que

$$Z(x, y) = \zeta(x, y) + \varepsilon$$
(37)

y se podrá derivar un estimador aditivo generalizado. Por último, si se asume simplemente que

$$Z = \zeta + \varepsilon \tag{38}$$

es decir, que la densidad no depende de la localidad, entonces se puede derivar un estimador basado en la distribución de frecuencia de ε . Estas tres opciones de conceptualización básica de la densidad están representadas en los estimadores modelo-basados de las siguientes secciones.

4.8.2.1. ESTIMADOR GEOESTADÍSTICO

El estimador geoestadístico proviene de un modelo de la correlación espacial entre los errores de las observaciones de densidad local. Este modelo permite obtener un conjunto de ponderadores óptimos a ser asignados a las observaciones durante el cálculo de la densidad en cada nodo de la grilla de interpolación, como también durante la obtención de un estimador global de la densidad media (\bar{z}^*).

Indice de densidad promedio

El estimador de la densidad promedio de camarón nailon (\overline{Z}_{j}^{*}) en cada caladero se calcula como el promedio aritmético de la densidad estimada dentro del área de dominio del polígono de estimación correspondiente, esto es

$$\overline{Z}_{j}^{*} = \frac{\sum_{i=n}^{n} Z_{i}^{*}(x_{o}, y_{o})}{n}$$
(39)

donde $Z_i^*(x_o, y_o)$ es la i-ésima estimación local de densidad (ton/mn²), y n es el número de estimaciones locales producidas por el proceso de interpolación (kriging).

Varianza del índice de densidad poblacional

La varianza entre valores es una función de su autocorrelación. La posibilidad de estimar la precisión de la densidad media depende de las características de la distribución espacial del recurso, la que se puede considerar como el resultado de dos grandes efectos:

- (i) la manera específica en que los individuos ocupan el espacio, y
- (ii) el efecto de la geometría del hábitat.

Dependiendo de cómo son tratados estos efectos, se puede identificar dos métodos geoestadísticos de estimación de varianza, a saber:

- (a) la teoría transitiva, y
- b) la teoría intrínseca (Petitgas, 1993).

En el caso de la teoría intrínseca tratada aquí, el efecto de la distribución del recurso y el efecto de la geometría del hábitat son completamente separables e independientes.

El cálculo de la varianza de estimación del índice de densidad promedio se realiza basándose en el concepto de varianzas extensivas (Journel & Huijbregts, 1978) para diseños de muestreo regulares (Wackernagel, 1995), para lo cual se impone una grilla de muestreo regular discretamente pequeña de manera que cada lance se encuentre en uno de sus nodos.

Las varianzas extensivas corresponden a la integración de los errores de muestreo elementales sobre el volumen definido por la distribución espacial de la densidad, los que, a su vez, son

fracciones de varianza de la densidad en regiones puntuales del espacio que se extienden sobre una región de influencia que conserva la geometría del volumen a integrar. Al respecto, es necesario identificar la geometría y el área de influencia de las unidades elementales del diseño de muestreo utilizado.

Como el espaciamiento de la grilla de estimación es regular, la integral puede discretizarse y convertirse, por lo tanto, en una sumatoria, cuyos valores se encuentran graficados en las Cartas de Varianzas Extensivas (σ_{E-g}^2) de Journel & Huijbregts (1978). Esta información, junto con el modelo de variograma teórico ajustado al variograma experimental, permite obtener la varianza de estimación, de la forma

$$\sigma^{2}\left(\overline{Z}_{j}^{*}\right) = C\sigma_{E-g}^{2}, \qquad (40)$$

donde $\sigma^2(\overline{Z}_j^*)$ es la varianza de estimación del índice de densidad geoestadístico, y *C* es el *sill* del variograma teórico.

Estimación de biomasa

La estimación global de biomasa (\hat{B}_j) de camarón nailon en cada polígono *j* se estima como el producto entre la densidad promedio \overline{Z}_j^* y el área A_j de cada polígono *j*,

$$\hat{B}_j = A_j \times \overline{Z}_j^* \tag{41}$$

y la biomasa total es la suma de las biomasas a través de los polígonos

$$\hat{B} = \sum_{j} \hat{B}_{j}$$
(42)

La varianza del estimador de biomasa está dada por la varianza del estimador de densidad, pues se asume que el área del stock (A) se mide sin error. Al respecto, la varianza de la abundancia es la varianza de una constante (q) por una variable aleatoria (X), de la forma:

$$Var(qX) = q^{2}Var(X),$$
(43)

luego,

$$Var(\hat{B}) = A^2 Var(\overline{Z}_j^*).$$
(44)

donde $Var(\hat{B})$ es el estimador de varianza del estimador de biomasa, *A* es el área del polígono de estimación o caladero y $Var(\overline{Z}_{j}^{*})$ es el estimador de varianza del estimador de densidad promedio. Por lo tanto, el estimador de varianza de la biomasa es

$$Var(\hat{B}_g) = A^2 C \sigma_{E-g}^2.$$
(45)

4.8.2.2. ESTIMADOR GAM

Recientemente, investigadores europeos (Borchers *et al.*, 1997; Augustin *et al.*, 1998) han introducido en la estimación de la densidad media y su precisión los modelos aditivos generalizados (GAM). Este tipo de modelos corresponden a una generalización de los modelos lineales generalizados (Mc Cullach y Nelder, 1989) y permiten en el caso de los recursos demersales, la incorporación y análisis de la distribución de los recursos. Esta es fuertemente dependiente de la estructura espacial, de ahí que la varianza asociada al estimado de densidad media puede ser reducida mediante modelación de la estructura espacial de manera parsimoniosa.

Hasta ahora este esquema de modelación se ha utilizado en el Atlántico noreste, para la estimación de la precisión del estimado de biomasa desovante de los recursos caballa del Atlántico (*Scomber scombrus*) y jurel (*Trachurus trachurus*), se ha aplicado desde 1998 este modelo para reducir la varianza del estimado de la densidad media de huevos producidos.

Previamente, se había determinado que la mayor fuente de imprecisión era generada por la varianza asociada al estimado de la abundancia de huevos (60% de la varianza en caballa y 70% en jurel). Por lo tanto, se desarrolló y aplicó herramientas estadísticas para reducir la imprecisión existente en la estimación de la abundancia de huevos determinada desde las evaluaciones. La utilización de esta metodología permitió una reducción del coeficiente de variación del estimado

de abundancia de huevos para *Trachurus trachurus* de 18% a 9%, lo que implicó una reducción en el estimado de biomasa desovante de 22% a 18%. Por lo tanto, la contribución a la varianza del estimado de biomasa por parte de la abundancia de huevos se redujo marcadamente de 70% a 33% de aporte (Borchers *et al.*, 1997). En Chile esta metolodogía se ha aplicado en la estimación de la producción diaria de huevos de jurel en el marco del proyecto FIP 99-14, Condiciones biológicas del jurel en alta mar (Sepúlveda *et al.*, 2000).

El modelo aditivo generalizado GAM se define de la siguiente forma:

$$E(\mathbf{y}) = f\left(\beta_0 + \sum_i s_i(\mathbf{x}_i)\right)$$
(46)

donde x_i representa a la variable explicatoria, mientras que y es la variable respuesta de interés (número o peso medio de ejemplares por lance estandarizados CPUA). La CPUA posee alguna distribución estadística específica y su esperanza E(y) es una función (f(•)) de las variables explicatorias.

Esta función $f(\bullet)$ corresponde a la inversa de la función de enlace o "link", por ejemplo si se tratase de una log-relación, implica que las variables explicatorias o sus suavizamientos tienen un efecto multiplicativo sobre la densidad; de este modo la función de enlace corresponde a una exponencial, $f(\bullet) = \exp(\bullet)$. β_0 es un parámetro a ser estimado y las funciones $s_i(\bullet)$ son funciones de suavizamiento para las variables explicatorias. La flexibilidad de las funciones de suavizamiento es dependiente de los grados de libertad asociados (df): a menor cantidad de grados de libertad, menos flexible es la función. Por ejemplo, en el caso de los modelos lineales generalizados se tiene que $s_i(x_i) = \beta_i x_i$ con df=1 (Hastie y Tibshirani, 1990).

La inferencia estadística en este tipo de modelos es similar a la que se aplica en los modelos lineales generalizados (GLM). Sin embargo, la selección de un modelo GAM es más complicada que la de un modelo GLM, esto debido a que además de seleccionar que variables incluir en el modelo, se debe simultáneamente decidir el suavizamiento que se utiliza para definir las funciones de suavizamiento.

Dentro de las variables explicatorias se pueden contar por ejemplo las variables ambientales u oceanográficas que generen una respuesta sobre la distribución de la abundancia de los recursos en estudio. Según Borchers *et al.* (1997), tanto el diseño del crucero como los métodos de estimación de las variables consideradas en las estimaciones directas de biomasa más que puramente diseño basadas son a su vez, parcialmente modelo basadas. Si bien la disposición de las estaciones de muestreo es de tipo sistemático, en este tipo de recursos la distribución de la densidad es altamente estratificada. De ahí que más que tratar el número en la región de muestreo como una cifra fija, con la varianza de los valores observados dependiente del diseño de muestreo, recomiendan una estrategia modelo basada (ICES, 1999). De este modo, la modelación basada en la metodología GAM permite establecer funciones de suavizamiento de los datos observados de densidad y que son lo suficientemente flexibles para permitir mantener las tendencias observadas en las densidades de los recursos. Este tipo de estrategia permite a su vez reducir el número de parámetros de estimación con respecto a los que utilizaría una estrategia basada en la estratificación.

Borchers *et al.* (1997) desarrollaron un modelo GAM de 2 estados o bietápico que es una extensión del método de estratificación propuesto por Pennington (1983), donde en una primera etapa, se realiza la separación de datos de presencia/ausencia de recurso, para luego en una segunda etapa las densidades distintas de cero son incorporadas en la modelación.

Esto significa que simultáneamente se incorporan modelos para suavizar la tendencia tanto para datos de presencia/ausencia como para abundancias distintas de cero con respecto al espacio y otras variables explicatorias, estos modelos son ajustados independientemente. En los GAM ajustados para presencia/ausencia se obtiene un estimado de la probabilidad que los recursos estén presentes en las localidades de muestreo y en el GAM para densidades diferentes de cero se obtiene un estimado de abundancia de los recursos dado que el recurso fue observado en esas localidades. Por lo tanto, el producto de los dos estimados corresponde al modelo de abundancia en esa localidad.

Una vez que se ha seleccionado un modelo y sus parámetros estimados, éste provee una superficie de la cobertura o envergadura del área explorada, con máximos en los puntos de

mayores densidades y valles o depresiones en los de menor densidad. La densidad esperada en algún punto es obtenida evaluando el valor de la superficie ajustada en ese punto. El estimado total de la abundancia o biomasa en el área de prospección es obtenido por la integración de la superficie de toda el área de estudio. La estimación analítica de la varianza del estimado de abundancia obtenida desde el modelo GAM no es fácil, por lo que se utiliza técnicas de remuestreo estadístico i.e. Bootstrap paramétrico, según se esquematiza en la Figura (2).

La selección de modelos adecuados se evalúa mediante la forma de los suavizamientos utilizados para las variables explicatorias así como de sus límites de confianza. A través de este análisis se puede verificar la existencia de posibles dependencias no lineales de la densidad, de ahí que modelos del tipo GLM presentan dificultades en modelar dichas dependencias. Así también se les puede asociar una distribución de probabilidad a los errores en los modelos GAM 1 y 2, por ejemplo de tipo Poisson para los GAM 1 y de tipo log-normal o gamma para los GAM 2.

En los proyectos FIP de langostino colorado (FIP 96-23) y amarillo (FIP 97-23) así como en las evaluaciones de camarón nailon se ha obtenido una pobre relación entre las variables ambientales y la densidad de estos recursos. Sin embargo, relaciones significativas se han observado principalmente entre variables espaciales (i. e. latitud, longitud y profundidad) y la densidad. Por lo tanto, en la evaluación de camarón nailon se privilegió la utilización de variables espaciales en la identificación y selección de modelos GAM. En la Tabla 1 se resume las variables espacio-temporales que fueron consideradas como explicatorias y que a su vez están disponibles para el conjunto de datos obtenidos.

Variable explicatoria	Abreviación
Latitud	Lat
Longitud	Long
Profundidad del fondo	Profondo
Fecha de muestreo	Fecha
Hora de muestreo	Hora
Embarcación	Emb
Distancia al contorno de profundidad de	D200
Gradiente de fondo	Gradfondo
Proximidad de muestras advacentes	Proxim
Distancia de la costa	Dcosta

Tabla 1. Variables espaciales y temporales utilizadas en la selección de modelo GAM.

¹ positiva hacia el oeste y negativa hacia el este del contorno de 200 m

Fig. 2. Esquema de estimación de la biomasa y abundancia mediante estimador GAM

Las variables de distancia al contorno de profundidad de referencia de 200 m y la distancia hasta la costa desde donde fue efectuado el lance de pesca, se determinaron utilizando mapas disponibles en el Programa Sinóptico de Pesca del Instituto de Investigación Pesquera. Estos mapas se encuentran digitalizados e incorporados a la base de información del Sistema de Información Geográfico SIG, ArcView 4.0. Las coordenadas medias de los lances de pesca efectuados en este estudio se incorporaron a través de este software y se generó una cobertura de puntos que fue sobrepuesta con coberturas de polígonos de línea de costa y de batimetría, extrayéndose finalmente las distancias calculadas.

El proceso de inferencia y estimación de un modelo GAM para estimar la biomasa del recurso camarón fue efectuado con la ayuda del programa estadístico S-Plus para Windows, versión 4.5. Luego de ajustado y seleccionado un modelo adecuado, la varianza del estimado de biomasa fue determinada mediante técnicas de remuestreo bootstrap, las que fueron implementadas directamente en S-Plus.

4.8.2.3. ESTIMADOR LOG-NORMAL. DISTRIBUCIÓN DELTA

Considerando que la captura por unidad de esfuerzo en las faenas de pesca comerciales y científicas orientadas a crustáceos tales como camarón nailon y langostinos (colorado y amarillo) se distribuye en forma asimétrica lognormal, tal distribución muestral puede ser descrita por lo que Aitchison & Brown (1969) llamaron la "Distribución Delta". Esta contiene una proporción de valores cero y otra de valores no-cero distribuidos en forma lognormal, en otras palabras, la Distribución Delta es una distribución lognormal modificada para incluir valores cero. Pennington (1983, 1986) sugirió que esta distribución puede ser un modelo útil para estimar la captura en número de peces en las redes de muestreo. McLennan & MacKenzie (1988) la han usado para estimar la abundancia de peces a partir de estudios acústicos.

Un estimador de varianza mínima insesgada de la media, c, y su varianza, var(c), para la Distribución Delta (Pennington, 1983) se define como

$$c = \begin{cases} \frac{m}{n} e^{(\bar{y})} G_m(s^2/2) & m > 1 \\ \frac{x_1}{n} & m = 1 \\ 0 & m = 0 \end{cases}$$
(47)

$$\operatorname{var}(c) = \begin{cases} \frac{m}{n} e^{(2\overline{y})} \left[\frac{m}{n} G_m^2 (s^2/2) - \left(\frac{m-1}{n-1} \right) \times G_m \left(\frac{m-2}{n-2} s^2 \right) \right] & m > 1 \\ \left(\frac{x_1}{n} \right)^2 & m = 1 \\ 0 & m = 0 \end{cases}$$
(48)

donde *n* es el número de lances, *m* es el número de valores no-cero, \overline{y} y s^2 son la media y varianza muestral, respectivamente, de los valores no-cero, transformados en forma logarítmica, x_1 es el valor único (no transformado) de los valores no-cero cuando m = 1, y

$$G_m(x) = 1 + \frac{m-1}{m}x + \sum_{j=2}^{\infty} \frac{(m-1)^{2j-1}x^j}{m^j(m+1)(m+3)\dots(m+2j-3)j!}$$
(49)

La serie que define $G_m(x)$ es una función de x (esto es, $x = s^2/2$ en la ecuación 9) y m es fácilmente evaluada para valores particulares de x y m usando un computador. Además, esta pertenece a una clase de las funciones hipergeométricas (Smith, 1990).

La estimación de biomasa (\hat{B}_D) y su varianza $(Var(\hat{B}_D))$ utilizando el índice de densidad media calculado mediante la Distribución Delta (\overline{D}_D) está definido por

$$\hat{B}_D = A \overline{D}_D \tag{50}$$

$$Var(\hat{B}_D) = A^2 Var(\overline{D}_D)$$
(51)

4.8.2.4. ANÁLISIS DE LA DISTRIBUCIÓN DE PROBABILIDADES DE LA CPUE

Es usual que en el contexto de una aproximación modelo-basada de estimación de la densidad media se asuma algún tipo de distribución conocida para la captura por unidad de esfuerzo. La transformación logarítmica es la más utilizada considerando una distribución log-normal de los datos, pero a veces esta transformación no es eficiente para reflejar la distribución de los datos. Pennington (1983) modeló la CPUE considerando una mezcla entre una distribución de probabilidad discreta para las observaciones con captura cero y una distribución de probabilidad continua para lances positivos (la distribución Delta), donde los lances positivos son también transformados a logaritmo.

Richards y Schnute (1992) generalizan la metodología desarrollada por Quinn (1985) para el análisis de datos transformados. En el contexto de este estudio se considera que la aleatoriedad es univariada para la CPUE ya que el esfuerzo de pesca se considera una cantidad fija y estándar. Si se designa por U a la CPUE, entonces la transformación Box-Cox de U queda definida por

$$T(U) = \begin{cases} (U^{\alpha} - 1)/\alpha & \text{para } \alpha \neq 0, y \\ \ln U & \text{para } \alpha = 0, \end{cases}$$
(52)

El parámetro α es el que define el tipo de transformación. La re-transformación a la escala original es, por lo tanto

$$U = S(T) = \begin{cases} (\alpha T + 1)^{1/\alpha} & \text{para } \alpha \neq 0, \text{ y} \\ \exp(T) & \text{para } \alpha = 0. \end{cases}$$
(53)

Considerando que la transformación de los datos debe generar una función de densidad de probabilidad normal para T, i.e.

$$f(T) = \frac{1}{\sqrt{2\pi}\sigma^{2}} \exp\left(-\frac{(T-\mu)^{2}}{2\sigma^{2}}\right),$$
 (54)

donde μ y σ^2 representan la media y varianza de la distribución de la variable T. La función de densidad de probabilidad para U se obtiene al transformar la función de densidad para T, la que de acuerdo con Richards y Schnute (1992) tiene la forma general

$$g(U) = f(T(U))\frac{\partial T}{\partial U},$$
(55)

y para la transformación Box-Cox por

$$g(U) = \frac{1}{\sqrt{2\pi\sigma^2}} U^{\alpha-1} \exp\left(-\frac{(T(U)-\mu)^2}{2\sigma^2}\right)$$
(56)

Si se considera una estimación numérica de los parámetros α , μ y σ^2 que caracteriza la distribución de U, la solución se encuentra utilizando métodos de máxima verosimilitud. La función de log-verosimilitud de los datos es

$$\ln L = \ln \left[\prod_{i=1}^{n} g(U_i) \right] = -\frac{n}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (T_i - \mu)^2 + (\alpha - 1) \sum_{i=1}^{n} \ln(U_i)$$
(57)

Los estimadores máximo verosímil se obtienen al tomar la derivada parcial de esta expresión con respecto a cada parámetro e igualando a cero. El tercer término de la ecuación solamente depende de α , por lo tanto estimador máximo verosímil de μ y σ^2 proveniente de la teoría de distribución normal, i.e.

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} T_i$$
(58)

$$\hat{\sigma}^{2} = \frac{1}{n} \sum_{i=1}^{n} (T_{i} - \hat{\mu})^{2} , \qquad (59)$$

donde T_i es evaluado para el máximo verosímil estimado de $\hat{\alpha}$. Las expresiones anteriores se pueden reemplazar en la función de log-verosimilitud, quedando una expresión más simple y función de α , i.e.

$$L(\alpha) = -\frac{n}{2} \left[\ln(2\pi\hat{\sigma}^2 + 1) \right] + (\alpha - 1) \sum_{i=1}^n \ln(U_i)$$
(60)

El estimado de la mediana es entonces:

$$\hat{m} = S(\hat{\mu}) \tag{61}$$

Una estimación numérica de la media puede ser encontrada mediante

$$\hat{\overline{U}} = \int_{0}^{\infty} U\hat{g}(U)dU$$
(62)

donde $\hat{g}(U)$ es la función de densidad de probabilidad evaluada en el nivel de los estimados máximo verosímiles. La moda puede ser encontrada maximizando la función en relación a U. Es mucho más eficiente determinar la moda y la media numéricamente.

De acuerdo con Seber (1982), la varianza de un estimado de tendencia central, e.g. la mediana \hat{m} , puede ser encontrada utilizando el Método de la Distribución Delta, i.e.

$$Var(\hat{m}) \approx \left[\frac{\partial S}{\partial T}\Big|_{T=\hat{\mu}}\right]^2 Var(\hat{\mu}),$$
 (63)

donde $Var(\hat{\mu}) = \hat{\sigma}^2 / n$, siendo *n* el tamaño de muestra.

Se requiere realizar algún método de inferencia estadística acerca del valor de α , con el objeto de probar la hipótesis nula que los datos siguen una distribución log-normal (α =0), raíz-cuadrada (α =0,5), o normal (α =1). De acuerdo con la teoría de los grandes números (tamaño de muestra), menos dos veces la log-verosimilitud sigue una distribución χ^2 . En consecuencia, intervalos de confianza para α pueden ser encontrados por

$$X = \ln(L(\hat{\alpha})) - \frac{1}{2}\chi_{p}^{2}(1)$$
(64)

donde X es un valor crítico, mientras que χ^2 es el valor crítico en el nivel *p* con un grado de libertad. Los límites superior e inferior para α corresponde a dos veces la log-verosimilitud es igual a X.

4.8.3. ESTIMADORES DISEÑO-BASADOS

El enfoque diseño-basado empleado se deriva de la teoría del muestreo de poblaciones finitas, y es conceptualmente diferente al del tradicional método del área barrida de la ciencia pesquera. La diferencia se origina en diferentes conceptos de la población. En muestreo de poblaciones finitas, la población es vista como una colección finita de unidades de muestreo vecinas e internamente homogéneas, mientras que el método del área barrida la población es vista como un conjunto infinito de puntos formando un volumen en el espacio. En este enfoque se va cuantificando el total de recurso en cada unidad de muestreo primaria y secundaria, y se va sumando para llegar al estimador de biomasa total. La densidad media no es conocida *antes* que la biomasa sino *después*. En vista de lo anterior, el principal supuesto es que la densidad calculada en cada lance representa una densidad homogénea en un bloque, cuyo tamaño está definido como de 1 milla náutica (1,852 km) de largo. Otro supuesto importante concierne a la función de detectabilidad (Thompson 1992), que corresponde al concepto de capturabilidad local (q) del área barrida, y que se asume perfecta, a falta de estudios específicos destinados al problema.

4.8.3.1. ESTIMADOR CUASI-DISEÑO-BASADO BOOTSTRAP

Este estimador ciertamente es insesgado respecto de un diseño de muestreo pero no del diseño implementado en la naturaleza sino de un diseño de remuestreo computacional. En ese sentido se le llama cuasi-diseño-basado, y comparte con los estimadores modelo-basados presentados previamente el hecho de estimar una densidad media para luego multiplicar por el área. Esta densidad media corresponde a

$$A_m(f) = \frac{1}{B_t} * \sum_{j=1}^{B_t} A_m(j)$$
(65)

siendo $A_m(j)$, un estimador de la CPUE promedio de la j-ésima muestra de tamaño n seleccionada con reposición de la muestra original, donde B_t representa la cantidad total de iteraciones preseleccionadas para efectuar el proceso bootstrap. El índice de biomasa media señalado, se calculó a través de la relación matemática:

$$A_m(j) = \frac{1}{n} * \sum_{i=1}^n A_m(i)$$
(66)

Además, la varianza de la biomasa se calcula como

$$Var(A_m(f)) = \frac{1}{B_t - 1} * \sum_{j=1}^{B_t} (A_m(j) - A_m(f))^2$$
(67)

El intervalo de confianza para el estimado de biomasa, con el nivel de confianza $(1-2\alpha)$, se encuentra dado por el método del percentil corregido o método BC (Efron y Tibshirani, 1993; Robotham y Castillo, 1987):

$$\hat{G}^{-1}(\phi|2Z_0 - Z_{\alpha}|); \quad \hat{G}^{-1}(\phi|2Z_0 - Z_{\alpha}|)$$
(68)

donde $Z_0 = \phi^{-1}(\hat{G}(\hat{A}))$, siendo ϕ^{-1} la función inversa de la distribución normal estándar, y \hat{G}^{-1} la función inversa de la distribución acumulada de G(S), definida por

$$G(A) = \Pr{ob(\hat{A}_x \le \hat{A})}$$
(69)

4.8.4. ESTIMACIONES DE LA DENSIDAD MEDIA Y VARIANZA POR EL METODO DE THOMPSON (1992).

Si Y_i es la cantidad de camarón capturado en el lance i-ésimo, entonces la densidad de la especie en el área de estudio se obtiene promediando las capturas por mn² en el área; es decir,

$$d = \frac{1}{N} \sum_{i=1}^{N} d_i, \quad \text{con} \quad d_i = Y_i / a(S_i),$$
(70)

donde $a(S_i)$, es el área cubierta por el lance i-ésimo (que es a su vez proporcional a su longitud).

Esta estrategia es de tipo diseño-insesgado, producto de la aleatoriedad de la ubicación del lance dentro de la transecta. De acuerdo con esto, d_i es un estimador insesgado de D_i , independientemente del proceso de selección adaptativa utilizado y del modelo usado para la población animal.

En este caso, el cuadrado medio del error (CME) de d_i , está determinado por la suma de los valores esperados de las varianzas condicionales, dadas las observaciones previas y el patrón espacial establecido; es decir,

$$E(d-D)^{2} = \frac{1}{N^{2}} \sum_{i=1}^{N} E(\operatorname{var}\{d_{i} / N(A), d_{h}, h < i\} .$$
(71)

El estimador convencional de la varianza es además un estimador insesgado del cuadrado medio del error de d, a pesar de que los tamaños de las muestras fueron determinados en forma adaptativa, (Thompson, 1992). Luego, el estimador es de la forma

$$c.m.e(d) = \frac{1}{N^2} \sum_{i=1}^{N} \frac{\sigma_{2_i}}{n(S_i)} \frac{1 - n(S_i)}{N} , \qquad (72)$$

donde

$$\sigma_i^2 = \frac{1}{n(S_i) - 1} \sum_{j \in S_i} \left(\frac{Y_{ij}}{a} - \frac{Y_i}{aN(S_i)} \right)^2$$
(73)

Los valores estimados para estas expresiones son obtenidos a partir de los cuadrados medios residuales de regresiones separadas de la captura en la estación i-ésima sobre la i-ésima-1, para

los pares de datos para capturas de menos de 50 Kg y luego separadamente para los pares de capturas de más de 50 Kg.

4.8.5. ABUNDANCIA Y BIOMASA A LA TALLA

Biomasas a la talla

De cada lance positivo se obtuvo una muestra biológica del recurso objetivo mediante muestreo aleatorio simple cuando la captura fue desplegada en la cubierta de popa, información que se utilizó para determinar la estructura de tallas y la proporción sexual. El procedimiento consistió en que, una vez que la pesca estuvo distribuida entre las cajas para la determinación de la captura, el personal técnico eligió al azar dos cajas, y de ellas se extrajo también al azar un número entre 300 y 500 individuos, que es la cifra máxima de individuos que se puede medir entre lances, simplemente por razones de tiempo disponible entre lances.

En aquellos casos en que por circunstancias de fuerza mayor (marejadas por mal tiempo climático, mal estado del mar, mucha captura en el lance anterior, etc), se dificultó la medición de los individuos a bordo, éstos fueron preservados en frío y desembarcados al término de la marea para ser medidos en laboratorio por el personal logístico en tierra. Para el crucero de la zona centro norte se contó con los laboratorios de la Universidad Católica del Norte-Campus Guayacán (Coquimbo), y para el caso del crucero de la zona sur se contó con los laboratorios de la Universidad de Concepción (Departamento de Oceanografía) y del Instituto de Investigación Pesquera VIII Región.

Dadas las anteriores muestras biológicas, la biomasa por sexo se define como la biomasa total por la proporción en peso de cada sexo, esto es:

$$\hat{B}_s = \hat{B}\hat{P}_s \tag{74}$$

Por su parte, la proporción sexual en peso se define como

$$P_s = \frac{B_s}{B}$$
(75)

En base a la información recolectada del muestreo biológico de la captura, la proporción sexual en peso puede ser estimada por

$$\hat{P}_s = \frac{\hat{F}(s)\hat{w}(s)}{\sum_s \hat{F}(s)\hat{w}(s)}$$
(76)

donde $\hat{F}(s)$ es la frecuencia numérica del sexo s y $\hat{w}(s)$ es el peso medio del sexo s. Por lo tanto, la biomasa por sexo es estimada por

$$\hat{B}_{s} = \hat{B} \frac{\hat{F}(s)\hat{w}(s)}{\sum_{s} \hat{F}(s)\hat{w}(s)}$$
(77)

donde para \hat{B} se utilizó tanto los estimadores diseño-basados como los modelo-basados. El error en la estimación de la proporción \hat{P} se consideró casi nulo, debido a los muy altos tamaños de muestra esperados para \hat{F} (>10000) y \hat{w} (>1000). Entonces la varianza de \hat{B}_s es

$$\operatorname{var}(\hat{B}_s) = \hat{P}_s^2 \operatorname{var}(\hat{B}) \tag{78}$$

Un procedimiento similar fue aplicado para la parcialización de la biomasa por categorías de talla (longitud cefalotorácica, *lc*), es decir que la biomasa para la categoría de talla *lc* es

$$\hat{B}_{lc} = \hat{B} \frac{\hat{F}(lc)\hat{w}(lc)}{\sum_{lc} \hat{F}(lc)\hat{w}(lc)}$$
(79)

El tamaño de muestra para F(lc) y w(lc) no fue tan grande como en la parcialización por sexo, debido a que hay muchas más categorías de tallas, pero aun así fue lo bastante grande en cada categoría de talla (sobre todo en F(lc)) como para ignorar esta fuente de varianza. De tal manera que la varianza de $\hat{B}(lc)$ también fue evaluada a través de

$$\operatorname{var}(\hat{B}_{lc}) = \hat{P}_{lc}^2 \operatorname{var}(\hat{B})$$
 (80)

Abundancia global y a la talla

Para cada uno de los estimadores globales de biomasa se estimó la abundancia en número global como

$$\hat{K} = \frac{\hat{B}}{\overline{W}}$$
(81)

donde \overline{w} es el peso medio proveniente de todos los individuos de la muestra biológica. Por ser la muestra muy grande (>2000) se ignoró esta fuente de error de tal manera que la varianza de la abundancia en número es

$$\operatorname{var}(\hat{K}) = \left(\frac{1}{\overline{W}}\right)^2 \operatorname{var}(\hat{B})$$
(82)

4.9. OBJETIVO ESPECÍFICO 3

Determinar la condición reproductiva del camarón nailon en el área y período de estudio.

4.9.1. FECUNDIDAD Y MADUREZ DE LOS HUEVOS

La metodología planteada para estimar la fecundidad del camarón nailon, corresponde a la descrita en Acuña y Arancibia (1996) y Acuña *et al.* (1997), extrayendo la masa total de huevos, los que son desprendidos mediante manipulación mecánica en agua de mar para evitar la deshidratación. Una vez desprendidos los huevos se hace un homogeneizado, el que se espesa con glicerina a un volumen constante de 150 ml; de este homogeneizado se obtienen tres

alícuotas de 100 microlitros, registrándose la cantidad de huevos presentes, calculando un promedio y extrapolando luego al volumen del homogeneizado. Experimentos previos señalan que con tres alícuotas se estabiliza el número de huevos contabilizados.

Sin embargo, el recuento se debe realizar en hembras que presentan los huevos en estado I ó II solamente, ya que los estados III y IV no deben ser considerados, debido a la pérdida de éstos que provoca la acción mecánica de la red y la manipulación de las hembras en estados de mayor desarrollo, tal como fue determinado por Acuña y Arancibia (1996) y Acuña *et al.* (1997). Con el objeto de producir resultados comparables con los obtenidos en otros estudios, la madurez de los huevos de camarón nailon se asimiló a la escala descrita por Palma (1996).

4.9.2. DETERMINACIÓN DEL POTENCIAL REPRODUCTIVO

El potencial reproductivo de las hembras se estimó de la misma manera como lo han hecho para el langostino colorado Roa y Bahamonde (1993) y Roa *et al.* (1997), y para el langostino amarillo por Roa *et al.* (1998). Se utilizó el modelo descrito por Restrepo y Watson (1991), indexado por posición espacial según la siguiente expresión:

$$E_{(x,y)} = Z_{h(x,y)} P_{(x,y)} G_{(x,y)}$$
(83)

donde *E* es el número de huevos por unidad de área, Z_h es la densidad numérica de hembras, *P* es la fracción de hembras que portan huevos, *G* es el número de huevos por hembras. La densidad en número de hembras fue

$$Z_n(x,y) = \frac{Z_w(x,y)}{\overline{W}_h(x,y)}$$
(84)

donde Z_w es la densidad en peso (ton km⁻²) de las hembras, \overline{W}_h es el peso medio de las hembras en la localidad (*x*, *y*). La densidad en peso de las hembras en cada localidad se estimó utilizando la siguiente ecuación:
$$Z_{w}(x,y) = Z_{tot}(x,y) \left[\frac{\overline{W}_{h} N_{h}}{\overline{W}_{h} N_{h} + \overline{W}_{m} N_{m}} \right] (x,y)$$
(85)

donde $Z_{tot}(x,y)$ es la densidad total (*i.e.* machos y hembras), \overline{W}_h y \overline{W}_m son los pesos medios de hembras y machos, respectivamente; N_h y N_m son el número de hembras y de machos en la muestra de la localidad (x, y), respectivamente.

Debido a las restricciones en la estimaciones de la fecundidad, para los efectos de este cálculo se utilizaron los antecedentes del Proyecto FIP N° 99-08 (Acuña *et al.*, 2000). La proporción de hembras maduras en cada localidad (P(x,y)) fue calculada a partir de la muestra biológica obtenida en cada lance. Una vez obtenidas las estimaciones locales, se utilizó la metodología geoestadística para mapear la distribución espacial del potencial reproductivo.

4.10. OBJETIVO ESPECÍFICO 4

Determinar la composición e importancia relativa de las especies que constituyan fauna acompañante de este recurso durante los cruceros de evaluación.

La fauna acompañante en la pesca de langostino es relativamente escasa en términos de aporte porcentual en peso respecto de la captura del recurso objetivo y lo mismo es válido en la pesca de langostino amarillo. En cambio, la pesca de camarón nailon es abundante en fauna acompañante de peces y crustáceos (Acuña *et al.*, 1999; 2000; Roa et al. 1997, 1998, 1999a).

El tratamiento de separación y pesaje de la fauna acompañante a bordo consistió de los siguientes procedimientos que se aplicaron a cada lance de pesca:

- a) se separó manualmente a bordo toda la fauna acompañante de la especie objetivo,
- b) se separaron todos los taxa de fauna acompañante al nivel de especies o grupos mayores (*e.g.* jaibas, langostino amarillo, langostino colorado, merluza común, rayas, lenguados, congrios, tiburones, pejerratas, etc.),

- c) en el caso de organismos pequeños (*e.g.* langostino amarillo, langostino colorado) se pesaron la totalidad de la captura y se tomó una submuestra para determinar el número de individuos por kg, con lo cual se determina la captura en número,
- d) en el caso de organismos de mayor tamaño (jaibas, peces, rayas y tiburones) se pesó la captura total de cada grupo y se contó el número total en la captura.

4.10.1. ANÁLISIS DESCRIPTIVO

El análisis descriptivo apunta a conocer por estrato de profundidad, por estrato latitudinal, por Región, y globalmente el aporte porcentual en peso del listado completo de los ítems que componen la fauna acompañante, tanto respecto de la captura total como de la captura de camarón nailon, así como la frecuencia de ocurrencia y el volumen de captura de cada una de las principales especies de la fauna acompañante.

En primer lugar, se agrupó la fauna acompañante del camarón nailon, confeccionando un listado completo, agrupando las especies en base a estratos de profundidad de 50 m. Finalmente, las especies acompañantes de la captura de camarón nailon se agruparon por Región. Para estas clasificaciones se utilizaron los macros de Tablas Dinámicas de la planilla Excel. Los resultados se reportan gráfica y tabuladamente, en términos de aporte porcentual en peso respecto del total de la captura y respecto de la captura de camarón nailon, en términos de la frecuencia de ocurrencia, y en términos de la captura total.

Para el caso de las especies que no se puedan identificar de inmediato por parte del personal técnico a bordo, se asignó nombres arbitrarios y descriptivos y se llevó una muestra a tierra para su identificación en base a Andrade y Báez (1980), Pequeño y Lamilla (1985), Ojeda y Avilés (1987), Meléndez y Meneses (1989), Kong *et al.* (1988) y otros.

4.10.2. IDENTIFICACIÓN Y CARACTERIZACIÓN ESPACIAL DE COMUNIDADES

El análisis de la fauna acompañante presente en la pesquería del camarón nailon (*Heterocarpus reedi*), resulta de gran interés toda vez que las capturas, estandarizadas por el esfuerzo, pueden

ser consideradas como reflejo de la abundancia relativa de las especies en el medio. Esta información, analizada con métodos numéricos permite distinguir asociaciones específicas, cuya importancia radica en que pueden ser reflejo de la estructura de la comunidad a la que se asocia la especie principal.

En Chile se ha utilizado la fauna acompañante de las capturas de camarón nailon (Acuña y Arancibia, 1996; Acuña *et al.*, 1997; 1999; 2000a,b) para efectuar la caracterización de las comunidades a las que se asocian estos recursos. Este análisis ha consistido básicamente en identificar asociaciones específicas por medio de métodos multivariados, análisis de clasificación y ordenación. Recientemente, esto ha sido complementado con la verificación de la existencia de diferencias en la estructura de las asociaciones específicas por medio de curvas *ABC* (*Comparación Abundancia/Biomasa*) (Acuña *et al.*, 1999; 2000). Los resultados de estas comparaciones permitieron distinguir diferencias entre las asociaciones específicas tanto en un sentido batimétrico como latitudinal.

Otra alternativa para probar la hipótesis nula de ausencia de diferencias entre comunidades es el método de permutación no paramétrica denominado ANOSIM. Esta prueba ha sido ampliamente utilizada para contrastar la estructura de comunidades de peces (Fennessy *et al.*, 1994), macroinfauna (Carrasco *et al.*, 1999), meiofauna (Warwick *et al.*, 1997) y macroepifauna (Chapman & Underwood, 1999; Kraufvelin, 1999). Su ventaja reside en que entrega un coeficiente de similitud global y, además, para cada par de comparaciones con su respectivo valor de significancia. Por lo tanto, en el presente estudio las comunidades identificadas serán comparadas a través de las curvas *ABC* y a través del Análisis de Similitud con el propósito de indagar en diferencias en las asociaciones específicas en la escala espacial.

4.10.2.1. IDENTIFICACIÓN DE COMUNIDADES

Se identificó en la escala espacial las asociaciones específicas por medio del Método de Clasificación (Análisis de Cluster) (Clifford & Stephenson, 1975), utilizando el software PRIMER (Plymouth Marine Laboratory; Clarke & Warwick, 1994). Este análisis consiste en comparar de a pares todos los lances de pesca, en función de la cpue de cada especie, utilizando el Indice de Similitud de Bray-Curtis (*IBC*, Bray & Curtis, 1957), cuya expresión es la siguiente:

$$IBC = \frac{\sum_{i=1}^{p} |\mathbf{x}_{ij} - \mathbf{x}_{ik}|}{\sum_{i=1}^{p} (\mathbf{x}_{ij} + \mathbf{x}_{ik})}$$
(86)

donde p: número de puntos de muestreo; X_{ij} : es la cpue de la especie i en el punto de muestreo j, X_{ik} : es la cpue de la especie i en el punto de muestreo k.

Con los valores de similitud se construye una matriz de similitud, la que es utilizada para efectuar el análisis de clasificación (Fig. 3). Para balancear los valores atípicos (especies raras) con los valores comunes (especies comunes), se transforma los datos originales de abundancia relativa (cpue) aplicando raíz cuarta ($\sqrt{\sqrt{}}$), según el criterio propuesto por Clarke & Warwick (1994).

Fig. 3. Esquema de pasos en un análisis multivariado basado en Indice de Similitud para identificar asociaciones específicas (Clarke & Warwick, 1994).

4.10.2.2. DETERMINACIÓN DE DIFERENCIAS ENTRE COMUNIDADES

a) Análisis de similitud, ANOSIM

Una vez que se ha identificado las diferentes asociaciones de especies a través del Análisis de Clasificación, éstas fueron comparadas entre sí para detectar diferencias en su estructura. Se aplicó un método análogo a MANOVA, denominado ANOSIM (*Analysis of Similarities de* Clarke & Green, 1988). Los procedimientos de ANOSIM se encuentran implementados en el software PRIMER, estos consisten en una permutación no paramétrica aplicada a la matriz de similitud de rangos basada en la ordenación o clasificación de las muestras. Este método entrega el coeficiente R y su respectivo nivel de significancia, y se encuentra definido por la siguiente ecuación:

$$R = \frac{(\boldsymbol{\gamma}_B - \boldsymbol{\gamma}_w)}{n(n-1)/4}$$
(87)

donde, r_B : es el promedio de los rangos de similitud de todos los pares de réplicas en los diferentes sitios; r_W es el promedio de todos los rangos de similitud entre replicas dentro de cada sitio.

El valor R se encuentra ente -1 y +1. Sin embargo, valores menores a 0 son poco probables, ya que correspondería a zonas de pesca distintas con valores de similitud mayores a los valores de similitud de puntos geográficos dentro de estas zonas de pesca. Un valor igual o aproximado a cero señala que la similitud entre y dentro del las zonas geográficas es aproximadamente el promedio, es decir, las asociaciones específicas no muestran diferencias en la estructura de sus valores de cpue. Un valor igual a 1 ocurre cuando todas las réplicas de una zona de pesca son iguales entre sí y distintas a las réplicas de cualquier otra zona de pesca en la comparación, es decir, las asociaciones específicas muestran diferencias en la estructura de sus valores de cpue.

b) Comparación abundancia/biomasa o curvas ABC

b.1) Método gráfico

Las asociaciones faunísticas fueron comparadas también con el método de *Comparación Abundancia/Biomasa* (*ABC*) (Warwick, 1986) a través de la construcción de una *curva k-dominancia* (Lambsead *et al.*, 1983), la que consiste en clasificar de manera decreciente, en términos de abundancia y biomasa, los taxa mayores presentes en las muestras, graficando en escala logarítmica versus la abundancia y biomasa, en términos de porcentaje, en una escala acumulativa. La forma de la curva de abundancia y biomasa, dependiendo de la estructura de la

asociación, y será distinta a la forma que presenten dichas curvas en una asociación de especies diferentes. En comunidades sin perturbación y, por tanto, más diversas, la curva de biomasa se encuentra sobre la curva de abundancia (Fig. 4a), aunque una situación intermedia (Fig. 4b) ocurren cuando ambas curvas son similares. Altas perturbaciones están representadas cuando la curva de abundancia está sobre la curva de biomasa (Fig. 4c). La ventaja de utilizar este método es que permite comparar la distribución de abundancia y la distribución de biomasa.

"Ranking" de importancia de especies (escala logarítmica)

Fig. 4: *Curva k-dominancia* hipotética para abundancia y biomasa, mostrando distintos grados de perturbación.

c) Método analítico (estadígrafo W)

Complementariamente al método gráfico, se aplicará un método analítico para detectar diferencias en la estructura de las diferentes asociaciones de especies identificadas. Este método consiste en calcular el estadístico W (Clarke, 1990), cuya expresión es:

$$W = \sum_{i=1}^{S} (B_i - A_i) / [50(S-1)]$$
(88)

donde: B_i : biomasa de la especie *i*, A_i : abundancia de la especie *i*, S: número de total de especies.

El estadístico W puede tomar valores que van desde -1 hasta +1. Cuando W tiende a 1 es equivalente a comunidades sin perturbación y más diversas. Cuando el valor de W es próximo a cero ello equivale a una situación intermedia; y cuando tiende a -1 ello es equivalente a comunidades fuertemente perturbadas y menos diversas. Para probar la significancia de las diferencias en los valores de W, se utiliza la prueba H de Kruskal Wallis, según los

procedimientos descritos por Sokal & Rohlf (1981). Para obtener los intervalos de confianza del estadístico *W* se aplicará el método de "Acuchillamiento de Datos" (Jaksic' & Medel, 1987), el que consiste en recalcular el valor de *W*, extrayendo los valores de abundancia y biomasa de una de las especie que compone la muestra. Posteriormente, estos valores se reemplazan y se extraen los pertenecientes a una segunda especie, hasta realizarlo con la totalidad de las especies que componen la muestra. Con esto se obtiene una familia de valores de *W*, cuya magnitud es muy próxima al valor original y permiten calcular una media y sus valores de dispersión.

d) Comparación univariada

La comparación univarada es un complemento a las pruebas anteriores y su objetivo es conocer los cambios en la abundancia relativa (CPUEe) de las especies más importantes presentes en las comunidades identificadas. Para la comparación global se utilizará la prueba H de Kruskal Wallis (Sokal & Rohlf, 1981). La comparación de pares se efectuó por medio de la prueba de U de Mann-Whitney (Sokal & Rohlf, 1981), y cuando sea necesario realizar más de una comparación de pares se aplicara el método de Bonferroni, el que consiste en dividir el valor de alfa por el número de comparaciones con el propósito de evitar el error de Tipo I. (Mendenhall & Sincich, 1997)

4.11. SITUACIÓN DEL STOCK

4.11.1. PRODUCCIÓN SECUNDARIA

Roa y Quiñones (1998), a través de un análisis teórico basado en la ecuación de crecimiento de von Bertalanffy y la tasa instantánea de renovación P/B, determinaron que la ecuación que rige la relación entre P/B y tamaño corporal es de la forma

$$\log(\frac{P}{B}) = \log(k\beta) + \log\left[\left(\frac{W}{W_{\infty}}\right)^{-\frac{1}{\beta}} - 1\right]$$
(89)

donde (*P/B*) es la tasa de renovación, k el coeficiente de crecimiento de Von Bertalanffy, β el coeficiente de la relación longitud peso, W es el peso promedio de la clase de tamaño y W_{∞} es el peso asintótico de los individuos del stock.

Considerando que el camarón nailon crece como promedio anual según el modelo de von Bertalanffy (Roa, 1993b, Roa y Tapia, 1998), entonces se tiene que:

$$W(t) = W_{\infty} [1 - e^{-k(t - t_0)}]^{\beta}$$
(90)

Luego, la ecuación puede ser reformulada de la siguiente manera :

$$\frac{P}{B} = k\beta \frac{e^{-k(t-t_0)}}{1 - e^{-k(t-t_0)}}$$
(91)

donde t_0 es la edad a tamaño cero. Para transformar esta ecuación en una más apropiada para estimar producción a partir de la estructura de tallas de la población, la ecuación puede expresarse en términos de longitud corporal como

$$L(t) = L_{\infty} [1 - e^{-k(t - t_0)}]$$
(92)

donde L_{∞} es el largo asintótico. Un reordenamiento algebraico de las ecuaciones anteriores conduce a

$$\hat{P} = \hat{B} \sum_{cl=1}^{S} \frac{F(lc)w(lc)}{\sum_{cl=1}^{S} F(lc)w(lc)} k\beta(\frac{L_{\infty}}{L_{cl}}-1)$$
(93)

donde \hat{B} es la biomasa total estimada, y la sumatoria es a través de las categorías de tallas, *S* siendo el número de clases de tamaños. Esta ecuación de producción permitirá tener una estimación de la producción esperada de biomasa para el siguiente año, lo que es altamente relevante para conocer la situación del recurso. Esta ecuación de producción permite tener una estimación de la producción esperada de biomasa para el siguiente año, lo que, al ser intrínsecamente talla-estructurada, es aplicable a un amplio espectro de organismos. Estas características hacen que el modelo de Roa y

Quiñones (1998) muestre ventajas comparativas respecto a otro tipo de modelos para estimar producción biológica, algunos de los cuales requieren de un tiempo considerable para estimar la edad de los individuos, presentando además dificultades metodológicas en el proceso.

Los parámetros de crecimiento a ser utilizados se obtuvieron de la literatura y las estimaciones de biomasa provienen de secciones anteriores de este proyecto, considerando sólo la estimación de biomasa con menor varianza, y las frecuencias de tallas y pesos medio de los muestreos biológicos contemplados en el estudio. Además, la varianza del estimado de producción se calculará a través de remuestreo Monte Carlo, tomando en consideración que k y L_{∞} describen una distribución normal bivariada asimétrica, utilizando el algoritmo de remuestreo de distribuciones normales bivariadas de Roa *et al.* (1999). Se ignoró la varianza debida a la frecuencia de tallas y a los pesos medios debido al gran tamaño de muestra que se utilizó en este cálculo global.

Para la estimación de producción secundaria se separan machos y hembras, debido a que los parámetros de crecimiento de esta especie presentan diferencias significativas por sexo. En la Tabla 2 se presenta los parámetros de crecimiento de la ecuación de von Bertalanffy usados en la estimación de producción secundaria.

Tabla 2. Parámetros de crecimiento de la ecuación de von Bertalanffy usados en la estimación de producción segundaria de camarón nailon. Los errores estándar se muestran en paréntesis. K es la tasa intrínseca de crecimiento, L∞ es la longitud asintótica, β es el parámetro de la relación longitud-peso.

	L∞ (mm)	K (año ⁻¹)	β
Machos	40.68 (6.01)	0.199 (0.07)	2.84 (0.028)
Hembras	48.34 (6.55)	0.174 (0.05)	3.19 (0.017)

4.11.2. RECURSO CAMARÓN NAILON

Se utilizó la abundancia en número por tallas de camarón nailon, por sexo, cuantificada durante el período del crucero de evaluación con el método geoestadístico. Se considera que la biomasa

cuantificada sólo da cuenta del stock vulnerable y no de la biomasa total, ya que la estructura de tamaños es función tanto de la selectividad/vulnerabilidad de los ejemplares al arte de pesca como del reclutamiento.

Para determinar la abundancia total (tanto de la fracción incompletamente vulnerada como vulnerada), se utilizó la siguiente ecuación de sobrevivencia para reconstruir la abundancia desde la talla más grande (j= 43 mm LC) hasta la más pequeña encontrada en los datos de frecuencia de tallas:

$$N_{t} = N_{t+\Delta t} \exp[(S_{t}F_{c} + M)\Delta t]$$
(94)

donde t representa la edad estimada para el límite inferior de la clase de longitud j, Δt es el tiempo transcurrido entre el límite inferior y superior del intervalo de longitud j, N es el número de individuos, S es la selectividad, F_c es la mortalidad por pesca de la fracción completamente reclutada, M es la tasa instantánea de mortalidad natural, asumida constante para todas las tallas. Tanto en la evaluación de stock como en el análisis de puntos biológicos de referencia se utilizó una tasa de mortalidad natural M = 0,2 año⁻¹. Este valor es una aproximación al valor estimado en 0,18 año⁻¹ utilizando la ecuación empírica de Brey & Cage (1997).

Para estimar el tiempo transcurrido entre el límite inferior y superior de cada clase de talla (Δt), se utilizó los parámetros de crecimiento del modelo de von Bertalanffy, i.e.

$$\Delta t = K^{-1} Ln \left[(L \infty - L_j) / (L \infty - L_{j+1}) \right]$$
(95)

y la edad relativa (t-t₀) a la longitud L en el j-ésimo intervalo de tallas, por:

$$t = -\left(\frac{1}{K}\right) \ln\left[1 - \frac{L_j}{L\infty}\right]$$
(96)

donde K y $L\infty$ son parámetros del modelo de crecimiento de von Bertalanffy, K es el coeficiente de crecimiento (año⁻¹), $L\infty$ es la longitud asintótica (mm), y L_j representa la longitud en el j-ésimo intervalo de tamaño. Los parámetros de crecimiento disponibles para el camarón nailon se presentan en la Tabla 3, habiéndose utilizados en este estudio aquellos comunicados por Canales *et al.* (1999) porque fueron los más verosímiles en la evaluación y porque fueron determinados sin diferenciar sexos.

	$\Gamma\infty$	K	t ₀	φ'	
Sexo	(LC, mm)	(año ⁻¹)	(año)		Fuente
Machos	37,7	0,343	-0,117	2,688	Ziller (1993)
Hembras	43,9	0,305	0,170	2,769	
Machos	40,7	0,199	-0,809	2,518	Acuña et al. (1997)
Hembras	48,3	0,174	-0,510	2,608	
Machos	52,1	0,105	0,508	2,455	Pavez et al. (1996)
Hembras	52,9	0,149	0,614	2,620	
Ambos	46,3	0,138	0,374	2,471	Canales et al. (1999)
Machos	40,7	0,199	-0,809	2,518	Roa & Erntz (1996)
Hembras	48,3	0,174	-0,510	2,608	

Tabla 3. Parámetros de crecimiento en longitud de camarón nailon.

El patrón de explotación se asumirá logístico y determinado por tres parámetros $(p_1, p_2 y p_3)$, i.e.

$$S_{t} = \left[1 + \exp(p_{1} - p_{2}(\overline{L} - \overline{L}_{1})^{p_{3}}\right]^{-1}$$
(97)

donde L barra es la marca de clase y L₁ barra es la marca de clase de la primera clase de longitud.

En este sistema de ecuaciones, los parámetros desconocidos son la abundancia en número de la clase de longitud más grande (N_m), la tasa de mortalidad por pesca en la fracción completamente

vulnerada (F_c) y los parámetros que describen el patrón de explotación, es decir: p_1 , p_2 y p_3 del modelo logístico.

La estimación de los parámetros desconocidos se controlará a través de la siguiente función objetivo:

$$L_{1} = \frac{1}{2\sigma_{N}^{2}} \sum_{j=1}^{k} \left[\ln(N_{t}^{Obs}) - \ln(N_{t}^{Est}) \right]^{2}$$
(98)

que corresponde a la parte negativa de una función de verosimilitud. En la función objetivo, N_t^{Est} representa la abundancia promedio vulnerable, i.e.

$$N_{j}^{Est} = S_{j}N_{j}(1 - exp(-(M + S_{j}F_{c})\Delta t))/(M + S_{j}F_{j})$$
(99)

Con el objeto de otorgar estabilidad al proceso de estimación, se agregará una penalización para el parámetro F_c consistente en incorporar la siguiente función de verosimilitud al proceso de estimación, a saber:

$$L_{2} = \frac{1}{2\sigma_{Y}^{2}} \left(\ln(Y^{Obs}) - \ln(Y^{Est}) \right)^{2}$$
(100)

donde Y^{Obs} representa la captura en peso observada y acumulada (cuota de captura anual = 5000 t). La captura en peso estimada desde el modelo se realizará por

$$Y^{Est} = \sum_{j} W_{j} S_{j} F_{c} N_{j} (1 - \exp(-(M + S_{j} F_{c}) \Delta t)) / (M + S_{j} F_{j})$$
(101)

donde el subíndice j representa clases de tallas, w es el peso promedio de la clase de longitud j, mientras que S, F_c, M y N fueron definidos previamente. Se considera adecuado incorporar una

variable lambda que será determinada a priori como un supuesto no informativo de la contribución de los datos de captura a la log-verosimilitud, i.e.

$$\lambda_{Y} = 1/(2\sigma_{Y}^{2})$$
(102)

La función objetivo corresponde a la suma de las funciones de log-verosimilitud negativas. En el modelo, la biomasa vulnerable viene dada por la siguiente expresión:

$$\hat{B} = \sum_{j} W_{j} S_{j} N_{j} (1 - \exp(-(M + S_{j} F_{c}) \Delta t)) / (M + S_{j} F_{j})$$
(103)

4.11.3. ANÁLISIS DE LA SITUACIÓN

A partir de los resultados de la estimación de la abundancia, la situación del recurso se analizó comparando la mortalidad por pesca actual (F_c) con puntos biológicos de referencia provenientes de un análisis de rendimiento y biomasa por recluta. El análisis de rendimiento por recluta se realizó talla-estructurado utilizando la ecuación de sobrevivencia :

$$N_{t+\Delta t} = N_t \exp[-(M + S_t F_c) \Delta t]$$
(104)

donde la abundancia inicial en la clase de longitud más pequeña se considera un recluta, i.e. N(j=1) = R=1. La captura por recluta (YPR) se estimó de acuerdo con

$$YPR = \sum_{j} w_{j} S_{j} F_{c} N_{j} (1 - exp(-(M + S_{j} F_{c}) \Delta t)) / (M + S_{j} F_{c})$$
(105)

La biomasa por recluta (SPR) se determinó según la siguiente ecuación:

$$SPR = \sum_{j} m_{j} w_{j} N_{j} (1 - exp(-(M + S_{j} F_{c}) \Delta t)) / (M + S_{j} F_{c})$$
(106)

donde m_j representa la ojiva de madurez sexual. Se utilizó la ojiva de madurez comunicada por Acuña et al. (1997).

A partir de las curvas de YPR y SPR en función de Fc, se determinó los siguientes puntos biológicos de referencia:

Fmax Tasa de mortalidad por pesca a la cual se obtiene el máximo rendimiento por recluta. F_{max} se estima maximizando el YPR variando F. Tasa de mortalidad por pesca al nivel del 10% de la pendiente en el origen de la $F_{0.1}$ curva de rendimiento por recluta (Gulland y Boerema, 1973). $F_{2/3}$ Tasa de mortalidad por pesca a la cual la biomasa del stock desovante por recluta se reduce a 2/3 de la biomasa desovante virginal. Tasa de mortalidad por pesca a la cual la biomasa del stock desovante por F_{40%} recluta se reduce al nivel del 40% del stock desovante por recluta. F=M Tasa de mortalidad por pesca igual a la tasa instantánea de mortalidad natural. Tasa de mortalidad por pesca a la cual la biomasa del stock desovante por F_{20%} recluta se reduce al nivel del 20% del stock desovante por recluta.

El $F_{0,1}$ (Gulland & Boerema, 1973) se define en términos matemáticos como la tasa de mortalidad por pesca a la cual la pendiente de la curva de captura en peso por recluta (dY/dF) es 10% de la pendiente en el origen, *i.e.*

$$\frac{dYPR}{dF}\Big|_{F=F_{0,i}} = 0, I\frac{dYPR}{dF}\Big|_{F=0}$$
(107)

La mortalidad por pesca que maximiza la captura por recluta es F_{max} y ocurre cuando la pendiente de la función de captura por recluta es cero veces la pendiente en el origen. Así, $F_{0,1}$ será siempre menor que F_{max} y, por lo tanto, una mortalidad por pesca más baja. Una de las ventajas de $F_{0,1}$, desde el punto de vista matemático, es que esta es calculada siempre en casos donde F_{max} no es definido muy claramente. Además, la mortalidad por pesca $F_{0,1}$ es menos sensitiva a pequeños cambios en el crecimiento o en el patrón de explotación (selectividad del arte) (Rivard & Maguire, 1993). $F_{2/3}$, $F_{40\%}$ y $F_{20\%}$ se estiman resolviendo las siguientes ecuaciones, respectivamente:

$$SPR(F_{2/3}) - \frac{2}{3}SPR(F=0) = 0$$
 (108)

$$SPR(F_{40\%}) - 0.4 \cdot SPR(F = 0) = 0$$
(109)

$$SPR(F_{20\%}) - 0.2 \cdot SPR(F = 0) = 0$$
(110)

5. **RESULTADOS**

5.1. ASPECTOS OPERACIONALES DE LOS CRUCEROS

En la Tabla 4 se resumen las actividades que se ejecutaron con los barcos arrastreros participantes en el estudio. La programación propuesta tomaba en cuenta la mejor época para realizar la prospección, de acuerdo a los hallazgos del modelo de simulación dinámico que predice la biomasa, las capturas y las CPUE en forma temporal y espacial, desarrollado en la Universidad Católica del Norte (Acuña *et al.*, 1999; 2000; Pérez *et al.*, 2000). Sin embargo, debido a la necesidad de cumplir algunos compromisos anexos al estudio como reuniones de coordinación con el FIP e investigadores del Proyecto paralelo sobre evaluación de los dos langostinos (FIP 2001-06) y la tramitación de una Pesca de Investigación, las actividades se iniciaron recién el día 9 de junio de 2001, con lo cual se produjo un desfase en el período de inicio originalmente propuesto de mediados de mayo.

	PAM FOCHE	PAM NISSHIN MARU	PIONERO
Puerto Base de Operaciones	Caldera y Coquimbo	San Antonio y Tomé	Caldera
Institución Responsable*	U. Católica del Norte	U. de Concepción	U. Católica del Norte
Tripulación Técnica	1 Técnico	2 Técnicos	1 Técnico
Coordinador Logístico	Ximena Bennett	Luis Poblete	Ximena Bennett
Personal de Apoyo en Tierra	1 Técnico 1 Vehículo	1 Técnico 1 Vehículo	1 Técnico 1 Vehículo
Implementación naves	Ultima semana de mayo 2001	Ultima semana de mayo 2001	Ultima semana de mayo 2001
Rango de Transectas	1 a 63,5	66 a 103	29 a 38
Número de Lances	209 lances	176 lances	21 lances
Fecha de Inicio de Muestreos	9 de junio 2001	23 de junio 2001	27 de junio 2001
Fecha Final de los Muestreos	4 de Agosto de 2001	27 de Julio de 2001	29 de Junio de 2001

 Tabla 4.
 Programa de operación de las naves, transectas, zonas, número de lances y período de actividades.

El PAM Industrial 1("FOCHE") operó entre las Regiones II y IV, cubriendo el muestreo entre las transectas 1 y 63,5; mientras que el PAM Industrial 2 ("NISSHIN MARU") operó entre las Regiones V y VIII, cubriendo el muestreo entre las transectas 66 y 103, mientras que la nave artesanal ("PIONERO") operó en la extensión de las transectas hacia la zona de reserva artesanal de la III Región, entre el límite norte de la Región y Caleta Pajonales (transectas 29 a 38).

5.2. LANCES, REGISTROS DE POSICIÓN Y DISTANCIA RECORRIDA EN CADA LANCE

Según el diseño original, se efectuó 102 transectas (primera etapa del diseño) de las que se efectuaron efectivamente 94, a lo anterior se le agregaron 43 transectas adaptativas (segunda etapa del diseño), totalizando 137 transectas. En total se efectuó 406 lances, de los que 186, equivalentes al 45,8% presentaron algún registro de camarón nailon, aunque solo en 142 lances, equivalente al 35% se definen como los lances "exitosos", utilizados en la evaluación posteriormente.

Los registros de los lances efectuados por nave, con fecha, hora, geoposición, distancia barrida, batimetría, pesca de la especie objetivo y otros datos crudos y estandarizados a km-lineal, son presentados en el Anexo 1. La cantidad de lances efectuados por Región son presentados en la Tabla 5. Se define "km-lineal" al producto entre la abertura de punta de alas (APA) y la distancia barrida por la red (d), y se expresa en unidades de superfície (km² o mn²). La distancia recorrida por la red es el producto entre la velocidad de la nave y el tiempo de arrastre efectivo.

Tabla 5. Número de lances efectuados por Región para la captura de camarón nailon.

Región	N° lances
II	$\overline{70}$
III	53
IV	106
V	56
VI	28
VII	49
VIII	44
Total	406

5.3. DETERMINACIÓN DEL ANCHO DE BARRIDO DE LA RED (APA)

Para aplicar el procedimiento descrito en la Metodología, se realizó las siguientes mediciones a bordo:

- Longitud cable de cala durante el lance de pesca.
- Profundidad del fondo marino durante el lance de pesca.
- Medición del ángulo de inclinación del cable de cala, denominado Beta.
- Medición de la separación entre las pastecas de los cables de cala.
- Medición de la separación de los cables de cala a una distancia de 2 m de las pastecas, lo que permitió calcular el valor del ángulo de separación, denominado Alfa.

Para realizar estas mediciones a bordo, se consideró aquellas condiciones de mar que permitiesen una adecuada lectura de los instrumentos utilizados para el efecto. Las mediciones fueron realizadas cuando el barco estaba siguiendo una trayectoria recta durante el arrastre, es decir, lo más estable posible, evitando medir cuando éste se encontraba escorado o bien efectuando alguna maniobra de cambio de rumbo.

No obstante lo anterior, cabe señalar que durante el período de muestreo las condiciones meteorológicas fueron irregulares, presentándose situaciones de fuertes vientos y de mal tiempo que dificultaron contar con las condiciones mínimas requeridas, tanto de estabilidad de la embarcación como de seguridad para los muestreadores, para una adecuada medición a bordo tanto de ángulos como de separación de cables de cala. Por esta razón fue imposible registrar los ángulos requeridos para la totalidad de los lances de pesca, aunque afortunadamente se cuenta con datos para los lances positivos utilizados para la evaluación.

Cabe señalar que durante la estadía en puerto de las tres embarcaciones, se levantó la información tanto de las redes y portalones, como de los cables de su maniobra, lo que permitió confeccionar los planos respectivos, según normas FAO, los que se incluyen en el Anexo 2.

Con la información de los planos y con los valores obtenidos en cada lance de pesca, se utilizó el siguiente procedimiento de cálculo:

- 1º Se estimó la longitud que proyecta el cable de cala en el eje X.
- 2º Se estimó la distancia de separación entre los portalones.
- 3° Se estimó la separación entre punta de alas de la red durante el arrastre.

Con relación a los valores de APA estimados a partir de la información obtenida en los lances de arrastre, se puede señalar que éstos son coherentes con lo señalado en la literatura. En efecto, según Prado y Dremière (1988), la abertura punta de alas en redes de arrastre de fondo oscila alrededor del 50% de la longitud de la relinga superior.

La APA promedio del PAM "Foche" en los lances positivos utilizados en la evaluación corresponde a 14,68 m; la del PAM "Nisshin Maru III" a 13,48 m; y la de la L/M "Pionero" a 18,15 m (Tabla 3). El listado de la información completa de estos lances se entrega en el Anexo 1.2.

Tabla 6.Abertura de punta de alas (APA, m) promedio y otros estadígrafos para los PAMs
"FOCHE" y "NISSHIN MARU III" y de la L/M "PIONERO" en los lances positivos
utilizados en la evaluación.

Estadígrado APA	"FOCHE"	"NISSHIN MARU"	"PIONERO"
Promedio	14,68	13,48	18,15
Varianza	2,29	2,12	2,97
Mediana	15,01	13,70	17,98
Máximo	18,18	18,01	20,15
Mínimo	12,05	11,01	16,47
Ν	85	53	4

Para establecer algún tipo de dependencia de la variable APA en función de la profundidad de operación, se intentó ajustar ambas variables a un modelo de regresión lineal simple. Sin embargo, las valores obtenidos indicaron que en esta pesquería de camarón, estadísticamente no existe relación lineal entre APA y la profundidad de arrastre.

Cabe señalar que similar situación ocurre en otras pesquerías de arrastre, donde las tácticas de pesca que generalmente utilizan los patrones de los barcos no están determinadas por la profundidad del caladero, sino que de variables tales como la estacionalidad, las condiciones ambientales, la experiencia del patrón y otras (G. Martínez, com. pers.)¹.

De igual modo, al intentar relacionar la APA con la longitud del cable de cala no se obtiene relaciones estadísticamente validadas entre ambas variables. En todo caso, el no haber encontrado una relación estadística entre APA vs. profundidad y APA vs. longitud del cable de arrastre, desde el punto de vista metodológico no tiene mayor implicancia ya que esta metodología no presenta ningún tipo de supuesto o requerimiento adicional a los antes señalados. Es decir, *no es requisito que exista relación lineal entre la APA y la profundidad para aplicar el método de Koyama* (G. Martínez, com. pers.)¹.

¹ Guillermo Martínez G. Ingeniero Pesquero, Universidad Católica de Valparaíso.

5.4. OBJETIVO ESPECIFICO 1

Determinar la distribución espacial del recurso camarón nailon en el área de estudio.

5.4.1. IDENTIFICACIÓN DE CALADEROS Y ENFOQUE GEOESTADÍSTICO

El análisis de la distribución espacial de los lances de pesca positivos y negativos para camarón nailon, y el valor de la captura por unidad de área barrida (CPUE = CPUA; ton/mn²), por latitud, reveló la presencia de 15 caladeros (Tabla 7). Los límites de éstos fueron determinados cartografiando todos los lances de pesca (Figs. 5 a-b) e interpolando el área de distribución de camarón nailon según antecedentes históricos y biológico-pesqueros (régimen de operación de la flota pesquera camaronera). Además, se contó con información adicional correspondiente a lances de pesca positivos para la especie realizados en los cruceros de langostinos, en el marco del proyecto FIP 2001-06.

	Límites latitudina	A	rea	
Caladero	Ν	S	mn ²	km ²
1	22° 19,86'	23° 00,97'	125,3	429,7
2	24° 08,45'	25° 22,65'	196,9	675,5
3	25° 24,12'	26° 10,64'	138,2	473,8
4	26° 13,20'	26° 52,64'	143,1	490,9
5	27° 17,34'	28° 45,99'	279,6	958,9
6	28° 47,27'	29° 42,34'	167,1	573,0
7	29° 46,84'	30° 11,67'	87,4	299,8
8	30° 14,04'	31° 04,76'	74,7	256,2
9	31° 26,10'	32° 53,16'	262,1	899,1
10	33° 28,35'	33° 38,55'	18,2	62,6
11	33° 57,59'	34° 50,24'	75,7	259,6
12	35° 06,89'	35° 19,68'	48,9	167,6
13	35° 27,34'	35° 39,62'	17,1	58,8
14	35° 46,82'	36° 04,98'	70,4	241,5
15	36° 17,73'	36° 36,72'	20,0	68,5
Total			1724.6	5915.4

Tabla 7.Límites latitudinales de los caladeros de pesca de camarón nailon y área (mn² y km²)
correspondiente.

Fig. 5a. Disposición espacial de los lances de pesca positivos (puntos negros) y negativos (puntos rojos) de camarón nailon entre 21º y 31º S.

Fig. 5b. Disposición espacial de los lances de pesca positivos (puntos negros) y negativos (puntos rojos) de camarón nailon entre 31º y 40º S.

En muchos casos, especialmente en las Regiones II, III y IV, y marginalmente en la Región V, parte de los caladeros se encuentran dentro de las 5 millas náuticas de reserva de la pesca artesanal. Debido a ello, y de acuerdo con los Términos Técnicos de Referencia, en la Tabla 8 y Figura 6 se presenta el área de cada caladero dentro y fuera de las 5 mn . Esta también es entregada en el formato SHOA, en escala 1: 1.000.000.

	Dentro		Fuera		Total
Caladero	(mn ²)	%	(mn ²)	%	(mn ²)
1	55,7	44,4	69,6	55,6	125,3
2	147,4	74,9	49,5	25,1	196,9
3	62,9	45,6	75,2	54,4	138,2
4	16,0	11,2	127,1	88,8	143,1
5	196,5	70,3	83,1	29,7	279,6
6	43,0	25,8	124,0	74,2	167,1
7	45,2	51,7	42,2	48,3	87,4
8	66,1	88,5	8,6	11,5	74,7
9	67,7	25,8	194,5	74,2	262,1
10			18,2	100,0	18,2
11			75,7	100,0	75,7
12			48,9	100,0	48,9
13			17,1	100,0	17,1
14			70,4	100,0	70,4
15			20,0	100,0	20,0
Total	700,5	40,6	1024,2	59,4	1724,6

Tabla 8.Fracción de área (mn²) de los caladeros dentro y fuera de las 5 mn de reserva de la
pesca artesanal.

5.4.2. ANÁLISIS ESTRUCTURAL

El análisis de variogramas unidireccionales no revela la presencia de efecto anisotrópico de la distribución espacial de la densidad poblacional de camarón nailon. El modelo de variograma teórico que mostró el mejor ajuste, mediante el procedimiento de mínimos cuadrados ponderados (Cressie, 1993), fue el modelo exponencial con rango r, igual a (Fig. 7):

$$\gamma(h) = C_o + C \left[1 - \exp\left(-\frac{\|h\|}{r}\right) \right] \quad para \quad h \neq 0$$

Fig. 6. Disposición espacial de caladeros de camarón nailon indicando la fracción de área dentro (verde) y fuera (rojo) de las 5 mn de exclusión artesanal entre 21° 27'S y 38°S.

donde C_o es el efecto *nugget* que caracteriza la variabilidad de microescala, C es el valor asintótico o *sill* del variograma menos el *nugget*, y *r* es el rango del variograma, más allá del cual los datos ya no presentan correlación (Tabla 6).

El variograma teórico mostró alta proporción de la estructura de varianza no resuelta por el diseño de muestreo por cuanto alcanzó a 43,5% de la varianza total, es decir, la varianza no explicada (Tabla 9).

Tabla 9.Parámetros del variograma teórico según el modelo esférico. SCR= suma de cuadrados
de los residuos, VNE= Varianza no explicada.

Parámetro	Valor
Rango (mn)	52,0
Sill	147,1
Nugget	53,4
SCR	37,5
VNE (%)	36,3

Los parámetros del variograma teórico exponencial seleccionado y del *kriging* (modelo de covariograma, y geometría de la grilla de interpolación) fueron utilizados para calcular las ponderaciones óptimas asignadas a cada estimación local de la densidad de camarón nailon. Una vez realizada la interpolación, sólo aquellos nodos de la grilla que se encontraban dentro de los polígonos de estimación (caladeros), definidos sobre la base de los lances con y sin captura e información batimétrica, fueron considerados en el mapeo de la densidad (Fig. 8) y posterior estimación de la densidad media y biomasa total.

Fig. 7. Variograma experimental (puntos negros) y variograma teórico (modelo exponencial, línea continua) ajustado mediante mínimos cuadrados ponderados.

Fig. 8. Mapa georreferenciado de la densidad de camarón nailon en los 15 caladeros detectados en este estudio.

5.5. OBJETIVO ESPECIFICO 2

Determinar la biomasa total (en peso) y abundancia (en número) total, y según sexo y talla, del camarón nailon en el área de estudio, y por región y focos de abundancia, según corresponda.

5.5.1. ESTIMADORES MODELO-BASADOS

5.5.1.1. ESTIMADOR GEOESTADÍSTICO

En la Tabla 10 se presenta el estimador de densidad poblacional media (D_g ; ton/mn²) y su correspondiente varianza de estimación ($Var(D_g)$; ton²/mn⁴), y el área de dominio del polígono de estimación (mn²), según el enfoque geoestadístico.

	Area	Dens	sidad
Caladero	mn ²	Dg	Var(D _g)
1	125,3	0,666	2,559
2	196,9	9,073	2,559
3	138,2	7,712	2,559
4	143,1	6,607	2,559
5	279,6	7,954	2,559
6	167,1	37,831	2,559
7	87,4	9,224	2,559
8	74,7	20,409	2,559
9	262,1	9,079	2,559
10	18,2	20,989	2,559
11	75,7	15,507	2,559
12	48,9	2,886	2,559
13	17,1	5,693	2,559
14	70,4	8,058	2,559
15	20,0	3,752	2,559
Total	1724,6		

Tabla 10. Indice de densidad promedio $(D_g; ton/mn^2)$, área por caladero (mn^2) y varianza de estimación $(Var(D_g); ton^2/mn^4)$. Enfoque geoestadístico.

En la Tabla 11 se entrega el estimador de biomasa (B_g; tons), la varianza de estimación de la biomasa (Var(B_g)), el estimador de abundancia (miles de individuos) y la varianza de estimación correspondiente, por caladero. Para efectos de cumplir con lo solicitado por las Bases Técnicas, en cuanto a informar la varianza total del estimador biomasa total; y, a la vez, cumplir con los requisitos estadísticos, la varianza del estimador de biomasa total se estimó como la suma de las varianzas de la biomasa de cada caladero, bajo el supuesto que los caladeros constituyen entidades independientes; es decir, se asume que la biomasa de cada caladero no tiene ninguna influencia sobre la biomasa de los caladeros adyacentes o que ésta es despreciable, con lo que la covarianza entre caladeros tiende a cero. Si ello no fuere cierto, el efecto será que la varianza total estará sobreestimada, generando intervalos de confianza más anchos.

Tabla II.	Estimador de biomasa (B_g ; tons), varianza de estimación (Var(B_g); ton ⁻), estimador
	de abundancia (Ag; miles de ejemplares) y varianza de estimación (Var(Ag), N°x10 ¹²)
	según el enfoque geoestadístico.

	Biomasa		Abundancia	
Caladero	$\mathbf{B}_{\mathbf{g}}$	Var(B _g)	$\mathbf{A}_{\mathbf{g}}$	Var(A _g)
1	83,4	30580,4	10704,7	506,4
2	1786,7	75577,7	232942,1	1251,5
3	1065,4	37192,8	198141,5	1076,5
4	945,5	39911,1	127392,8	724,7
5	2223,5	152303,1	348742,8	3097,5
6	6320,3	54393,4	981133,8	1215,1
7	806,2	14887,4	117246,2	309,9
8	1524,6	10875,3	222829,4	235,6
9	2379,8	133901,0	319132,4	2900,6
10	383,0	648,7	45563,9	11,6
11	1173,8	11165,0	140091,7	186,5
12	141,0	4653,3	18155,1	80,2
13	97,6	572,5	13426,3	14,8
14	567,4	9661,5	72878,7	207,4
15	74,9	776,7	7489,9	11,3
Total	19573,0	577100,1	2855871,3	11829,7

Entonces, la biomasa total de camarón nailon según el enfoque geoestadístico es de 19.573 ton, con el intervalo de confianza entre 18.084 y 21.062 ton. Comparativamente, el estimador de biomasa según la Distribución Delta es de 22.425 ton, con el intervalo de confianza entre 12.880

y 31.970 ton. Consecuentemente, el estimador y los intervalos de confianza obtenidos con el método geoestadístico quedan completamente incluidos en el intervalo de confianza de la Distribución Delta. Luego, en el presente caso, la aproximación geoestadística genera estimados de biomasa más estrechos.

La varianza de estimación del índice de densidad es un valor único para todos los caladeros por cuanto su estimación no depende de los datos muestreales de densidad sino de la geometría del hábitat y el valor del umbral (sill), estimado en el análisis geoestadístico de la distribución espacial de la densidad poblacional.

5.5.1.2. DISTRIBUCIÓN DELTA

El Estimador Delta de la densidad poblacional media (D_D ; ton/mn²) y el estimador de varianza de estimación (Var(D_D)) se entrega en la Tabla 12. Se incluye el área de cada caladero (mn²). De la misma manera que en el caso del enfoque geoestadístico, el Estimador Delta de biomasa y abundancia, con sus correspondientes estimadores de varianza, se entrega en la Tabla 13.

	Area	Dens	sidad
Caladero	mn ²	Dn	Var(D _D)
1	125,3	0,032	0.001
2	196,9	12,264	59,691
3	138,2	13,321	84,875
4	143,1	10,625	49,318
5	279,6	5,003	5,579
6	167,1	37,774	247,571
7	87,4	10,216	66,785
8	74,7	15,717	99,467
9	262,1	19,383	145,572
10	18,2	8,533	14,738
11	75,7	12,196	28,031
12	48,9	0,783	0,140
13	17,1	2,846	2,316
14	70,4	8,244	25,299
15	20,0	2,073	1,268
Total	1724,6		

Tabla 12. Indice de densidad promedio (D_D ; ton/mn2), área por caladero (mn²) y varianza de estimación (Var(D_D); ton²/mn⁴). Distribución Delta.

	Bio	masa	Abunda	ancia
Caladero	BD	Var(B _D)	AD	Var(A _D)
1	4,0	9,4	509,6	0,2
2	2415,2	2314976,9	314881,2	37671,5
3	1840,3	1619881,0	342248,5	41202,2
4	1520,5	1010043,4	204867,7	18185,2
5	1398,7	451641,6	219378,9	7244,2
6	6310,9	6910219,8	979668,2	140495,8
7	892,9	510200,4	129856,9	7912,7
8	1174,1	555094,4	171605,6	12125,5
9	5080,7	10002426,4	681334,8	185068,0
10	155,7	4906,3	18524,5	83,6
11	923,1	160600,5	110177,7	1897,8
12	38,2	334,5	4923,6	4,7
13	48,8	680,3	6712,1	17,7
14	580,5	175007,2	74562,6	3226,9
15	41,4	505,4	4136,9	7,9
Total	22425,0	23716527,6	3263388,7	455144,1

Tabla 13. Estimador de biomasa (B_D; ton), varianza de estimación (Var(B_D); ton²), estimador de abundancia (A_D; miles de ejemplares) y varianza de estimación (Var(A_D), N°x10¹²) según la Distribución Delta.

Atendiendo los Términos Básicos de Referencia (TBR), la biomasa y abundancia de camarón nailon se entrega por región, según el enfoque geoestadístico y el método de la Distribución Delta, respectivamente (Tabla 14). Sin embargo, se destaca que varios de los caladeros son compartidos por regiones contiguas.

Como en el caso anterior, según los TBR, la abundancia y biomasa debe ser expresada en aquella fracción que pertenece al área de reserva de la pesca artesanal (dentro de las primeras 5 mn de la costa) y aquella que se encuentra fuera. Al respecto, en las Tablas 15 y 16 se presenta la biomasa y abundancia por caladero, y en las Tablas 17 y 18 se presenta lo mismo aunque por región, tanto para el enfoque geoestadístico como para la Distribución Delta, respectivamente. Cabe hacer notar que los Caladeros 11 al 15 se encuentran fuera de las 5 mn de reserva artesanal, lo que, a nivel de región, ocurre desde la VI a la VIII Regiones.

	Goest	adística	Distribu	ción Delta
Región	Biomasa	Abundancia	Biomasa	Abundancia
II	2750,5	391929,0	3939,9	563476,1
III	4752,1	560274,2	4634,8	543927,5
IV	8848,0	1231419,3	10385,9	1463912,2
V	1168,7	147239,1	1833,5	230023,7
VI	864,0	101958,9	679,5	80187,4
VII	1010,2	119147,6	803,1	94466,2
VIII	180,6	17273,9	149,5	14281,8
Total	19.573,0	2569242,0	22.425,1	2990275,0

Tabla 14.Biomasa (ton) y abundancia (miles de ejemplares), por región, según el enfoque
geoestadístico y Distribución Delta.

Tabla 15.Biomasa (ton) y abundancia (miles de ejemplares), por caladero, dentro y fuera de
las 5 mn de reserva a la pesca artesanal. Enfoque geoestadístico.

	Dentro 5 mn		Fuer	a 5 mn
Caladero	Biomasa	Abundancia	Biomasa	Abundancia
1	37,1	4758,1	46,3	5946,6
2	1337,3	174365,4	449,3	58576,7
3	485,4	90274,4	580,0	107867,1
4	105,6	14224,2	839,9	113168,6
5	1562,8	245111,7	660,7	103631,1
6	1628,4	252742,7	4692,8	728391,1
7	416,9	60618,6	389,5	56627,6
8	1348,9	197139,5	175,8	25689,9
9	614,4	82393,3	1765,4	236739,1
10	0,0	0,0	382,8	45563,9
11	0,0	0,0	1173,9	140091,7
12	0,0	0,0	141,0	18155,1
13	0,0	0,0	97,6	13426,3
14	0,0	0,0	567,3	72878,7
15	0,0	0,0	74,9	7489,9
Total	7536,8	1121627,8	12037,3	1734243,5

	Dentro 5 mn		Fuera 5 mn		
Caladero	Biomasa	Abundancia	Biomasa	Abundancia	
1	1,8	226,5	2,2	283,1	
2	1807,8	235699,6	607,3	79181,5	
3	838,5	155930,3	1001,9	186318,2	
4	169,8	22874,7	1350,7	181993,0	
5	983,1	154189,1	415,6	65189,8	
6	1625,9	252365,2	4685,8	727303,1	
7	461,8	67138,6	431,4	62718,3	
8	1038,8	151821,3	135,4	19784,3	
9	1311,7	175906,4	3769,0	505428,3	
10	0,0	0,0	155,6	18524,5	
11	0,0	0,0	923,2	110177,7	
12	0,0	0,0	38,3	4923,6	
13	0,0	0,0	48,8	6712,1	
14	0,0	0,0	580,4	74562,6	
15	0,0	0,0	41,4	4136,9	
Total	8239,1	1216151,7	14187,0	2047237,0	

Tabla 16.Biomasa (ton) y abundancia (miles de ejemplares) por caladero dentro y fuera de las5 mn de reserva a la pesca artesanal. Distribución Delta.

Tabla 17.Biomasa (ton) y abundancia (miles de ejemplares) por región dentro y fuera de las 5
mn de reserva a la pesca artesanal. Enfoque geoestadístico.

	Dent	ro 5 mn	Fuer	a 5 mn
Región	Biomasa	Abundancia	Biomasa	Abundancia
II	1830,6	259815,7	919,8	132113,2
III	2896,6	341060,9	1855,5	219213,3
IV	2698,3	388491,0	6149,7	842928,4
V	111,2	13926,1	1057,5	133313,1
VI	0,0	0,0	864,0	101958,9
VII	0,0	0,0	1010,2	119147,6
VIII	0,0	0,0	180,6	17273,9
Total	7536,8	1003293,7	12037,3	1565948,4

	Denti	ro 5 mn	Fuer	a 5 mn
Región	Biomasa Abundancia		Biomasa	Abundancia
II	2597,6	369783,3	1342,3	193692,9
III	2400,6	280954,6	2234,2	262972,9
IV	3003,6	435311,5	7382,3	1028600,7
V	237,3	29731,6	1596,1	200292,2
VI	0,0	0,0	679,5	80187,4
VII	0,0	0,0	803,1	94466,2
VIII	0,0	0,0	149,5	14281,8
Total	8239,1	1115781,0	14187,0	1874494,1

Tabla 18.Biomasa (ton) y abundancia (miles de ejemplares) por región dentro y fuera de las 5
mn de reserva a la pesca artesanal. Distribución Delta.

5.5.1.3. DISTRIBUCIÓN DE FRECUENCIAS DE TAMAÑOS

Frecuencia de Talla por Región y sexo

En esta evaluación, la información fue analizada por región y latitud, y los ejemplares separados por sexo, condición reproductiva, talla y estrato de profundidad. En la Tabla 19 se entrega el resumen del esfuerzo del muestreo de frecuencia (medidos) y biológico-específico (pesados) de la captura obtenida en toda el área de estudio. El esfuerzo total para camarón fue de 23.989 individuos medidos y 10.664 pesados, de los cuales el 64.76 % fue capturado entre la II y IV regiones. Si bien, en las tres regiones se obtuvieron capturas similares, el mayor porcentaje se logró en la IV región con un 24,77 %. Por otro lado, desde la V región hacia el sur la captura de camarón fue disminuyendo paulatinamente. En la VIII región no se obtuvieron lances positivos y sólo se logró registrar una totalidad de 150 individuos. En la Tabla 20 se entrega el número de ejemplares medidos por rango de latitud.

Tabla 19. Esfuerzo total del muestreo de frecuencia (medidos) y biológico-específicos (pesados) de la captura de camarón nailon, en la evaluación directa de camarón nailon entre la II y VIII regiones, según embarcación. s/h: hembras sin huevos ; c/h: hembras con huevos.

		PAN	I FOC	HE	PAM	NISSH	IN MA	RU	
				RE	GIONES				
SEXO	DATOS	II	III	IV	V	VI	VII	VIII	Total
	Medidos	1.604	1.785	2.424	1.266	1.411	1.597		10.087
MACHOS	Pesados	349	416	526	300	335	310		2.236
	Medidos	1.301	1.280	1.355			9		3.945
HEMBRAS s/h	Pesados	258	262	300					820
	Medidos	1.840	1.783	2.164	1.509	1.385	1.126	150	9.957
HEMBRAS c/h	Pesados	1.839	1.757	2.164	724	580	394	150	7.608
	Medidos	4.745	4.848	5.943	2.775	2.796	2.732	150	23.989
Total	Pesados	2.446	2.435	2.990	1.024	915	704	150	10.664

 Tabla 20.
 Número de ejemplares de camarón nailon medidos por rango de latitud, sexo y condición reproductiva. s/h: hembras sin huevos; c/h: hembras con huevos.

	-			
		SEXO		
LATITUD	MACHOS	HEMBRAS s/h	HEMBRAS c/h	TOTAL
24-24.99	359	418	668	1.445
25-25.99	1.245	883	1.172	3.300
26-26.99	726	547	927	2.200
27-27.99	167	105	179	451
28-28.99	621	439	405	1.465
29-29.99	970	776	971	2.717
30-30.99	989	485	617	2.091
31-31.99	398	153	617	1.168
32-32.99	1.119	130	1.272	2.521
33-33.99	900		716	1.616
34-34.99	1.098	2	1.346	2.446
35-35.99	765		494	1.259
36-36.99	730	7	573	1.310
TOTAL	10.087	3.945	9.957	23.989

En la Tabla 21 se entrega el número de ejemplares de camarón nailon medidos por rango de profundidad y en la Tabla 22 se presentan en porcentaje, donde se observa que el porcentaje de hembras de camarón nailon, en todos los estratos de profundidad, es superior al de los machos, con valor máximo obtenido en el rango batimétrico 101-150 m, salvo en el estrato 151-150 m.

Tabla 21. Número de ejemplares medidos de camarón nailon para el análisis de frecuencia de talla por estrato de profundidad, sexo y condición reproductiva. s/h: hembras sin huevos; c/h: hembras con huevos.

		SEXO		
ESTRATO PROFUNDIDAD	MACHOS	HEMBRAS s/h	HEMBRAS c/h	TOTAL
101-150			50	50
151-200	594	58	524	1.176
201-250	2.152	169	2.022	4.343
251-300	2.844	594	2.579	6.017
301-350	1.394	784	1.186	3.364
351-400	1.189	749	1.455	3.393
401-450	1.253	998	1.227	3.478
451-500	661	593	914	2.168
TOTAL	10.087	3.945	9.957	23.989

Tabla 22. Porcentaje de los ejemplares medidos de camarón nailon para el análisis de frecuencia de tallas, por estrato de profundidad, sexo y condición reproductiva. s/h: hembras sin huevos; c/h: hembras con huevos.

		SEXO		
ESTRATO	MACHOS	HEMBRAS s/h	HEMBRAS c/h	TOTAL
PROFUNDIDAD		-		
101-150			100,0	100
151-200	50,5	4,9	44,6	100
201-250	49,6	3,9	46,6	100
251-300	47,3	9,9	42,9	100
301-350	41,4	23,3	35,3	100
351-400	35,0	22,1	42,9	100
401-450	36,0	28,7	35,3	100
451-500	30,5	27,4	42,2	100
TOTAL	42,0	16,4	41,5	100
Distribución de frecuencias de tamaños

La distribución de tamaños de camarón nailon en los muestreos, por región (Tablas 23 a 29; Figs. 9 a 15), revela ejemplares de tamaño promedio similar en la II a IV Regiones (promedio LC: 21,8 mm; 21,4 mm; y 21,8 mm, respectivamente), con moda similar (22 mm LC, 21 mm; y 22 mm, respectivamente). Por el contrario, los ejemplares de las Regiones V a VII son, en promedio, de similar tamaño (24,5 mm LC; 25,7 mm; y 25,5 mm, respectivamente) y moda similar (25 mm LC; 25 mm; y 23 mm, respectivamente).

Para el conjunto de datos y regiones, el tamaño promedio de camarón nailon en las capturas se calculó en 23,2 mm y la moda en 22 mm LC. Sin embargo, el análisis del conjunto (Fig. 15) enmascara dos grandes distribuciones, que pueden delimitarse para las Regiones II a IV y para las Regiones V a VII, respectivamente. En efecto, la distribución de frecuencias de LC en el centronorte (Regiones II a IV) presenta machos de tamaño similar a las hembras (Figs. 9 a 11). Sin embargo, a partir de la V Región este patrón cambia, siendo las hembras de mayor tamaño que los machos (Figs. 12 a 15), como se observa también en las modas (Tablas 23 a 29).

II Región

Fig. 9. Distribución de frecuencia de tallas (longitud cefalotorácica, LC) de camarón nailon, II Región. Número de observaciones: machos =1.255; hembras =1.044; total =2.299.

III Región

Fig. 10. Distribución de frecuencia de tallas (longitud cefalotorácica, LC) de camarón nailon, III Región. Número de observaciones: machos =1.473; hembras =1.043; total =2.516.

IV Región

Fig. 11. Distribución de frecuencia de tallas (longitud cefalotorácica, LC) de camarón nailon, IV Región. Número de observaciones: machos =1.899; hembras =1055; total =2.954.

Fig. 12. Distribución de frecuencia de tallas (longitud cefalotorácica, LC) de camarón nailon, V Región. Número de observaciones: machos =966; hembras =786; total =1.752.

VI Región

Fig. 13. Distribución de frecuencia de tallas (longitud cefalotorácica, LC) de camarón nailon, VI Región. Número de observaciones: machos =1.076; hembras =805; total =1.881.

VII Región

Fig. 14. Distribución de frecuencia de tallas (longitud cefalotorácica, LC) de camarón nailon, VII Región. Número de observaciones: machos =1.287; hembras =741; total =2.028.

Total Regiones

Fig. 15. Distribución de frecuencia de tallas (longitud cefalotorácica, LC) de camarón nailon, Total Regiones. Número de observaciones: machos =7.956; hembras =5.474; total =13.430.

Parámetro	Total	Machos	Hembras
Promedio	21,8	22,4	21,0
D.E.	3,3	3,3	3,0
Moda	21	25	22
Mínimo	12	13	12
Máximo	34	33	34
Ν	2.229	1.255	1.044

Tabla 23.II Región, distribución de frecuencias de tamaños (longitud cefalotorácica, LC),
total y por sexo.

Tabla 24.III Región, distribución de frecuencias de tamaños (longitud cefalotorácica, LC),
total y por sexo.

Parámetro	Total	Machos	Hembras
Promedio	21,4	21,3	21,5
D.E.	2,8	2,9	2,7
Moda	21	21	20
Mínimo	13	13	13
Máximo	32	32	30
Ν	2.516	1.473	1.043

Tabla 25.IV Región, distribución de frecuencias de tamaños (longitud cefalotorácica, LC),
total y por sexo.

Parámetro	Total	Machos	Hembras
Promedio	21,8	22,3	21,0
D.E.	3,0	3,0	2,8
Moda	22	23	20
Mínimo	11	14	11
Máximo	39	39	33
n	2.954	1.899	1.055

Tabla 26.V Región, distribución de frecuencias de tamaños (longitud cefalotorácica, LC),
total y por sexo.

Parámetro	Total	Machos	Hembras
Promedio	24,5	22,8	26,5
D.E.	3,1	2,6	2,3
Moda	25	22	22
Mínimo	16	16	16
Máximo	35	35	35
Ν	1.752	966	966

Parámetro	Total	Machos	Hembras
Promedio	25,7	23,8	28,3
D.E.	3,5	2,6	2,8
Moda	25	25	28
Mínimo	15	15	22
Máximo	38	33	38
Ν	1.881	1.076	805

 Tabla 27.
 VI Región, distribución de frecuencias de tamaños (longitud cefalotorácica, LC), total y por sexo.

Tabla 28.VII Región, distribución de frecuencias de tamaños (longitud cefalotorácica, LC),
total y por sexo.

Parámetro	Total	Machos	Hembras
Promedio	25,5	24,5	27,1
D.E.	3,9	4,2	2,7
Moda	23	23	26
Mínimo	14	14	21
Máximo	42	42	36
Ν	2.028	1.287	741

Tabla 29.Total Regiones, distribución de frecuencias de tamaños (longitud cefalotorácica,
LC), total y por sexo.

Parámetro	Total	Machos	Hembras 23,8	
Promedio	23,2	22,8		
D.E.	3,7	3,3	4,2	
Moda	22	22	22	
Mínimo	11	13	11	
Máximo	42	42	38	
Ν	13.430	7.956	5.474	

A partir de la estructura de tallas por sexo, para cada caladero (Anexo 3), se calculó la biomasa (toneladas) y abundancia (miles de ejemplares) por estrato de longitud cefalotorácica (LC, mm), para lo cual se contó con los parámetros de la relación longitud peso por sexo (Anexo 4). En los caladeros 1, 7, 8 y 12 no se registró la composición de tamaños de la especie objetivo por lo que, en el caso del Caladero 1, se impuso la composición de tamaños del Caladero 2, que es el caladero contiguo. En el caso de los Caladeros 7 y 8, se impuso la composición de tamaños combinada de los Caladeros 6 y 9, por corresponder a los caladeros entre los cuales quedan

incluidos aquellos a los que se les está imponiendo la composición de tamaños; y, en el caso del Caladero 12, se impuso la composición de tamaños combinada de los Caladeros 11 y 13, por la misma razón anterior. Para la relación longitud-peso se siguió el mismo criterio, no obstante, en el caso del Caladero 13 no se tiene la relación longitud-peso de las hembras, razón por la cual de utilizó la relación longitud-peso de ambos sexos combinados (Anexo 4). En el Anexo 5 de este informe se entrega la biomasa y abundancia a la talla por sexo, caladero y región, dentro y fuera de las 5 mn de reserva de la pesca artesanal, según el enfoque geoestadístico y la Distribución Delta.

5.5.1.4. ESTIMACIÓN DE LA BIOMASA DEL RECURSO MEDIANTE MODELO GAM

El esquema de modelación GAM utiliza la varianza de la variable respuesta (CPUAs) para construir los ponderadores o pesos del proceso de ajuste iterativo. Si la distribución del error en el modelo construido es de tipo Poisson, los ponderadores son iguales a la respuesta media. Esta respuesta se reduce sistemáticamente en áreas de alta densidad de recurso, debido al procedimiento de remuestreo o bootstrap.

Una vez que el modelo ha sido seleccionado, GAM origina una superficie de respuesta o densidad esperada que puede ser integrada numéricamente en el espacio dentro del área de muestreo o como se hizo en este caso, integrando en la contribución de las áreas asociadas a los 15 caladeros identificados para la pesquería tras el crucero.

En el proceso de estimación del modelo se mantuvo los valores con densidad cero registrados al interior de cada caladero, debido a que esta información debiera considerarse como "estructural" y debe utilizarse en el proceso de estimación, selección del modelo y estimación de la varianza.

5.5.1.4.1. SELECCIÓN DEL MODELO

El proceso de selección del modelo contempló la elección de una distribución para la variable respuesta, una función de enlace o "link", un adecuado número de covariables y un apropiado número de grados de libertad para el suavizamiento de las covariables. En la evaluación de la

distribución y del enlace adecuado se graficó la desviación de los residuos, estandarizada por su varianza estimada, y los valores ajustados.

5.5.1.4.2. ESTIMACIÓN DE VARIANZA

El proceso de estimación de varianza del modelo ajustado a partir de funciones de suavizamiento no es un proceso trivial, de tal forma que la varianza fue determinada a través de la aplicación del bootstrap paramétrico. Esto implicó generar b pseudomuestras de la densidad del recurso utilizando para esto el mismo modelo GAM seleccionado, pero efectuando para cada subconjunto de valores de densidad, un nuevo ajuste con el modelo a través del cual se obtuvo una respuesta diferente o predicción de la densidad del recurso.

De las variables seleccionadas en la metodología, cuatro de ellas permitieron estructurar un modelo de tipo GAM. Estas variables fueron Latitud, Longitud y Profundidad media de cada lance y los 15 caladeros identificados para agregar la distribución del recurso.

Las funciones de suavizamiento utilizadas (Sk) fueron del tipo B-splines, las que son características del esquema de regresión robusta, cuya descripción es descrita en Venables y Ripley (1994) y Hastie y Tibshirani (1990).

La relación existente entre las covariables y la respuesta (CPUA), así como los intervalos de confianza de los estimadores parciales se presentan en las Figuras 16 y 17. Las principales variables predictoras son la latitud, la profundidad media del lance y los caladeros desde donde proviene el valor de densidad. En la Figura 16 se observa que el cambio de densidad aumenta con el cambio de latitud, desde los 23°S, alcanzando un máximo entre los 24 y 26°S para luego disminuir hacia el sur, en especial entre los 30 y 36°S. En el caso de la longitud media del lance, los mayores valores de densidad se observan entre 72 y 74°W. A diferencia de las otras variables, tanto la profundidad como los caladeros fueron transformados a la forma logarítmica y luego suavizados mediante B-splines (Fig. 17).

Para el análisis se consideró el número total de lances de pesca efectuados al interior de los 15 caladeros de pesca, manteniendo los valores con CPUA (ton/mn^2) igual a cero (o ceros locales al interior de los caladeros). La biomasa se estimó por caladero y para el total (Tabla 30), siendo esta última de 20.265 ton. De la distribución de la biomasa en los 15 caladeros, se observa que en 3 de ellos se concentra más del 50% de la biomasa total; estimándose en ellos biomasas de más de 2.000 ton (caladeros 5, 6 y 9).

Fig. 16. Ajuste parcial para las variables consideradas en el modelo GAM de estimación de la Biomasa (Latitud y Longitud). Los gráficos superiores representan los residuales parciales, mientras que en el panel inferior se representa los intervalos de confianza para el ajuste correspondiente (Las marcas verticales a lo largo de la abscisa representan la densidad de observaciones).

Fig. 17. Ajuste parcial para las variables consideradas en el modelo GAM de estimación de la Biomasa (Profundidad media del lance y Caladero). Los gráficos superiores representan los residuales parciales, mientras que en el panel inferior se representa los intervalos de confianza para el ajuste (Las marcas verticales a lo largo de la abscisa representan la densidad de observaciones).

	Lances	Lances	Densidad	Biomasa	
Caladeros	totales	positivos	(ton/mn ²)	(ton)	Var (B)
1	14	6	0,507	63,5	37,1
2	23	14	8,751	1723,0	9967,3
3	20	13	7,225	998,5	3365,4
4	15	10	6,796	972,6	931
5	19	12	7,673	2145,3	8870,6
6	18	8	40,338	6740,5	58777,3
7	12	7	10,056	878,9	476,1
8	12	8	20,082	1500,1	4345,2
9	41	24	8,412	2204,8	4002,5
10	9	4	27,366	498,1	115,8
11	34	14	22,881	1732,1	3210,4
12	9	4	1,730	84,6	92,4
13	13	6	6,583	112,6	144,6
14	16	7	7,597	534,8	1780
15	12	6	3,818	76,4	110,9
Total	267	143		20265,8	

 Tabla 30.
 Estimados de densidad media y biomasa por caladero y total de camarón nailon, obtenidas mediante el estimador modelo basado GAM.

5.5.1.4.3. ANÁLISIS DE LA DISTRIBUCIÓN DE DENSIDAD DE LA VARIABLE ALEATORIA CPUA

Para el análisis se consideró solamente el número total de lances positivos, lo que generó una distribución de CPUA (ton/mn²) con una fuerte asimetría positiva (Fig. 18), sugiriendo que el parámetro α debe ser mucho menor que la unidad. En efecto, si α =1 se tendría una distribución normal de la variable aleatoria. La varianza de los datos (muestral) es mucho mayor que la media (\bar{x} =11,92; σ^2 =227,62), y la mediana (= 6,74) es mucho menor que la media.

Fig. 18. Histograma de frecuencia relativa y función de densidad ajustada (g(U)) utilizando estimadores máximo verosímiles.

La estimación por máxima verosimilitud se encuentra maximizando las Ecuaciones correspondientes y los cálculos de transformación Ti usando la transformación Box-Cox, mientras que para la log-verosimilitud individual de g(U) se usó la Ecuación, cuya suma representa la máxima verosimilitud (L=-466,62). El promedio de los datos de CPUA transformados μ =2,24, (Fig. 19) fue menor que la mediana (=2,44) y la varianza muestral de estos datos (σ 2=6,33) continua siendo mayor que la media y la mediana. La curva de que corresponde a g(U) se ha superimpuesto en el histograma de frecuencia de CPUA (Fig. 18).

Fig. 19. Función de log-verosimilitud ilustrando el estimado máximo verosímil de la media de los datos transformados de CPUA.

El estimado máximo verosímil de α es igual a 0,25 (Fig. 20), lo que indica una transformación entre logaritmo y raíz cuadrada para los datos de CPUA. En efecto, el perfil de log-verosimilitud sugiere que los límites de confianza de 95% son 0,17 y 0,33 (Tabla 31). En este contexto las hipótesis alternativa α =0 es rechaza, y también la hipótesis α =0,5. La medida de tendencia central \hat{U} es 11,9 algo más baja que la media aritmética de los datos originales (Tabla 31).

Fig. 20. Camarón nailon, perfil de log-verosimilitud para el parámetro α que controla la transformación Box-Cox de los datos de CPUA.

Tabla 31. Estimación máximo verosímiles de α , μ , y σ^2 para la distribución de la CPUA.

		IC 95%	
Parámetro	Estimado	Inferior	Superior
α	0,249	0,17	0,33
μ	2,240	1,80	2,65
σ^2	6,329		
mediana S(U)	5,930		
Media U	11,900		

5.5.2. ESTIMACIÓN DE LA BIOMASA CON EL ESTIMADOR CUASI DISEÑO-BASADO BOOTSTRAP

La estimación de la biomasa mediante este método bootstrap consideró sólo los lances positivos por caladero, excluyendo de esta forma los lances negativos. Esta decisión se debe a la baja proporción de lances positivos. Según esto, los resultados de las estimaciones de densidad media para cada caladero muestran resultados análogos a las estimaciones obtenidas por geoestadística y Distribución Delta, siendo el caladero 1 (determinado por geoestadística) el que genera una mayor divergencia entre los métodos y, por ende, en las estimaciones posteriores de biomasa y abundancia. Esta situación está relacionada con el bajo número de lances positivos de ese caladero y la baja biomasa con la que contribuye al estimado total.

La biomasa se estimó por caladero y para el total (Tabla 32), siendo esta última un 38,3% inferior con 20.616 ton, que la suma de la biomasa parcial por caladeros con 28.516 ton. Esta diferencia es producida al remuestrear caladeros con muy pocos datos, y que no cumplen con algunos de los supuestos que exige este método, lo cual estaría sobrestimando la suma de los caladeros.

La varianza del estimador considera la varianza de la media, que corresponde a la varianza que debe tomarse en cuenta al momento de estimar el error estándar y los límites de confianza. De 15 caladeros, dos de ellos concentran las mayores cantidades de biomasa, el caladero 6 con 12.369 ton y el 10 con 7.148 ton (Tabla 32).

Caladeros	Densidad	Var (D)	Biomasa	Var (B)	Lances (+)	Nº Lances
1	0.082	6E-07	10.27	0.009	6	16
2	9,570	0,003	1.199,15	124,918	15	23
3	7,108	0,001	1.399,56	26,361	13	19
4	6,282	0,000	868,12	8,721	10	35
5	7,053	0,001	1.009,34	94,052	12	20
6	44,239	0,024	12.369,23	671,166	8	18
7	5,390	0,001	900,74	6,205	7	11
8	19,402	0,017	1.695,77	96,304	8	12
9	8,388	0,001	626,57	47,999	24	41
10	27,274	0,001	7.148,47	0,199	2	9
11	23,450	0,008	426,79	44,174	16	34
12	1,785	1E-04	135,15	0,246	4	8
13	5,697	0,004	278,60	1,100	6	11
14	8,048	0,004	137,63	19,030	7	16
15	4,418	0,001	311.04	0.253	5	12
Total	11,95	0,082	20.616,7	11,95	143	266

Tabla 32. Estimados de densidad media (ton/mn²) y biomasa (ton) por caladero y total, obtenidas de 3.000 iteraciones bootstrap.

Los valores alternativos de biomasa por caladero se distribuyen normal, excepto en el caso de los caladeros 4, 5, 6, 7 y 9, mientras el resto de los caladeros al considerar un valor de p>0,05, presentó una distribución que se alejó de la normal (Tabla 33, Fig. 21). Esta situación es consecuencia del bajo número de lances utilizados para efectos de remuestreo en los caladeros en cuestión. En todo caso, en la estimación en la biomasa total, claramente los valores alternativos e igualmente probables de biomasas se distribuyen normal (Fig. 22).

Tabla 33. Resultado de los test de normalidad (Kolmorov-Smirnov y Chi cuadrado), aplicado a la distribución de la densidad promedio por caladero y total, obtenida del proceso de remuestreo bootstrap (n.s = no existe diferencia significativa con la distribución normal).

Caladero	g.	Chi-cuadrado	p (g. de l.	d (K-S)	valor p
	de l.		ajustado)		
1	19	7125,964	0,0000000	0,1507867	< 0,01
2	16	96,44395	0,0000000	0,0290239	< 0,05
3	10	98,81387	0,0000000	0,0278916	< 0,05
4	29	34,16023	0,2335806	0,0173251	n.s.
5	21	24,86548	0,2531376	0,0140741	n.s.
6	23	222,0131	0,0000000	0,0170893	n.s.
7	16	21,98252	0,1438455	0,0120604	n.s.
8	19	706,7031	0,0000000	0,0455737	< 0,01
9	15	9,897218	0,8261251	0,0078695	n.s.
10	44	56331,09	0,0000000	0,2395620	< 0,01
11	26	48,44501	0,0048202	0,0141175	n.s.
12	24	3739,467	0,0000000	0,1192049	< 0,01
13	15	4709,569	0,0000000	0,1527643	< 0,01
14	18	163,7076	0,0000000	0,0315966	< 0,01
15	36	2578,427	0,0000000	0,0760068	< 0,01
Total	26	25,33141	0,5003133	0,0080146	n.s.

Fig. 21. Distribución de la densidad promedio obtenida de las iteraciones bootstrap (n=1000) utilizada para estimar la biomasa por caladero.

Fig. 21. Continuación.

Fig. 22. Histograma de la frecuencia estimada de densidad promedio de todos los caladeros, obtenida del proceso bootstrap (n=3.000 iteraciones, la línea continua corresponde a la distribución normal esperada).

Para estimar la abundancia mediante el bootstrap se utilizó estimaciones de captura en número por unidad de área para cada lance positivo. Para ello, se utilizó el peso promedio para transformar la captura en peso a captura en número. El peso promedio se calculó utilizando las relaciones longitud-peso del caladero y los datos de longitudes de cada lance. En los casos en que faltó información biológico-pesquera, se siguió las consideraciones y criterios utilizados en el *Addendum* del Informe de Crucero.

La abundancia por caladero presenta una tendencia similar a la estimada por geo-estadística (Tabla 34). No obstante, la abundancia total presenta un incremento de aproximadamente 35% con respecto a la estimación por geoestadística. Esta diferencia se debe al tratamiento de estimación del peso promedio por caladero y la independencia de este estimador con respecto a la biomasa. En efecto, el método bootstrap, en este caso, considera la densidad en número de individuos por unidad de área.

Caladeros	Densidad	Var (D)	Abundancia	Var (A)
1	16,116	2E-02	2.019,4	368,2
2	1880,841	121,903	370.337,7	4.726.131,2
3	1298,588	43,994	179.464,9	840.254,9
4	1353,770	20,328	193.724,5	416.274,6
5	1578,711	58,864	441.407,6	4.601.727,8
6	9616,811	1153,052	1.606.969,2	32.195.992,5
7	1127,814	32,040	98.571,0	244.747,1
8	2852,851	366,059	213.108,0	2.042.642,9
9	1192,175	13,603	312.469,2	934.494,4
10	3678,544	11,122	66.949,5	3.684,2
11	2395,462	80,311	181.336,5	460.220,9
12	179,287	1,065	8.767,1	2.547,4
13	546,041	35,323	9.337,3	10.328,7
14	1010,668	58,010	71.151,1	287.505,8
15	298,788	2,999	5.975,8	1.199,7
Total	1933,500	2761,48	3.334.728,3	8.214.274.455;.4

Tabla 34.Valores estimados de densidad media y abundancia por caladero y total, obtenidos de
1000 iteraciones bootstrap.

5.5.3. ESTIMACION DE BIOMASA POR EL METODO DE THOMPSON (1992).

Estimación de biomasa considerando las zonas de mayor y menor abundancia.

La propuesta técnica indicaba que se considerarían como positivos los lances en los que la captura neta fuese igual o superior a 50 Kg, sin embargo, a la vista de los resultados obtenidos, y dado que el 48,5% de los lances generaron capturas inferiores a los 50 kg antes citados, se hicieron dos estimaciones paralelas. Una siguiendo el criterio previamente establecido en la propuesta técnica y otra considerando todos los lances con captura positiva, cualquiera que haya sido ésta. De acuerdo con este criterio, la Tabla 35 muestra los resultados de la estimación para lances con capturas superiores a 50kg, con sus correspondientes intervalos de confianza. Esto valores corresponden al 93,2% de la captura total, lo que extrapolado en función de las áreas de influencia de las muestras correspondientes, representa un 93,5% del total de la biomasa estimada. La Tabla 36 muestra la estimación de biomasa para todas las muestras con algún valor positivo de captura; es decir incluyendo aquellos lances con capturas inferiores a 50 kg.

Tabla 35.Resultados del análisis estadístico de Thompson (1992), para la estimación de
biomasa y abundancia de camarón nailon en el área de prospección, considerando
los lances de abundancia mayor o igual a 50 kg.

BIOMASA (ton)	25.672,51
AREA TOTAL (mn ²)	1.143,50
N (lances positivos)	67
PROMEDIO (ton/mn ²)	22,45
VARIANZA ESTIMADOR	582.629,86
L.I. I.C. (95%)	24.176,44
L.S. I.C. (95%)	27.168,58

Tabla 36. Resultados del análisis estadístico de Thompson (1992), para la estimación de biomasa y abundancia de camarón nailon en el área de prospección, incluyendo además los lances de menor captura (menores que 50 kg).

BIOMASA (ton)	27.599,19
AREA TOTAL (mn2)	2.456,50
N (lances positivos)	132
PROMEDIO (ton/mn2)	11,24
VARIANZA ESTIMADOR	2.455.568,69
L.I. I.C. (95%)	24.527,82
L.S. I.C. (95%)	30.670,56

Para fines comparativos, se incluye en la Tabla 37, una estimación correspondiente a los lances que presentaban 12,5 kg o más, ya que estos lances fueron los incluidos en los estimadores geoestadísticos. Esto valores corresponden al 98,7% de la captura total, lo que extrapolado en función de las áreas de influencia de las muestras correspondientes, representa un 96,8% del total de la biomasa estimada.

Tabla 37. Resultados del análisis estadístico de Thompson (1992), para la estimación de biomasa y abundancia de camarón nailon en el área de prospección, incluyendo los lances con captura mayor o igual a 12,5 kg.

BIOMASA (ton)	27.217,74
AREA TOTAL (mn2)	1.609,17
N (lances positivos)	93
PROMEDIO (ton/mn2)	16,91
VARIANZA ESTIMADOR	997.795,30
L.I. I.C. (95%)	25.259,91
L.S. I.C. (95%)	29.175,58

Si bien los valores de biomasa estimada en las tres tablas son similares, los valores de área indicados en las tablas en referencia son significativamente distintos, y por lo tanto la biomasa promedio por unidad de área, como resultado de la inclusión de sectores en los que la abundancia es mínima, pero con áreas semejantes a aquellos en los que la captura neta fue de 50 kg o más.

5.5.4. INFLUENCIA DE LA VARIABILIDAD DEL APA EN LA VARIABILIDAD DEL ESTIMADOR DE BIOMASA.

En la Tabla 38 se entregan los resultados del modelo que se construyó para determinar el porcentaje de varianza de la biomasa que es determinado por la variabilidad del APA, mediante una descomposición de la varianza total, a través del procedimiento de selección STEPWISE, (Neter *et al.*, 1996), que jerarquiza el ingreso de las variables al modelo comenzando por la de mayor importancia, en función del coeficiente de determinación múltiple R². Los resultados indican que la variable de mayor importancia para explicar la varianza de la biomasa, es la captura del lance, que representa el 85,9% de ésta. En segundo lugar de importancia relativa, está el área de influencia del lance, que explica un 7,78% de varianza adicional. En tercer lugar está la distancia de barrido de la red, con un 2,59 % adicional y en último lugar APA, con un 0,37% de la varianza total. En total, el modelo explica aproximadamente un 97% de las variaciones de la biomasa. De este porcentaje, menos de un 1% es debido a las variaciones del APA.

Tabla 38. Resultado del proceso de selección Stepwise para estimar el porcentaje de varianza de
la biomasa explicada por diversas variables.

Fuente	GL	Suma de Cuadrados	Cuadrado Medio	F	Pr > F
Modelo	4	167,53720	41,88430	716.06	< 0.0001
Error	99	5,79082	0.05849		
Total	103	173,32802			

Variable	Estimador del	Error Estándar	F	Pr > F
	Parámetro			
Intercepto	1,01648	1,15818	0.77	0,3823
larea	1,03069	0.06695	236,97	< 0.0001
lapa	-0.76735	0.23144	10,99	0.0013
lcapt	0,98206	0.02194	2004,13	< 0.0001
ldr	-1,01481	0,11097	83,63	< 0.0001

Paso	Variable	Número de	R ² Parcial	R ² del modelo	Valor F	Pr > F
	ingresa	Variables				
1	lcapt	1	0,8592	0.8592	622,60	< 0.0001
2	larea	2	0.0778	0.9370	124,69	< 0.0001
3	ldr	3	0.0259	0,9629	69,71	< 0.0001
4	lapa	4	0,0037	0,9666	10,99	0,0013

5.6. OBJETIVO ESPECIFICO 3.

Determinar la condición reproductiva del camarón nailon en el área y período de estudio.

5.6.1. PROPORCIÓN SEXUAL POR REGIÓN

En la Tabla 39 se muestran los porcentajes de los ejemplares medidos por región y sexo, predominando las hembras en la mayoría de las regiones, salvo en la VII región donde el porcentaje de machos supera el 58,0 %. Cabe señalar, que en la VIII región se obtuvo sólo ejemplares de hembras ovíferas. De acuerdo a los antecedentes se observa que se capturó un mayor porcentaje de hembras que de machos de la especie, con un porcentaje general de 57,95 y 42,05 %, respectivamente. Además, en el caso de las hembras, el 71,62 % de éstas se encuentran ovíferas.

 Tabla 39.
 Proporción sexual en porcentaje de los ejemplares de camarón nailon medidos, por región.

	REGIONES								
	II	III	IV	V	VI	VII	VIII	TOTAL	
MACHOS	33,80	36,82	40,79	45,62	50,46	58,46	0	42,05	
HEMBRAS	66,20	63,18	59,21	54,38	49,54	41,54	100	57,95	
TOTAL	100	100	100	100	100	100	100	100	

5.6.2. PROPORCIÓN DE HEMBRAS OVÍFERAS POR REGIÓN

En la Tabla 40 se muestran las proporciones de hembras ovíferas de camarón nailon obtenidas por Región. Se aprecia que en todas las regiones existe un porcentaje de hembras ovíferas superior al 58%, lo que se hace más notorio desde la V región hacia el Sur donde el porcentaje de éstas supera el 99 %, lo que coincide en el tiempo con el período de máxima portación de huevos de la especie y el desfase latitudinal en los porcentajes.

Tabla 40. Porcentaje de los ejemplares hembras de camarón nailon medidos en el muestreo de frecuencia de tallas por región, según condición reproductiva. s/h: hembras sin huevos; c/h: hembras con huevos.

		REGIONES						
Condición reproductiva	Π	III	IV	V	VI	VII	VIII	TOTAL
HEMBRAS s/h	41,42	41,79	38,51			0,79		28,38
HEMBRAS c/h	58,58	58,21	61,49	100	100	99,21	100	71,62
TOTAL	100	100	100	100	100	100	100	100

5.6.3. TALLAS Y PESOS PROMEDIO POR REGIÓN

En camarón nailon la tendencia de las tallas y pesos promedio es de un aumento latitudinalmente hacia el sur, tanto en machos como en hembras. Las hembras ovíferas presentan tallas (Tablas 41) y pesos promedios (Tabla 42) mayores que las hembras no portadoras de huevos y que los machos, en todas las regiones, no observándose un gradiente latitudinal en las tallas y pesos de estos ejemplares. Sin embargo, claramente los ejemplares provenientes de la III y IV Regiones son tanto en talla como en peso son menores que el resto.

Tabla 41.Tallas promedio de camarón nailon por región, sexo y condición reproductiva. s/h:
hembras sin huevos; c/h: hembras con huevos. LC= longitud cefalotorax (mm).

			REGIONES						
SEXO	DATOS	II	III	IV	V	VI	VII	VIII	TOTAL
	LC	22,9	22,2	22,8	22,9	23,7	24,2		23,1
MACHOS	D.e.	3,4	2,9	3,0	2,5	2,5	3,9		3,2
	n	1.604	1.785	2.424	1.266	1.411	1.597		10.087
	LC	21,4	20,9	21,4			27,0		21,3
HEMBRAS s/h	D.e.	3,2	2,8	3,0			5,3		3,0
	n	1.301	1.280	1.355			9		3.945
	LC	28,2	26,3	26,4	26,6	28,0	27,0	27,1	27,1
HEMBRAS c/h	D.e.	2,8	2,5	2,6	2,3	2,8	2,6	1,9	2,7
	n	1.840	1.783	2.164	1.509	1.385	1.126	150	9.957

			REGIONES						1
	DATOS	II	III	IV	V	VI	VII	VIII	TOTAL
	РТ	4,91	4,37	5,28	5,77	5,96	5,83		5,30
MACHOS	D.e.	2,12	1,79	1,96	2,01	2,11	1,79		2,04
	n	349	416	526	300	335	310		2.236
	PT	4,27	3,56	4,61					4,17
HEMBRAS s/h	D.e.	2,34	1,66	2,66					2,32
	n	258	262	300					820
	PT	10,93	8,54	9,60	10,56	11,70	10.,88	11,40	10,03
HEMBRAS c/h	D.e.	4,14	2,67	3,42	3,19	3,64	3,47	2,94	3,60
	n	1.839	1.757	2.164	724	580	394	150	7,608

Tabla 42. Pesos promedios de camarón nailon por región, sexo y condición reproductiva. s/h: hembras sin huevos; c/h: hembras con huevos. PT= peso total.

5.6.4. ANÁLISIS ESTRUCTURAL

Con las estimaciones locales (lances) del número de huevos por unidad de área se realizó un análisis geoestadístico, encontrándose que el modelo de variograma teórico que mostró el mejor ajuste, mediante el procedimiento de mínimos cuadrados ponderados (Cressie, 1993), fue el modelo exponencial con rango r igual a 33,3 mm (Tabla 43). El variograma teórico mostró una proporción no despreciable de la estructura de varianza no resuelta por el diseño de muestreo por cuanto alcanzó a 32% de la varianza total, es decir, la varianza no explicada.

Tabla 43.Parámetros del variograma teórico según el modelo exponencial. SCR: suma de
cuadrados de los residuos, VNE: Varianza no explicada.

Parámetro	Valor
Rango (mn)	33,33
Sill	1877182613521
Nugget	600974670153
SCR	525216000000
VNE (%)	32,01

Con los parámetros del variograma teórico exponencial seleccionado y del *kriging* (modelo de covariograma, y geometría de la grilla de interpolación), se estimó, la densidad global promedio del número de huevos por unidad de área (huevos/mn²) para cada caladero (Tabla 44). En la Figura 23 se muestra la distribución espacial del potencial reproductivo de hembras de camarón nailon, por caladero.

Tabla 44. Indice de densidad promedio $(DH_g; millones de huevos/mn^2)$ y abundancia $(H_g, millones de huevos)$ por caladero y su varianza de estimación $(Var(H_g), N^o$ huevos $*10^{15})$.

		Abundancia				
Caladero	$\mathbf{DH}_{\mathbf{g}}$	H _g	Var(H _g)			
1	101,2	12682,8	512,4			
2	1451,7	285886,4	1266,4			
3	722,4	99794,6	623,2			
4	917,1	131243,6	668,7			
5	1095,8	306329,3	2551,9			
6	5169,3	863624,9	911,4			
7	1111,4	97142,4	249,4			
8	2098,0	156729,1	182,2			
9	833,9	218598,6	2243,6			
10	2102,5	38360,7	10,9			
11	1918,2	145191,7	187,1			
12	267,2	13055,1	78,0			
13	306,9	5260,2	9,6			
14	768,7	54123,7	161,9			
15	291,6	5820,4	13,0			
Total		2433843 7	9669,7			

Fig. 23. Disposición espacial del potencial reproductivo (Nº huevos x 10⁹) de camarón nailon en los 15 caladeros detectados en este estudio.

5.7. OBJETIVO ESPECIFICO 4

Determinar la composición e importancia relativa de las especies que constituyen la fauna acompañante de este recurso durante los cruceros de evaluación.

5.7.1. IDENTIFICACION DE COMUNIDADES

5.7.1.1. COMPOSICION ESPECIFICA DE LA FAUNA ACOMPAÑANTE

Los taxa que componen la fauna acompañante suman en total 31, de las cuales 19 son peces, 9 crustáceos y 3 moluscos (Tabla 45), destacando por su abundancia relativa alta (CPUE) los langostinos colorado y amarillo, la merluza común y el lenguado de ojos grandes. Sólo 12 taxa superan el 1% de la captura total de especies acompañantes, y de éstas sólo las cuatro especies mencionadas arriba superan el 10% de la captura total.

Nombre vernacular	Nombre científico	Acrónimo	CPUE	%
Tiburón negro narigón	Apristurus nasutus	A. n.	19.05	0.10
Tiburón gato	Aculeola nigra	A. ni.	278.55	1.47
Alfonsino	Beryx splendens	B. s.	9.65	0.05
Pejegallo	Callorhynchus callorhynchus	C. c.	10.00	0.05
Tollo pinocho	Centroscymnus crepidater	C. cr.	0.90	0.00
Pejerratas	Coelorhynchus spp.	Coel.	179.83	0.95
Langostino amarillo	Cervimunida johni	C. j.	3221.79	17.00
Jaiba limón	Cancer porteri	С. ро.	388.93	2.05
Tollo pajarito	Deania calcea	D. c.	0.87	0.00
Jibia	Dosidiscus gigas	D. g.	11.42	0.06
Acorazado	Glyphocrangon alata	G. a.	14.60	0.08
Gongrio dorado	Genypterus blacodes	G. b.	232.85	1.23
Congrio colorado	Genypterus chilensis	G. ch.	115.14	0.61
Congrio negro	Genypterus maculatus	G. m.	523.20	2.76
Bagre	Galeichthys peruvianus	G. pe.	1.00	0.01
Tollo luminoso	Halaelurus canescens	Н. с.	193.89	1.02
Gamba profundidad	Haliporoides diomedeae	H. d.	387.02	2.04
Lenguado ojos grandes	Hippoglossina macrops	H. m.	2249.96	11.87
Centolla	Lithodes antarcticus	L. a.	1.00	0.01
Jaiba araña	Libidocladea granaria	L. g.	460.21	2.43
Calamar	Loligo gahi	L. ga.	1.00	0.01
Jaiba paco	Mursia gaudichaudii	M. g.	217.97	1.15
Merluza común	Merluccius gayi	M. ga.	7283.04	38.43
Tollo fino	Mustelus mento	M. m.	10.48	0.06
Anguila	Ophicthus pacifici	О. р.	4.24	0.02
Pulpo	Octopus vulgaris	Oct.	65.81	0.35
Pateador	Pterygosquila armata	P. a.	8.18	0.04
Blanquillo	Prolatilus jugularis	P. j.	149.97	0.79
Langostino colorado	Pleuroncodes monodon	P. m.	3251.80	17.16
Anguila babosa	Polystrotema polytrema	Р. р.	36.50	0.19
Ravas spp.	Raja spp.	R. sp.	14.06	0.07

Tabla 45. Listado de las especies que conforman la fauna acompañante en las capturas de camarón nailon (*Heterocarpus reedi*).

5.7.2. DISTRIBUCION DE LA FAUNA ACOMPAÑANTE EN SENTIDO LATITUDINAL

Del mismo modo que en sentido batimétrico, la merluza común (*Merluccius gayi*) es una de las especies secundarias más importantes, presentando proporciones superior al 30% en todas las regiones que incluye este estudio (Tabla 46, Fig. 24). El langostino colorado (*Pleuroncodes monodon*) adquiere gran importancia en las regiones I y II, donde alcanza proporciones de 25 y 40%, respectivamente. Por su parte el langostino amarillo (*Cervimunida johni*) adquiere importancia desde la V Región al sur, destacando especialmente en la V y VI Regiones (Tabla 46, Fig. 24). Las especies restantes presentan proporciones variables menores al 15%.

N.vernacular	Nombre científico	Acrón	imo	Región							
			Π	III	IV	V	VI	VII	VIII		
Tib.negro narigón	Apristurus nasutus	A. n.	0,787	0,000	0,000	0,000	0,000	0,000	0,000		
Tiburón gato	Aculeola nigra	A. ni.	2,243	0,856	0,295	0,011	0,000	0,000	0,000		
Alfonsino	Beryx splendens	B. s.	0,017	0,003	0,009	0.011	0,000	0,000	0,276		
Pejegallo	Callorhynchus callorhynchus	с. с.	0,000	0,000	0,000	0,000	0,000	0,000	0,316		
Tollo pinocho	Centroscymnus crepidater	C. cr.	0,037	0,000	0,000	0,000	0,000	0,000	0,000		
Pejerratas	Coelorhynchus spp.	Coel.	4,320	0,000	0,000	0,624	0,379	0,057	1,612		
Langost. amarillo	Cervimunida johni	С. ј.	7,510	12,170	1,991	43,834	41,177	5,997	26,167		
Jaiba limón	Cancer porteri	C. po.	0,000	1,.457	1,619	0,013	0,000	0,000	0,000		
Tollo pajarito	Deania calcea	D. c.	0,033	0,002	0,000	0,000	0,000	0,000	0,000		
Jibia	Dosidiscus gigas	D.g.	0,114	0,076	0,145	0,033	0,000	0,000	0,000		
Acorazado	Glyphocrangon alata	G. a.	0,518	0,002	0,045	0,004	0,000	0,000	0,000		
Gongrio dorado	Genypterus blacodes	G.b.	0,037	0,000	0,331	2,086	3,134	4,487	0,557		
Congrio colorado	Genypterus chilensis	G. ch.	0,000	0,034	0,000	0,000	0,000	0,000	12,242		
Congrio negro	Genypterus maculatus	G. m.	0,000	0,000	0,158	0,055	1,950	8.758	8,059		
Bagre	Galeichthys peruvianus	G. pe.	0,000	0,000	0,023	0,000	0,000	0,000	0,000		
Tollo luminosos	Halaelurus canescens	H. c.	2,485	0,827	0,274	0,007	0,000	0,000	0,000		
Gamba profundidad	Haliporoides diomedeae	H. d.	13,164	0,219	1,000	0,751	0,322	0,162	0,000		
Leng. ojos grandes	Hippoglossina macrops	H. m.	0,478	8,858	14,586	17,124	17,802	19,693	7,320		
Centolla	Lithodes antarcticus	L. a.	0,041	0,000	0,000	0,000	0,000	0,000	0,000		
Jaiba araña	Libidocladea granaria	L. g.	1,412	0,015	0,086	1,159	4,224	5,639	6,703		
Calamar	Loligo gahi	L. ga.	0,000	0,000	0,023	0,028	0,000	0,000	0,000		
Jaiba paco	Mursia gaudichaudii	M. g.	0,024	1,545	1,106	0,332	0,327	0,112	0,000		
Merluza común	Merluccius gayi	M. ga.	38,303	46,565	35,210	33,756	29,601	53,021	34,768		
Tollo fino	Mustelus mento	M. m.	0,322	0,000	0.060	0,000	0,000	0,000	0,000		
Anguila	Ophicthus pacifici	O. p.	0,033	0,047	0,046	0,018	0,000	0,000	0,000		
pulpo	Octopus vulgaris	Oct.	1,803	0,377	0,247	0,000	0,000	0,000	0,000		
Pateador	Pterygosquila armata	P. a.	0,186	0,000	0,083	0,001	0,000	0,000	0,000		
Blanquillo	Prolatilus jugularis	P. j.	0,000	0,726	0,678	0,116	0,797	1,121	1,980		
Langostino colorado	Pleuroncodes monodon	P. m.	25,683	26,050	41,850	0,000	0,000	0,000	0,000		
Anguila babosa	Polystrotema polytrema	Р. р.	0,335	0,000	0,000	0,000	0,287	0,954	0,000		
Rayas sp	<i>Raja</i> spp.	R. sp.	0,116	0,173	0,138	0,036	0,000	0,000	0,000		

Tabla 46. Proporción (%) de la fauna acompañante presente en las capturas de camarón nailon separados por región.

Fig. 24. Proporción (%) de la fauna acompañante presente en las capturas de camarón nailon separados por región.

5.7.3. IDENTIFICACION DE ASOCIACIONES ESPECIFICAS EN SENTIDO LATITUDINAL

Utilizando un criterio de mínimo 10 estaciones de pesca con 50% de similitud, se identificó dos asociaciones específicas en sentido latitudinal (Fig. 25). La primera está constituida por los taxa presentes en 88 estaciones de pesca ubicadas entre 24,65 y 36,15° S. El área de distribución de esta asociación específica se definió como zona 1. La segunda, la conforman las especies ubicadas en las 27 estaciones ubicadas entre 21,82 y 37,98° S. El área de distribución de esta asociación específica se definió como zona 2. Las estaciones restantes presentan escasa similitud.

Fig. 25. Análisis de clasificación de la abundancia relativa en peso (cpue) de la fauna acompañante en las capturas de camarón nailon en sentido latitudinal.

La aparente superposición de las asociaciones específicas presentes en la zona 1 y 2 no es tal, sino que se debe entender como la existencia de comunidades paralelas o como un mosaico de comunidades, cuyas diferencias pueden estar determinadas por la batimetría o alguna otra diferencia abiótica local.

5.7.3.1. DETERMINACION DE DIFERENCIAS ENTRE ASOCIACIONES ESPECIFICAS EN SENTIDO LATITUDINAL

El estadístico R del análisis de similitud (ANOSIM) muestra que la estructura de los datos de abundancia relativa (CPUE) de las especies que componen las asociaciones de la zona 1 y 2 son significativamente distintas (R = 1,00; p = 0,006). Esta diferencia esta dada principalmente por la diferencia en la abundancia relativa (CPUE) del lenguado de ojos grandes (*Hippoglossina macrops*, H.m.), la merluza común (*Merluccius gayyi*, M.ga.) y el lagostino colorado (*Peuroncodes monodon*, P.m.) (Fig. 26).

Fig. 26. Indice de Importancia Relativa de las especies que conforman la fauna acompañante en las capturas de camarón nailon, cuya abundancia relativa (CPUE) es mayor al 1% de la captura de la fauna acompañante. Zona 1 (A) y Zona 2 (B).

Para los taxa restantes, en los que no existe una diferencia marcada en la abundancia (cpue), la comparación univariada no paramétrica señala que no existen diferencias significativas (Tabla 47), reafirmando con esto que las diferencias están dadas sólo por algunas especies, las dominantes.

Tabla 47. Abundancia relativa promedio (CPUE) las especies de la zonas 1 y 2, cuya diferencia no es tan marcada y resultados de la comparación por medio de la aproximación normal de Mann-Whitney, aplicando inferencia simultanea de Bonferroni. * =significativo a p < 0,007.

Zona	Estadígrafo	Tiburón gato	Langostino amarillo	Congrio dorado	Tollo luminoso	Jaiba araña	Jaiba paco	Jaiba limón
1	Promedio	0.18	3.28	0.08	0.21	0.26	1.06	1.05
	D. Estándar	0.45	13.24	0.45	0.64	2.19	4.22	4.53
2	Promedio	0.28	23.50	0.19	0.46	4.30	0.04	0.01
	D. Estándar	0.78	104.04	0.72	0.92	9.93	0.10	0.06
	Ζ	0,81	0,89	0,86	1,40	2,73	1,57	1,95
	р	0,94	0,37	0,39	0,16	0,06	0,12	0,05

5.7.3.2. COMPARACION ABUNDANCIA/BIOMASA (CURVAS *ABC*) DE LAS ASOCIACIONES ESPECIFICAS EN SENTIDO LATITUDINAL

Los resultados del contraste entre las curvas que representan a la abundancia y a la biomasa, señalan que en la zona 1 existe una estabilidad en las comunidades presentes. Esto se infiere del hecho de que la curva de biomasa se encuentra sobre la curva de abundancia (Fig. 27A), es decir, existe un predominio de especies k-estrategas. Estas especies, comparadas con las r-estrategas, poseen un mayor tamaño corporal y menor abundancia en número y son propias de ambientes sin perturbación (Jaksic, 1999). De las especies más relevantes de la fauna acompañante, en la zona 1, las que dominan son especies con estas características, como la merluza común (*Merluccius gayi*) y el lenguado de ojos grandes (*Hippoglossina macrops*) (Fig. 26). La diferencia en las curvas de abundancia y biomasa es significativa, corroborado por el estadístico W, el que presenta un significativo valor próximo a 1 (Tabla 48).

Tabla 48. Estadístico W promedio obtenido con el método de remuestreo Jacknife y resultados de la prueba de significancia por medio de la aproximación normal de Mann-Whitney. * = significativo a p < 0,05.

Zona	W	Desv. Estándar	Z	р
1	0,87	0,046	3,400	0,000*
2	0.31	0.012	4,153	0,000*
1/2	-	-	4,150	0,000*

En la zona 2, por el contrario, la curva que representa a la abundancia en número se encuentra levemente sobre la curva que representa a la biomasa (Fig. 27B). La especie que predomina es el langostino colorado (*Pleuroncodes monodon*) (Fig. 26), con características de r-estratega, es decir, con tamaño corporal pequeño y abundancia en número alta. Al mismo tiempo, especies con características de k-estrategas se encuentran débilmente representadas por *M. gayi* (Fig. 26). El estadístico W presenta un valor tendiente a 0, corroborando la escasa diferencia entre las curvas de abundancia y biomasa, situación que se da en aquellas zonas con una situación intermedia de perturbación.

Fig. 27. Curva k-dominancia (Curva *ABC*) para abundancia y biomasa de las principales especies que conforman la fauna acompañante en las capturas de camarón nailon para las zonas 1 (A) y 2 (B).

El concepto de perturbación debe ser entendido en amplio sentido y no sólo como un trastorno de origen antrópico. Las perturbaciones (*sensu* Sousa, 1989) pueden ser la consecuencia de una variabilidad en la dinámica de corrientes, cambios frecuentes en la temperatura, salinidad, etcétera. Por lo tanto, la zona que presenta predominio de especies con características r-estrategas probablemente tiene una dinámica más variable que la zona con predominio de especies k-estrategas. Por otro lado, el contraste de los valores promedio del estadístico W de ambas zonas identificadas señala que éstas presentan diferencias significativas en la estructura de los datos de abundancia relativa (CPUE) (Tabla 49). Esto concuerda con lo señalado por el análisis de similitud (ANOSIM).

5.7.4. DISTRIBUCION DE LA FAUNA ACOMPAÑANTE EN SENTIDO BATIMETRICO

Merluccius gayi es una de la especie secundarias de mayor importancia presente en casi la totalidad de los estratos, alcanzando una proporción de alrededor del 18% en el estrato > 500 m y sobre 60% en los estratos 350-400 y 400-450 m (Tabla 49; Fig. 28). En los estratos de 200-250 m y de 250-300 m el langostino amarillo (*Cervimunida johni*) y langostino colorado (*Pleuroncodes monodon*) alcanzan proporciones similares, respectivamente, con alrededor de 50%. El calamar común (*Loligo gahi*) presenta su proporción máxima en el estrato de 150-200 m, llegando a constituir el 60% de las especies acompañantes. Sobre 500 m es la gamba (*Haliporoides diomedeae*) la que destaca por su mayo abundancia, constituyendo el 50% de la fauna acompañante es este estrato. Las especies restantes presentan proporciones variables en cada uno de los estratos, siendo éstas menores a 15% (Tabla 49, Fig. 28)

N. vernacular	Nombre científico	Acróni	nimo Estratos de profundidad (m))				
			100-150	150-200	200-250	250-300	300-350	350-400	400-450	450-500	> 500
Tib. negro narigón	Apristurus nasutus	A. n.	0,000	0,000	0,042	0,000	0.000	1.101	0,000	1,067	0,674
Tiburón gato	Aculeola nigra	A. ni.	0,165	0,038	0,043	0,166	0,413	3,074	2,188	2,461	1,921
Alfonsino	Beryx splendens	B. s.	0,000	0,117	0,016	0,129	0,008	0,000	0,000	0,000	0.000
Pejegallo	Callorhynchus callorhynchus	C. c.	0,350	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Tollo pinocho	Centroscymnus crepidater	C. cr.	0,004	0,000	0,000	0,010	0,000	0,013	0,016	0,000	0,000
Pejerratas	Coelorhynchus spp.	Coel.	0,018	0,088	0,670	0,000	0,582	1,514	4,244	3,362	16,855
Langostino amarillo	Cervimunida johni	C. j.	16,372	5,883	37,563	12,711	11,938	1,239	0,060	0,936	0,000
Jaiba limón	Cancer porteri	C. po.	0,583	2,030	0,283	0,194	0,401	2,491	0,643	0,050	0,101
Tollo pajarito	Deania calcea	D. c.	0,000	0,000	0,000	0,000	0,000	0.110	0.005	0,000	0,000
Jibia	Dosidiscus gigas	D.g.	0,000	0,042	0,000	0,072	0,189	0,000	0,219	0,137	0,337
Acorazado	Glyphocrangon alata	G. a.	0,056	0,000	0,012	0,001	0,005	0,000	0,729	0,443	0,017
Gongrio dorado	Genypterus blacodes	G.b.	0,000	0,028	0,149	0,237	4,997	1,281	9,581	1,569	0,000
Congrio colorado	Genypterus chilensis	G. ch.	13,630	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Congrio negro	Genypterus maculatus	G. m.	1,933	0,000	0,468	3,941	17,117	0,000	0,324	3,812	5,056
Bagre	Galeichthys peruvianus	G. pe.	0,000	0,047	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Tollo luminosos	Halaelurus canescens	Н. с.	0,130	0,028	0,041	0,142	0,356	3,077	2,331	3,951	0,455
Gamba profundidad	Haliporoides diomedeae	H. d.	0,158	0,000	0,002	0,019	1,596	3,781	3,572	21,089	50,716
Leng. ojos grandes	Hippoglossina macrops	H. m.	9,453	28,689	15,893	6,713	10,180	10,614	1,909	3,437	3,708
Centolla	Lithodes antarcticus	L. a.	0,000	0,000	0,000	0,000	0,000	0,138	0,000	0,000	0,000
Jaiba araña	Libidocladea granaria	L. g.	0,631	1,764	3,773	3,863	0,635	1,239	0,897	0,168	0,742
Calamar	Loligo gahi	L. ga.	0,000	58,967	0.020	0,000	0,000	0,000	0,000	0,000	0,000
Jaiba paco	Mursia gaudichaudii	M. g.	0,353	0,563	0,215	0,452	0,550	5,131	0,057	0,767	1,568
Merluza común	Merluccius gayi	M. ga.	51,763	0,000	29,498	20,589	28,874	61,201	69,621	54,835	16,434
Tollo fino	Mustelus mento	M. m.	0,013	0,023	0,041	0,028	0,012	0,021	0,207	0,000	1,112
Anguila	Ophicthus pacifici	O. p.	0,000	0,028	0,010	0,004	0,033	0,302	0,012	0,000	0,067
Pulpo	Octopus vulgaris	Oct.	0,112	0,000	0,095	0,149	1,080	2,447	0,891	1,153	0,236
Pateador	Pterygosquila armata	P. a.	0,000	0,000	0,091	0,007	0,186	0,083	0,031	0,008	0,000
Blanquillo	Prolatilus jugularis	P. j.	3,956	1,513	0,085	0,012	0,000	0,000	0,000	0,000	0,000
Langostino colorado Pleuroncodes monodon		P. m.	0,319	0,152	10,961	50,504	20,713	0,000	0,000	0,000	0,000
Anguila babosa	Polystrotema polytrema	Р. р.	0,000	0,000	0,012	0,000	0,000	0,620	2,221	0,457	0,000
Rayas spp.	<i>Raja</i> spp.	R. sp.	0,000	0,000	0,016	0,056	0,139	0,523	0,242	0,299	0,000

Tabla 49. Proporción (%) de la fauna acompañante presente en las capturas de camarón nailon en
función de estratos de 50 m de profundidad.

Fig. 28. Proporción (%) de la fauna acompañante presente en las capturas de camarón nailon en función de estratos de 50 m de profundidad. Ver acrónimos por especie en Tabla 49.

5.7.5. IDENTIFICACION DE ASOCIACIONES ESPECIFICAS EN SENTIDO BATIMETRICO

El análisis de clasificación en sentido batimétrico entre las estaciones que componen la zona 1 muestra que éstas poseen alto grado de similitud, constituyendo casi la totalidad de ellas un grupo único, con similitud sobre 60% (Fig. 29). Las estaciones restantes poseen bajo nivel de similitud o constituyen agrupaciones con menos de 10 estaciones.

En la zona 2, el análisis de clasificación permite identificar dos grupos de estaciones con similitud mayor a 50%; el primero está compuesto predominantemente por estaciones ubicadas entre 100 y 150 m de profundidad (Fig. 30). El segundo está compuesto por estaciones ubicadas predominantemente entre 200 y 300 m de profundidad (Fig. 30).

Fig. 29. Análisis de clasificación de la abundancia relativa en peso (cpue) de la fauna acompañante en las capturas de camarón nailon (*Heterocarpus reedi*), en la zona 1, en un sentido batimétrico.

Fig. 30. Análisis de clasificación de la abundancia relativa en peso (CPUE) de la fauna acompañante en las capturas de camarón nailon en la zona 2, en sentido batimétrico. Asociación distribuida entre 100 y 200 m de profundidad (A), entre 200 y 300 m (B) y estaciones con escasa similitud o muy pocas para constituir grupos (C).

5.7.5.1. DIFERENCIACION Y CARACTERIZACION DE ASOCIACIONES ESPECIFICAS EN SENTIDO BATIMETRICO

Zona 1 (24,65-26,15°S)

En la zona 1 (24,65-26,15° S) y en sentido batimétrico, las estaciones presentan estructuras faunísticas muy similares, observándose subgrupos de asociaciones específicas con similitud sobre 60% (Fig. 29), por este motivo, no se justifica un análisis de similitud (ANOSIM). Las estaciones restantes poseen escasa similitud o no alcanzan a constituir grupos mayores a 10 estaciones.

En las estaciones de mayor similitud en sentido batimétrico, en la zona 1, las especies dominantes son langostino amarillo (C.j.), lenguado de ojos grandes (H.m.) y merluza común (M.ga.) (Fig. 31).

Fig. 31. Indice de Importancia Relativa de las especies que conforman la fauna acompañante en las capturas de camarón nailon cuya abundancia relativa (CPUE) es mayor al 1% de la captura de la fauna acompañante. Zona 1 (24,65-36,15° S).

Las curvas k-dominancia para las estaciones de mayor similitud en sentido batimétrico en la zona 1 presentan características de ambiente estable, observándose la curva de biomasa sobre la curva de abundancia (Fig. 32). Esta conclusión gráfica es significativa, lo que es corroborado por el estadístico W, el que presenta un significativo valor tendiente a 1 (Tabla 50). Esta característica de comunidad estable reflejada por las curvas k-dominancia se debe al predominio de especies como *M. gayi* (M.ga.) y *H. macrops* (H. m.) (Fig. 32). Estas especies presentan características kestrategas comparadas con aquellas que están débilmente representadas como el langostino amarillo (*C. johni*, C. j.) y el langostino colorado (*P. monodon*, P. m.).

Fig. 32. Curva k-dominancia (Curva *ABC*) para abundancia y biomasa de las principales especies que conforman la fauna acompañante en las capturas de camarón nailon para la zona 1 (24,65-36,15° S).

Tabla 50. Estadístico W promedio obtenido con el método de remuestreo Jakknife y resultados de la prueba de significancia por medio de la aproximación normal de Mann-Whitney. * = significativo a p < 0.05.

Zona	W	Desv. Estándar	Z	р
1	0,71	0,021	4,540	0,000*
2A (100/200 m)	-0.12	0.033	2,003	0,008*
2B (200/300 m)	0,68	0,045	1,985	0,030*
2A/2B	-	-	3,173	0,000*

Zona 2 (21,82-37,98° latitud Sur)

Para las asociaciones específicas de la zona 2, con profundidades de 100 a 200 m y de 200 a 300 m, en análisis de similitud (ANOSIM) evidencia que éstas poseen diferencias significativas en la estructura de la abundancia relativa de las especies que las componen (R = 0,97; p = 0,007). Esto es coincidente con lo entregado por las curvas k-dominancia, las que señalan que las comunidades existentes entre 200 y 300 m son más estables que aquellas existentes entre 100 y 200 m de profundidad (Fig. 33).

Fig. 33. Curva k-dominancia (Curva *ABC*) para abundancia y biomasa de las principales especies que conforman la fauna acompañante en las capturas de camarón nailon para la zona 2 (21,82-37,98° S) en profundidades de 100 a 200 m (A) y 200 a 300 m (B).

En ambos casos, las diferencias observadas entre las curvas de biomasa y abundancia son significativas, tal como lo evidencia el respectivo estadístico W (Tabla 50). Del mismo modo, la diferencia detectada por el análisis de similitud entre asociaciones específicas, es indicada por el contraste entre el estadístico W de cada asociación (Tabla 50). Las diferencias específicas están dadas por un predominio de especies con características k-estrategas en la zona más profunda, como el lenguado de ojos grandes y merluza común (Fig. 34B). En cambio, en la zona más somera, a pesar de la existencia de *M. gayii*, la curva de abundancia en número se encuentra sobre la curva de biomasa, debido a la presencia casi en igual magnitud del langostino colorado (Fig. 34A).

Fig. 34. Indice de Importancia Relativa de las especies que conforman la fauna acompañante en las capturas de camarón nailon cuya abundancia relativa es mayor al 1% de la captura de la fauna acompañante. Zona 1 (A) y Zona 2 (B).

5.8. SITUACION DEL STOCK

5.8.1. PRODUCCIÓN SECUNDARIA

La biomasa total utilizada (19.573 ton) corresponde a la estimación con menor varianza (enfoque geo-estadístico). En la Tabla 51 se presentan las estimaciones de producción global y la razón producción-biomasa (P/B) por sexo con su respectivo intervalo del 95% de confianza ($\alpha = 0.05$).

Tabla 51. Estimaciones de la razón producción-biomasa (P/B) y producción para machos, hembras y el total, con su respectivo intervalo del 95% de confianza ($\alpha = 0.05$) para el año 2002.

	P/B (año ⁻¹)	IC P/B (ton año ⁻¹)	Prop. en peso	Biomasa (ton)	Producción (ton año ⁻¹)	IC Producción (ton año ⁻¹)
Machos	0,4299	0,2470 0,6500	0,526	10.295,40	4.426,00	2.543,0 6 692 0
Hembras	0,5208	0,3458 0,7341	0,474	9.277,60	4.831,77	3.208,2 7.396,6
Total				19.573,00	9.257,77	5.756,7 13.545,3

La producción global de camarón nailon estimada para el año 2002 es de **9.257,77** (ton * año⁻¹). Esta estimación corresponde a la producción de la fracción de la población muestreada (entre 11 y 42 mm de LC) y corresponde a la fracción vulnerable del stock, por lo que no se contempla ni considera la producción que aportan los individuos de tamaño menor a 11 mm de LC. Por otra parte, la longitud del intervalo de confianza de la producción (límite superior – límite inferior) es relativamente alta (7.788,6 ton*año⁻¹), debido principalmente al alto error estándar en los parámetros de crecimiento de la ecuación von Bertalanffy de esta especie, en comparación con otros crustáceos, *e.g.* langostino colorado (Roa y Tapia, 1998).

5.8.2. ANÁLISIS SITUACIÓN DEL RECURSO

El modelo fue compatible con la información observada, estimándose los parámetros que se presentan a continuación:

Definición	Parámetro	Valor
Coeficientes del patrón de explotación	p_1	8,19
	p_2	1,19
	p_3	0,76
Logaritmo de la abundancia primera clase	N.	1.004
de longitud (j=1, L=10 mm)	$1 \mathbf{v}_{j=m}$	-1,084
Mortalidad por pesca fracción	F	0.000
completamente reclutada	Γ_{c}	0,928
Función Objetivo		10,8

Estos parámetros permiten un buen grado de ajuste, tanto de la abundancia por tallas observada durante el crucero (Fig. 35). La estimación de los parámetros revela un patrón de explotación logístico característico, con una talla media de selección de 23,1 mm LCT (Fig. 36). Este patrón indica un escape mayor o igual al 50% en la fracción menor a 23,1 mm, la que ha sido cuantificada parcialmente en el crucero de evaluación. En efecto, se estima que la biomasa promedio anual total debería ser del orden de 36.575 ton en comparación con la biomasa vulnerable que fue 16.002 ton (Tabla 52), ligeramente menor que la biomasa de 19.573 ton estimada con el método geoestadístico.

Fig. 35. Camarón nailon, composición por talla observada y estimada.

Fig. 36. Camarón nailon, patrón de explotación a la talla.

Se destaca que el modelo de evaluación no sólo incorpora el patrón de explotación, sino también la cuota de captura del año (= 5.000 ton). Sin embargo, el modelo no fue verosímil con este monto de captura sino más bien con un nivel del orden de 10.471 ton. Este monto de captura está

asociado a un nivel de mortalidad por pesca $F_c = 0,928 \text{ año}^{-1}$ en las edades completamente vulneradas (Tabla 52).

			Edad					Abundancia	Abundancia	Biomasa	Biomasa	Captura	Captura
LCT	Marca de	Peso	relativa					total	vulnerable	total	vulnerable	Estimada	Estimada
(mm)	clase (mm)	(kg)	(t-t ₀)	Δt	Sj	F	(M+SjFc)	(10 ³)	(10 ³)	(ton)	(ton)	(10 ³)	(ton)
on10	10,5	0,0004	1,763	0,202	0,000	0,000	0,200	4650607	257	347	0	(0
11	11,5	0,0005	1,966	0,208	0,001	0,001	0,201	4465853	835	466	0	1	0
12	12,5	0,0007	2,174	0,214	0,002	0,002	0,202	4282917	1880	610	1	4	0
13	13,5	0,0009	2,388	0,221	0,004	0,004	0,204	4101435	3827	780	3	15	0
14	14,5	0,0011	2,609	0,228	0,008	0,008	0,208	3920670	7332	978	8	57	0
15	15,5	0,0014	2,837	0,235	0,016	0,015	0,215	3739333	13435	1205	19	195	0
16	16,5	0,0017	3,072	0,243	0,028	0,026	0,226	3555265	23695	1459	41	619	1
17	17,5	0,0021	3,316	0,252	0,049	0,046	0,246	3365023	40265	1738	85	1832	4
18	18,5	0,0026	3,567	0,261	0,083	0,077	0,277	3163429	65665	2032	168	5029	13
19	19,5	0,0031	3,828	0,270	0,134	0,124	0,324	2943361	101893	2325	311	12644	39
20	20,5	0,0036	4,098	0,281	0,207	0,192	0,392	2696388	148470	2591	536	28524	103
21	21,5	0,0042	4,379	0,292	0,304	0,282	0,482	2415163	199899	2795	849	56328	239
22	22,5	0,0049	4,671	0,305	0,419	0,389	0,589	2097978	244874	2895	1212	95143	471
23	23,5	0,0057	4,976	0,318	0,541	0,502	0,702	1753748	270214	2865	1549	135614	778
24	24,5	0,0066	5,294	0,332	0,656	0,609	0,809	1403047	268371	2700	1772	163423	1079
25	25,5	0,0076	5,626	0,348	0,754	0,700	0,900	1072190	241849	2424	1828	169258	1279
26	26,5	0,0086	5,975	0,366	0,830	0,771	0,971	783605	200448	2078	1725	154450	1329
27	27,5	0,0098	6,341	0,386	0,886	0,822	1,022	549297	155025	1708	1512	127423	1243
28	28,5	0,0110	6,726	0,407	0,924	0,858	1,058	370421	113267	1349	1247	97147	1069
29	29,5	0,0124	7,134	0,431	0,950	0,882	1,082	240794	78881	1027	976	69556	860
30	30,5	0,0138	7,565	0,459	0,967	0,898	1,098	150987	52646	753	729	47263	654
31	31,5	0,0154	8,024	0,490	0,979	0,908	1,108	91246	33753	533	521	30656	473
32	32,5	0,0172	8,514	0,525	0,986	0,915	1,115	53023	20787	362	357	19021	326
33	33,5	0,0190	9,039	0,566	0,991	0,920	1,120	29516	12267	235	233	11280	214
34	34,5	0,0210	9,605	0,614	0,994	0,922	1,122	15656	6908	146	145	6372	134
35	35,5	0,0231	10,220	0,671	0,996	0,924	1,124	7855	3688	86	85	3409	79
36	36,5	0,0254	10,891	0,740	0,997	0,926	1,126	3692	1849	47	47	1712	43
37	37,5	0,0278	11,631	0,824	0,998	0,926	1,126	1605	860	24	24	797	22
38	38,5	0,0304	12,456	0,930	0,999	0,927	1,127	634	365	11	11	338	10
39	39,5	0,0332	13,386	1,068	0,999	0,927	1,127	222	138	5	5	128	4
40	40,5	0,0361	14,454	1,252	0,999	0,928	1,128	67	45	2	2	41	1
41	41,5	0,0392	15,706	1,515	1,000	0,928	1,128	16	12	0	0	11	0
42	42,5	0,0425	17,221	1,918	1,000	0,928	1,128	3	2	0	0	2	0
43	43,5	0,0460	19,139	2,616	1,000	0,928	1,128	0	0	0	0	C	0
								51925046	2313703	36575	1600	2 1238297	10471

Tabla 52. Camarón nailon, evaluación indirecta año 2001.

La tasa de mortalidad por pesca actual ($F_c=0,928$ año-1), supera las mortalidades por pesca de referencia, lo que sugiere una situación de excesiva mortalidad por pesca sobre el stock (Tabla 53, Fig. 37).

Tabla 53. Camarón nailon, mortalidad por pesca actual y su comparación con mortalidades por pesca de referencia.

PBR	Valor	YPR	SPR
F40%	0,14	3,0	15,2
F20%	0,29	3,5	7,6
F _{max}	0,36	3,5	5,7
F=M	0,20	3,3	11,3
$F_{2/3}$	0,06	1,9	25,3
F _{0,1}	0,18	3,2	12,5
F _c	0,73	3,3	2,1

Fig. 37. Camarón nailon, curvas de rendimiento por recluta (YPR) y biomasa desovante por recluta (SPR).

6. DISCUSIÓN

La distribución espacial de camarón nailon en la zona de estudio se presentó discontinua, formando 15 caladeros o agregaciones, a diferencia de lo reportado por Arana *et al.* (2000; FIP 2000-05), quienes señalan una distribución continua del recurso entre 23° S y 35°30' S, y un pequeño foco de abundancia frente a la VIII Región. Por su parte, Acuña *et al.* (2000) encontraron tres focos de abundancia en el año 1999, lo que corrobora la distribución en agregaciones a la forma de bandas discontinuas que se reducen en tamaño desde la V Región al sur, siendo esporádicas en la VII y VIII Regiones y desapareciendo por completo desde la mitad sur de esta última Región.

La abertura de punta de alas promedio (APA) del PAM "Foche", considerando los lances positivos utilizados en la evaluación, se determinó en 14,7 m, que es bastante similar a la del PAM "Nisshin Maru III" (APA = 13,5 m). El APA de la L/M "Pionero" se determinó en 18,1 m. Llama la atención que una nave artesanal presente una APA bastante mayor que las registradas para las naves industriales, lo que se explica porque por diseño posee una mayor abertura de boca, como lo demuestra el plano entregado en el Anexo 2.

Un tema relevante de discutir de este proyecto se refiere a la relativamente baja cantidad de lances positivos con los cuales se realizó la evaluación. La dificultad que se señala acá se debió muy probablemente a que el diseño original del muestreo, presentado en la OTE, estaba dirigido principalmente a determinar los límites *longitudinales* de la banda de distribución específica del stock de camarón nailon asumiendo que ésta era continua en el sentido latitudinal. Pero, los resultados del presente estudio revelaron *a posteriori* que tal banda de distribución longitudinal de camarón nailon se ha estrechado debido a la fuerte disminución de la abundancia del stock, lo que viene ocurriendo fuertemente desde el año 1999. Adicionalmente, esta banda de distribución se presenta ahora interrumpida latitudinalmente. Entonces, ambas situaciones (estrechez longitudinal de la banda de distribución y su interrupción latitudinal) condujeron a que el número de lances exitosos de camarón nailon, según el diseño de muestreo, fuera muy bajo en comparación a todos los estudios previos efectuados por Acuña *et al.* (2000).

Consecuentemente, esta distribución ahora discontinua del camarón nailon, y su prácticamente nula abundancia desde la VI a la VIII Regiones, tiende a parecerse más a la distribución propia de los recursos langostinos colorado y amarillo, en focos aislados, que a la que poseía el recurso antes del año 1999, aspecto que debe ser considerado oportunamente en futuras evaluaciones de este recurso. Esto explicaría también el hecho que en el proyecto FIP 2001-06, de evaluación de la biomasa de langostinos amarillo y colorado, se hubiese registrado mayor número de lances "exitosos" de camarón nailon en comparación con aquellos con los que se buscaba a esta última especie durante el presente estudio (FIP 2001-05).

En el presente estudio, el 80% del área de los caladeros se encuentra entre las Regiones II y IV. Además, el 84% de la biomasa del stock se encuentra en esta área, confirmándose que actualmente el recurso camarón nailon es "un recurso de la zona norte". Además, el 38% de la biomasa se encuentra dentro de las 5 mn de reserva a la pesca artesanal, aunque prácticamente sólo de la II a la IV Regiones, separándose las zonas de pesca bruscamente fuera de este sector desde alrededor del límite sur de esta última región a Los Molles hacia el sur.

El área total de los caladeros de camarón nailon registrada en el año 2001 alcanzó a 1.724,6 mn², siendo levemente inferior a las 1.775 mn² informadas por Arana *et al.* (2000; FIP 2000-05). Además, el área total registrada en el presente estudio corresponde a sólo cerca de la mitad del área total de caladeros reportados por Acuña *et al.* (2000), en un estudio ejecutado el año 1999, para una extensión bastante comparable a la actual en sentido norte-sur. En consecuencia, la distribución del recurso camarón nailon se ha reducido en forma importante entre los años 1999 y 2000-2001, probablemente como consecuencia de la reducción tanto del tamaño del stock total como del stock vulnerable.

El estimador global de biomasa de camarón nailon en este estudio, según el enfoque geoestadístico (19.573 ton), es inferior en 8,9% a lo informado por Arana *et al.* (2000), de 21.256 ton, estando dentro del rango de estimadores de biomasa calculados por Acuña *et al.* (2000), cuyo máximo fue de 20.842 ton. Entonces, la biomasa de camarón nailon entre la II y VIII Regiones se encuentra estabilizada en alrededor de 20 mil a 21 mil ton, tras una brusca disminución desde 60 mil ton, estimadas en 1995 por Acuña *et al.* (1996).

Los valores de biomasa vulnerable obtenidos con las aproximaciones geoestadística y de la Distribución Delta son consistentes con los valores obtenidos mediante la aproximación GAM (20.265,8 ton), el método cuasi-diseño basado bootstrap (20.631 ton) y el método de Thompson (25.673-27.599 ton). Cabe destacar que todas estas estimaciones quedan incluidas en el rango de los límites del intervalo de confianza de la Distribución Delta, con valores en el rango inferior y medio del mismo, respectivamente.

De la medición del tamaño y del registro del sexo de los ejemplares analizados en el muestreo biológico se observó un claro predominio de las hembras en la mayoría de las regiones, salvo en la VII Región, donde el porcentaje de machos supera el 58,0%. Esto se manifiesta en el hecho que se capturó una mayor cantidad de hembras que de machos de la especie, con un porcentaje general de 58% y 42%, respectivamente. También es un hecho destacable que al analizar sólo las hembras, el 71,6 % de éstas se encuentran portando huevos. En efecto, en todas las regiones existe un porcentaje de hembras ovíferas superior al 58%, lo que se hace más notorio desde la V Región hacia el sur, donde éste supera el 99 %, lo que coincide temporalmente con el período de máxima portación de huevos de la especie y se visualiza el desfase latitudinal en los porcentajes, que va había sido establecido por Acuña et al. (1996). Este hallazgo fue uno de los sustentos técnicos en la adopción del establecimiento de una veda biológica de la especie durante julioagosto, para proteger el período de máxima portación de huevos, período al cual se extendió parte de los cruceros de este estudio por razones ajenas a la voluntad del consultor. El acceder a hembras en este avanzado estado reproductivo también complicó la determinación de la fecundidad, al contar sólo con ejemplares con huevos en estados III y IV, que corresponden a estados avanzados del desarrollo de los huevos. En este caso, de los huevos ya eclosionan larvas al ambiente, con lo que, como lo demostraron Acuña et al. (1996), existe pérdida de huevos y las estimaciones aumentan considerablemente en dispersión.

Con las estimaciones locales (lances) del número de huevos por unidad de área se realizó un análisis geoestadístico, encontrándose que el modelo de variograma teórico que mostró el mejor ajuste, mediante el procedimiento de mínimos cuadrados ponderados fue el modelo exponencial con rango r igual a 68,4. Con los parámetros del variograma teórico exponencial seleccionado y del *kriging* (modelo de covariograma, y geometría de la grilla de interpolación), se estimó la

densidad global promedio del número de huevos por unidad de área (huevos/mn²) para cada caladero.

Con respecto a la fauna acompañante, la estructura de los datos indica la existencia de dos zonas comunitarias en sentido latitudinal, las que se encuentran dispuestas de manera paralela. Esta configuración sugiere que factores locales tal como la profundidad son más determinantes que las diferencias abióticas latitudinales. Esto es destacable pues lo que estamos diciendo es que las comunidades de la fauna asociada a las pesca de camarón nailon se reparten primero batimétricamente y después latitudinalmente. Acá destacamos que el rango del eje batimétrico no sobrepasa los 550 m, lo que es prácticamente despreciable frente al rango del eje latitudinal, que alcanza a un par de miles de km. Esto resulta coherente considerando que la zona centro-sur de Chile ha sido considerada como una zona de transición entre la macro zona biogeográfica norte, o peruviana, y la macro zona biogeográfica sur, o magallánica, sobre la base de registros de invertebrados litorales (Brattström & Johanssen, 1983; Viviani, 1979; Lancellotti & Vázquez, 1999).

A modo de hipótesis, se puede señalar que la homogeneidad en la composición específica de la fauna en la está dada por la homogeneidad ambiental que otorga la zona mínima de oxigeno descrita entre 100 y 400 (Morales *et al.*, 1999). Esto mismo puede explicar que, en la zona 1, que nosotros hemos registrado hasta 36° S, presente también homogeneidad en sentido batimétrico, ya que las muestras corresponden a profundidades de 100 a 300 m aprox., que está incluida en la zona de mínima de oxigeno en sentido batimétrico (Morales *et al.*, 1999).

Por el contrario, en la zona 2, que se ha registrado en 37° S, es posible diferenciar batimétricamente un par de zonas con composición específica distinta. La zona de mínima de oxígeno pierde influencia en el área comprendida entre Concepción y Valdivia debido al gradiente antártico, el que se incrementa hacia el sur (Brattström & Johanseen, 1983). Luego, también se puede sugerir a modo de hipótesis que la pérdida de homogeneidad puede dar paso a que diferencias locales asociadas a la profundidad, en este caso, determinándose diferencias en la composición de especies en este sentido. La estabilidad de las asociaciones, tanto en sentido latitudinal como batimétrico se correlacionan con lo discutido más arriba, en el sentido de la influencia y pérdida de ésta de la zona mínima de oxígeno. En efecto, en aquellas zonas

ambientalmente más homogéneas se registra predominio de especies con características kestrategas, propias de ambientes estables y, a la inversa, en aquellas zonas aparentemente más heterogéneas el predominio corresponde a especies con características r-estrategas.

De la forma de la curva de rendimiento por recluta (Y/R) se desprende que el recurso camarón nailon está sometido actualmente a sobrepesca por crecimiento, siendo recomendable incrementar la longitud media de primera captura. No obstante, la talla de primera captura al nivel del 50% aquí determinada coincide con la encontrada por Canales *et al.* (1999) para muestras obtenidas en el año 1998, de tal manera que el efecto de la sobrepesca por crecimiento podría ser consecuencia del nivel más bajo de mortalidad natural utilizado en este estudio.

Desde el punto de vista de la sobrepesca por reclutamiento, la mortalidad por pesca actual es mayor al $F_{20\%}$, que se considera un punto biológico de referencia límite. Esto implica alto riesgo de sobrepesca por reclutamiento, especialmente cuando la relación stock-recluta es incierta, como es el caso para este recurso.

La magnitud de la captura estimada para el año 2001 es prácticamente el doble de la cuota de captura de 5.000 ton. Es importante considerar que las capturas oficiales son menores a lo "real", por lo que las capturas oficiales no son verosímiles, lo que determina una pérdida notable en el grado de ajuste de la información de composición por tallas y biomasa vulnerable. Este efecto tiene varias implicancias, a saber:

- (a) las capturas totales de camarón nailon han sido efectivamente mayores, aspecto que podría explicarse por subdeclaraciones permanentes, pesca furtiva, descarte u otras prácticas que se dan en pesquerías fuertemente reguladas y con esfuerzo de pesca excesivo y excedido;
- (b) la selectividad del arte de pesca asociado al crucero de evaluación es diferente que el de la pesquería, lo que implica diferencias en el patrón de explotación asociados a las modalidades de captura y operación de la flota. Esto implica considerar la estructura de tamaños de la pesquería en el modelo de evaluación; y,
- (c) la estructura de tallas de este estudio no es informativa de la composición por tallas de la población vulnerada.

Se debe considerar que el modelo de evaluación aquí utilizado supone una condición de equilibrio, esto es, que el reclutamiento es constante y que la tasa de inmigración es igual a la tasa de emigración. Los problemas identificados deberán evaluarse a través de modelos que permitan analizar la dinámica del reclutamiento y los cambios interanuales en la tasa de explotación.

La historia de la evaluación directa es reciente y sugiere que la biomasa vulnerable de camarón nailon habría sido superior a 30 mil ton antes del año 1997 (Acuña *et al.*, 1997; Canales *et al.*, 1999), tendencia que se habría interrumpido en 1998 cuando fue estimada una biomasa del orden de las 9 mil toneladas por Roa *et al.* (1999). En los años 1999, 2000, y 2001 se ha estimado biomasas del orden de 20 mil ton (Acuña *et al.*, 2000; Arana, 2000; Acuña *et al.*, este informe).

Como se desprende de la evaluación indirecta aquí realizada, los cambios de biomasa cuantificados directamente están reflejando cambios en la biomasa vulnerable que incorpora solamente los efectos del patrón de explotación. Por lo tanto, el cambio en el nivel de biomasa del orden de 30 mil a 50 mil ton a otro de 20 mil ton sugiere que los cambios más importantes podrían haber ocurrido a través de la magnitud del reclutamiento, aunque con un efecto no menor de la pesca. La única manera de evaluar esta hipótesis es a través de modelos de evaluación que incorporen una componente dinámica. Ello implica no sólo evaluar directamente al recurso con los métodos que aquí se ha aplicado, sino también analizar la estructura de tallas que está vulnerando la pesquería y el esfuerzo de pesca ejercido, así como otras fuentes de información que sean informativa para la evaluación de stock. Canales *et al.* (1999), por ejemplo, intentaron por primera vez una evaluación integrada con una componente dinámica, y sus resultados sugieren que la evolución de la biomasa de camarón nailon no solamente puede ser atribuida al efecto de la extracción. En efecto, el stock de camarón nailon no se encontraría en un estado de equilibrio dinámico con la pesquería, ya que la variabilidad del reclutamiento y la capturabilidad fueron determinantes en los cambios de biomasa.

7. CONCLUSIONES

- Se registró 15 agregaciones o caladeros de camarón nailon, desde 22°19,86' S hasta 36°36,72'
 S, en un rango batimétrico entre 83 y 620 m.
- El análisis geoestadístico no reveló la presencia de efecto anisotrópico de la distribución espacial de la densidad del stock de camarón nailon.
- La biomasa vulnerable de camarón nailon estimada con el enfoque geoestadístico alcanza a 19.573 ton (intervalo de confianza: 18.084 21.062 ton), y con el método de la Distribución Delta alcanza 22.425 ton (intervalo de confianza: 12.880 31.970 ton), por lo que el primero, con su menor varianza, es más preciso. Además, la biomasa vulnerable de camarón nailon estimada mediante la técnica GAM alcanza a 20265,8 ton; la estimada mediante el método cuasi-bootstrap alcanza a 20.631 ton y, por último, la biomasa estimada mediante el método de Thompson ha sido estimada en 25.672,51 27.599,19 ton (con intervalos de confianza de: 24.176,4 27.168,6 y 24.527,8 30.670,6 ton, respectivamente).
- Consecuentemente, la biomasa vulnerable de camarón nailon se encuentra estabilizada en alrededor de 20 mil a 21 mil ton, para todo el rango de distribución latitudinal (II a VIII Regiones), aunque el 80% del área de los caladeros se encuentra de la II a la IV Regiones.
- En todas las regiones existe un porcentaje de hembras ovíferas superior al 58%, lo que se hace más notorio desde la V región hacia el Sur donde éste supera el 99%, lo que coincide temporalmente con el período de máxima portación de huevos de la especie y se visualiza el desfase latitudinal en los porcentajes, que ya había sido establecido por Acuña *et al.* (1996).
- La principal especie en las capturas durante el crucero corresponde a camarón nailon (30% en peso), seguido de pejerratas (24%), merluza común (17%) y langostinos colorado (7,6) y amarillo (7,4%).

- Se observa homogeneidad en la composición de especies en sentido latitudinal al considerar toda el área de estudio, identificándose dos zonas que se distribuyen paralelamente. El eje batimétrico es el que permite la repartición entre ambas zonas, por sobre el eje latitudinal.
- El recurso camarón nailon está siendo impactado por un nivel actual (año 2001) de mortalidad por pesca excesivo, superando el nivel de mortalidad por pesca de referencia F_{20%}, lo que implica alto riesgo de sobrepesca por crecimiento.
- Aunque el modelo de evaluación de stock indirecto aplicado en este estudio tiene verosimilitud para niveles de captura del recurso camarón nailon del orden de 10 mil ton, que es prácticamente el doble de la cuota de pesca establecida para el año 2001, esta cifra no debe ser considerada como análoga a una CTP. Simplemente, este valor es el que permite estadísticamente la mayor verosimilitud.
- Consecuentemente, si se asume que la cuota total permisible (CTP) corresponde a la razón entre biomasa vulnerable y la mortalidad por pesca, entonces, para toda el área de la pesquería (II a VIII Regiones) y un nivel de mortalidad por pesca de 15% a 20% de la biomasa vulnerable, entonces la CTP debería ubicarse entre 3 mil y 4 mil ton. Sin embargo, al menos el 80% de la CTP debería destinarse exclusivamente a las Regiones II y IV.

8. REFERENCIAS BIBLIOGRAFICAS.

- Acuña, E., H. Arancibia, A. Mujica, K. Brokordt & C. Gaymer. 1995. Estudio biológicopesquero del langostino amarillo (*Cervimunida johni*) en la III y IV Región, mediante el uso de la flota arrastrera con base en Coquimbo. Informe Final Proyecto U. C. del Norte-Sede Coquimbo/Instituto de Investigación Pesquera VIII Región/Empresas Pesqueras de Coquimbo, 107 págs. + 2 anexos.
- Acuña, E & H. Arancibia. 1996. Evaluación directa del stock de camarón nailon (*Heterocarpus reedi*) por el método de área barrida, en la zona de operación de la flota arrastrera de la Regiones II y IV. Informe final Proyecto UCN, INPESCA, Empresas Pesqueras Coquimbo y Caldera. 75 pp.
- Acuña, E., H. Arancibia, A. Mujica, L. Cid, R. Roa & F. Winkler. 1997. Análisis de la pesquería y evaluación indirecta del stock de camarón nailon (III y VIII Regiones). Informes Técnicos FIP. FIP/IT 95-06, 186 pp.
- Acuña, E., H. Arancibia, L. Cid, A. Mujica & R. Roa. 1998a. Análisis de la pesquería y evaluación Indirecta del Stock de Langostino amarillo en la III y IV Regiones. Informes Técnicos FIP. FIP/IT 96-08, 153 pp.
- Acuña, E., M. Berríos, L. Cid, C. Díaz, J. Moraga, A. Mujica, J. Olivares & Rubén Roa. 1998b. Evaluación directa del stock de langostino amarillo en la III y IV Regiones. Informes Técnicos FIP. FIP/IT 97-25, 137 pp.
- Acuña, E, E. Pérez, M. Berríos, L. Cid, J. Moraga, A. Mujica & Rubén Roa. 1999. Evaluación directa del stock de camarón nailon (II a VIII Regiones). Informes Técnicos FIP. FIP/IT 99-08, .
- Acuña, E., E. Pérez & M.T. González. 1999. Monitoreo de la pesquería de crustáceos realizada por la flota de la IV Región. Informe Final, Proyecto de Investigación. Depto. Biología Marina, U. Católica del Norte y Asoc. de Industriales y Armadores Pesqueros A.G. IV Región, 104 pp.
- Acuña, E. & M.González. 2000. Pesca de langostino colorado *Pleuroncodes monodon* (H. Milne Edwards, 1837) y langostino amarillo *Cervimunida johni* Porter, 1903 por la flota artesanal en el area de reserva de la III Región". Informe de Avance, Proyecto Pesca de Investigación. Depto. Biología Marina, U. Católica del Norte. 22 pp.
- Acuña, E., E. Pérez & M.T. González. 2000. Monitoreo de la pesquería de crustáceos realizada por la flota de la IV Región. Informe Final, Proyecto de Investigación. Depto. Biología Marina, U. Católica del Norte y Asoc. de Industriales y Armadores Pesqueros A.G. IV Región, 104 pp.

- Aitchison, J. J. & A. C. Brown (1969) The lognormal distribution, with special reference to its uses in economics. Cambridge University Press, Cambridge, 176 p.
- Alverson, D.L. & W.T. Pereyra. 1969. Demersal fish explorations in the northeastern Pacific Ocean. An evaluation of exploratory fishing methods and analytical approaches to stock size and yield forecasts. J. Fish. Res. Bd. Canada, 26: 1985-2001.
- Andrade, H. & P. Báez. 1980. Crustáceos decápodos asociados a la pesquería de Heterocarpus reedi Bahamonde, 1955, en la zona central de Chile. Bol. Mus. Nac. Hist. Nat. Chile 37:261-267.
- Arancibia, H. 1993. Evaluación directa del stock de merluza común en la zona centro-sur. Sección Fauna Acompañante, 27 p. + 60 figs.
- Arredondo, M. 1996. Evaluación directa del stock del camarón nailon (*Heterocarpus reedi*) entre las regiones de Antofagasta y del Bío-Bío. <u>En</u>: Pavez, P. Evaluación directa del stock de camarón nailon en la zona centro-norte. Informes FIP, FIP/IT 96-09: 295-338.
- Augustin, N. H., D. L. Borchers, E. D. Clarke, S. T. Buckland & M. Walsh. 1998. Spatiotemporal modelling for the annual egg production method of stock assessment using generalized additive models. Can. J. Fish. Aquat. Sci. 55: 2608-2621.
- Baranov, F.I. 1977. Selected Works on fishing gear. Vol II. Theory and practice of commercial fishing. Translate from russian for the U.S.A. Israel Bination al Science Foundation. 261 pp.
- Borchers, D. L., S. T. Buckland, I. G. Priede & S. Ahmadi. 1997. Improving the precision of the daily egg production method using generalized additive models. Can. J. Fish. Aquat. Sci. 54: 2727-2742
- Bray, J. R. & J. T. Curtis. 1957. An ordination of the upland forest communities of Southern Wisconsin. Ecol Monogr., 27: 325-349.
- Brey, T. & J.D. Gage. 1997. Interactions of growth and mortality in benthic invertebrate populations: empirical evidence for a mortality-growth continuum. Arch. Fish. Mar. Res. 45(1): 45-59.
- Canales, C., C. Montenegro, T. Peñailillo, Humberto Pool & C. Vicencio, 1999. Evaluación indirecta del stock de camarón nailon en el litoral de la II a VIII Regiones. Documentos Técnicos FIP, FIP IT/97-24, 139 p. + anexos.
- Carrasco, F. D., V. A. Gallardo & M. Baltazar. 1999. The estructure of the benthic macrofauna collected across a transect at the central Chile shelf and relationships with giant sulfur bacteria Thioploca spp mats. Cah. Biol. Mar., 40: 195-202.
- Carrothers P.J. 1980. Estimation of trawl door spread from wing spread. In: J. Northw. Atl. Fish. Sci. 1:81-89.

- Chapman, M. G. & A. J. Underwood. 1999. Ecological patterns in multivariate assembalges: information and interpretation of negative values in ANOSIM tests. Mar. Ecol. Prog. Ser., 180:257-265.
- Clarcke, K.R. 1990. Comparisons of dominance curves. Journal Experimental Marine Biology and Ecology, 138: 143-157.
- Clarke K. R. & R.H. Green. 1988. Statistical desing and analisys for a biological effects study. Mar Ecol. Prog. Ser., 92: 205-219.
- Clarke, K. R. & R. M. Warwick. 1994. Changes in marine communities: an approach to statistical analysis and interpretation. Plymouth: Plymouth Marine Laboratory, 144 pp.
- Clifford, H. T. & W. Stephenson. 1975. An introduction to numerical classification. Academic Press, Inc., London, 229 p.
- Cochran, W. G. 1977. Sampling techniques, 3rd ed. John Wiley and Sons Inc. New York. 428 pp.
- Comeau, M., G.Y. Conan, F. Maynou, G. Robichaud, J.C. Therriault & M. Starr. 1998 Growth, spatial distribution, and abundance of benthic stages of the snow crab (Chionoecetes opilio) in Bonne Bay, Newfoundland, Canada. Canadian Journal of Fisheries and Aquatic Sciences, 55: 262–279.
- Conan, G.Y. 1985 Assessment of shellfish stocks by geostatistical techniques. ICES C.M., 30 (mimeo).
- Cressie, N.A.C. 1993. Statistics for spatial data. Wiley, New York.
- Crewe, P.R. 1963. Some of the engineering principples of trawl gear design. 165-181 pp. In: M.F.G.W. Vol. 2.
- Dew, C.B. 1990. Behavioral ecology of podding red king krab, *Paralithodes camtschatica*. Can. J. Fish. Aquat. Sci. 47: 1944-1958.
- Deutsch, C.V. & A.G. Journel, 1998. GSLIB: Geostatistical Software Library and User's Guide. 2nd Ed. Oxford University Press, New York. 369 pp.
- Efron, B. & R.J. Tibshirani, 1993. An introduction to the Bootstrap. Chapman and Hall, New York.
- Englund, E. & A. Sparks. 1988. Geo-EAS (geostatistical environmental assessment software) user's guide. U.S. Environmental Protection Agency, Las Vegas, Nev.
- Epifanio, C.E. 1987. The role of tidal fronts in maintaining patches of brachyuran zoeae in estuarine waters. J. Crustacean Biol. 7: 513-517.

- Fennessy, S. T., C. Villacastin & J. G. Field. 1994. Distribution and seasonality of icthyofauna associated with commercial praw trawl catches on the Tugela bank of Natal, South Africa. Fish. Res. 20:263-282.
- Foote, K. & G. Stefánsson. 1993. Definition of the problem of estimating fish abundance over an area from acoustic line-transect measurements of density. ICES J. mar. Sci., 50: 369-381.
- Freire, J., E. González-Gurriarán & I. Olaso. 1992. Spatial distribution of *Munida intermedia* and *M. sarsi* (Crustacea: Anomura) on the Galician continental shelf (NW Spain): application of geostatistical analysis. Estuarine Coastal and Shelf Science, 35: 637-648.
- Fournier, D. & C.P. Archibald. 1982. A general theory for analyzing catch at age data. Can. J. Fish. Aquat. Sci. 39:1195-1207.
- Fournier, D., 1996. An introduction to AD Model Builder for use in nonlinear modeling and statistics. Otter Research Ltd., Nanaimo, BC, Canada.
- González-Gurriarán, E., J. Freire & L. Fernández. 1993. Geostatistical analysis of the spatial distribution of Liocarcinus depuratus, Macropipus tuberculatus and Polybius henslowii (Crustacea: Brachyura) over the Galician continental shelf (NW Spain). Marine Biology, 115: 453-461.
- Gulland, J.A. & L.K. Boerema. 1973. Scientific advice on catch levels. Fish. Bull. (U.S.) 71:325-335.
- Hastie, T. & R. Tibshirani. 1990. Generalized additive models. Chapman and Hall, London. 335 p.
- Hastie, T. & Tibshirani, R. 1998. Comment on "Monotone splines in action" by J. Ramsay. Statist. Sci. 3, 450-6.
- Henríquez, G. & R. Bahamonde. 1982. Estudio biológico pesquero del recurso langostino colorado (Pleuroncodes monodon). 35°47'S- 37°05'S. Informe a Subsecretaría de Pesca. Instituto de Fomento Pesquero, 67 p.
- Henríquez, G., R. Bahamonde & R. Bustos. 1983 Monitoreo del recurso langostino colorado. Instituto de Fomento Pesquero, 26 p.
- ICES, 1997. Report of the comprehensive fishery evaluation working group. ICES CM 1997/Assess:15.
- ICES, 1999. Report of the working group on mackerel and horse mackerel egg surveys, Living Resources Committee. ICES CM1999/G:5 Ref. D., 87 p.
- Isaaks, E.H. & R.M. Srivastava. 1989. An Introduction to Applied Geostatistics. Oxford University Press, New York. 561 pp.

Journel, A.G. & C.J. Huijbregts. 1978. Mining geostatistics. Academic Press, London.

- Jaksic, F. & R. Medel. 1987. El acuchillamiento de datos como método de obtención de intervalos de confianza y prueba de hipótesis para índices ecológicos. Med. Amb. 8: 95-103.
- Keckler, D. 1994. SURFER for Windows user's guide. Golden Software Inc., Golden, CO.
- Kimura, D.K., 1990. Approaches to age-structured separable sequential population analysis. Can. J. Fish. Aquat. Sci, 47(12):2364-2374.
- Kondrat'ev, V.P. 1980. Modeling Commercial Fishing Gear by the Method of Analog Mechanism. T.T. 75-52015. American Publishing Co. Pvt. Ltd. (Ed), 154 pp.
- Kong, I., R Melendez & G. Henriquez . 1988. Los Peces Ophidiiformes de aguas profundas entre Arica e Isla Mocha. Estudios Oceanológicos.
- Koyama, T. 1974. Study of stern trawl. Bull. Tokai Reg. Fish. Res. Lab., 77: 171-247.
- Kraufvelin, P. 1999. Baltic hard bottom mesocosms unplugged: replicability, repeatability and ecological realism examined by non-parametric multivariate techniques. J. Exp. Mar. Biol. Ecol., 240: 229-258.
- Lambshead, P., H. Platt & K. Shaw. 1983. The detection of difference among assemblages of marine benthic species based on an assessment of dominance and diversity. J. Nat. Hist. 17: 859-874.
- Land, C.E. 1975. Tables of confidence limits for linear functions of the normal mean and variance. Sel. Tables Math. Stat. 3:385-419.
- Maravelias, C.D., D.G. Reid, E.J. Simmonds & J. Haralabous. 1996. Spatial analysis and mapping of acoustic survey data in the presence of high local variability: geostatistical application to North Sea herring (Clupea harengus). Canadian Journal of Fisheries and Aquatic Sciences, 53: 1497-1505.
- Maynou, F.X., F. Sardá & G.Y. Conan. 1998. Assessment of the spatial structure and biomass evaluation of Nephrops norvegicus (L.) populations in the northwestern Mediterranean by geostatistics. ICES Journal of Marine Science, 55: 102-120.
- MacLennan, D.N. & I.G. MacKenzie. 1988. Precision of acoustic fish stock estimates. Can. J. Fish. Aquat. Sci., 45: 605-616.
- McConaughey, R.A. 1991. Factors affecting Dungenes crab (*Cancer magister*) year class strength along the Washington coast. Ph.D. diss., School Fish., Univ. Wash., Seatle, 162 p.

- McConnaughey, R.A. & P.A. Conquest. 1993. Trawl survey estimation using a comparative approach based on lognormal theory. Fish. Bull. (U.S.) 91:107-118.
- McCullagh, P. & J. A.Nelder, 1989. Generalized Linear Models. Second Edition. Chapman and Hall.
- Mendenhall, W. & T. Sincich. 1997. Probabilidad y estadística para ingeniería y ciencias. Prentice-Hall Hispanoamericana, 4^a ed. 1182 pp.
- Melendez, R. & D. Meneses. 1989. Tiburones del Talud continental entre Arica (18°25'S) e Isla Mocha (38°15' S). Investigaciones Marinas, UCV, 17:3-73.
- Methot, R.D. 1986. Synthetic estimates of historical abundance and mortality for northern anchovy, *Engraulis mordax*. U.S. Natl. Mar. Fish. Serv., Southwest Fish. Cent., Admin. Rep. LJ 86-29, La Jolla, California.
- Nashida, K. 1990. The measurement of the distance between wings tips and the heights of the headropes of small trawler's net. Bull. Japan Sea Natl. Fish. Res. Inst. 40: 213-220.
- Ojeda, P. & S. Avilés. 1987 Peces oceánicos chilenos, pp 247-270, En: Islas Oceánicas Chilenas: conocimiento científico y necesidades de investigaciones (J.C. Castilla Ed.). Ediciones U. Católica de Chile, Santiago.
- Okonski, S.L. & L. Martini. 1977. Materiales didácticos para la capacitación en tecnología de artes y métodos de pesca. Dirección de Ciencias y Tecnologías del Mar. 450 pp.
- Otto, R.S. 1986. Management and assessment of eastern Bering Sea king crab stocks. *In* Jamieson, G.S. & N. Bourne (Eds.), North Pacific workshop on stock assessment and management of invertebrates. Can. Spec. Publ. Fish. Aquat. Sci. 92: 83-106.
- Palma, S. 1996. Desarrollo embrionario y fecundidad del camarón nailon, Heterocarpus reedi, capturado en la zona centro-norte de Chile. En: Pavez, P. Evaluación directa del stock de camarón nailon en la zona centro-norte. Informes FIP, FIP/IT 96-09, p: 88-116.
- Paloheimo, J.E. & M. Dickie. 1964. Abundance and fishing success. Rapp. P.-v. Réun. Cons. Explor. Mer, 155: 152-163.
- Pannatier, Y. 1996. VARIOWIN: Software for Spatial Data Analysis in 2D. Springer-Verlag, NY. 91 pp.
- Pelletier, D. & A.M. Parma. 1994. Spatial distribution of Pacific Halibut (Hippoglossus stenolepis): an application of geostatistics to longline survey data. Can. J. Fish. Aquat. Sci., 51: 1506-1518.
- Pequeño, G. & J. Lamilla. 1985. Estudio sobre una colección de rayas del suur de Chile (Chondrichtyes, Rajidae). Rev. Biol. Mar., Valparaíso, 21 (2): 225-271.

- Pennington, M. 1983. Efficient estimators of abundance, for fish and plankton surveys. Biometrics 39: 281-286.
- Pennington, M. 1986. Some statistical techniques for estimating abundance indices from trawl surveys. Fish. Bull., 84(3): 519-525.
- Petitgas, P. 1993. Geostatistics for fish stock assessments: a review and an acoustic application. ICES J. mar. Sci., 50: 285-298.
- Petitgas, P. 1996. Geostatistics and their applications to fisheries survey data. In Megrey, A., and E. Moskness (Eds.) Computers in Fisheries Research. Chapman & Hall, London. pp. 113-142
- Petitgas, P. & T. Lafont. 1997. EVA2: Estimation variance. Version 2. A geostatistical software on Windows 95 for the precision of fish stock assessment surveys. ICES CM 97/Y:22. 22 pp.
- Pérez E.P., C. González, A. Karstegl & J. Chávez. 2000. Análisis dinámico de corto plazo de la pesquería de arrastre de *Heterocarpus reedi* en Chile Centro-Norte. Libro de Resúmenes XX Congreso de Ciencias del Mar, Concepción, Chile. Mayo de 2000.
- Prado, J & P. Dremière. 1988. Guía de bolsillo del pescador. Ediciones Omega S.A., Barcelona, 179p.
- Quinn, T.J., 1985. Catch-per-unit-effort; a statistical model for Pacific Halibut. Can J. Fish Aquatic Sci. 42:1423-1429.
- Restrepo, V. R. & R. A. Watson. 1991. An aproach to modeling crustacean egg-bearring fractions as a function of size and season. Can. J. Fish. Aquat. Sci., 48:1431-1436.
- Richards, L. J. & J. T. Schnute. 1992. Stadistical models for estimating CPUE from catch and effort data. Can. J. Fish. Aquat. Sci. 49: 1315-1327.
- Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Board. Can. 191, 382 p.
- Rivard, D. & J.J. Maguire. 1993. Reference points for fisheries management: the eastern Canadian experience. In: Risk evaluation and biological reference points for fisheries management. S.J. Smith, J.J. Hunt and D. Rivard (Ed.s). Can. Spec. Publ. Fish. Aquat. Sci. 120:31-57.
- Roa, R. 1993b. Annual growth and maturity function of the squat lobster *Pleuroncodes monodon* in central Chile. Mar. Ecol. Prog. Ser., 97: 157-166
- Roa, R. & R. Bahamonde. 1993. Growth and expansion of an exploited population of the squat lobster (*Pleuroncodes monodon*) after 3 years without harvesting. Fish. Res., 18: 305-319

- Roa, R., F. Tapia, L. Cid, R. Quiñones, B. Ernst, D. Figueroa, H. Arancibia, R. Galleguillos & M. Retamal .1997. Evaluación directa del stock de langostino colorado en la zona centrosur. Informes Técnicos FIP. FIP/IT 96-23, 139 pp.
- Roa, R., L. Cid, F. Tapia, R. Quiñones, H. Arancibia, D. Figueroa & I. Lépez (1998) Evaluación directa del stock de langostino amarillo en el litoral de la V a VIII Regiones. Informes Técnicos FIP. FIP/IT 97-23,123 pp.
- Roa. R. & R. Quiñones. 1998. Theoretical analysis of the relationship between production per unit biomass and animal body size. Oikos, 81: 161-167.
- Roa, R., F. Tapia, L. Cid, M.I. Lepez, C. Diaz & H. Arancibia. 1999a. Evaluación directa de camarón nailon entre la II y VIII Regiones. Informes Técnicos FIP. FIP/IT 98-03, 115 pp.
- Roa, R. & F. Tapia (en prensa) Cohorts in space: geostatistical mapping of the age structure of the squat lobster (*Pleuroncodes monodon*) population off central Chile. Marine Ecology Progress Series.
- Robotham V. & J. P. Castillo, 1987. Método bootstrap una alternativa para estimar intervalos de confianza de recursos prospectados por medio de técnicas hidroacústicas. Invest. Pesq. (Chile) 34; 79-83,1987.
- Seber, G.A.F. 1982. The estimation of animal abundance and related parameters. 2nd Ed., Macmilla, NY, 654 pp.
- Sepúlveda, A., L. Cubillos, S. Núñez, T. Canales, D. Bucarey, M. A. Barbieri, J. Córdova & M. Espejo.2000. Condiciones biológicas del jurel. Informe Final FIP99-14, Fondo de Investigación Pesquera, Instituto de Investigación Pesquera – Instituto de Fomento Pesquero 220 pp + Anexos y Figuras.
- Simard, Y., P. Legendre, G. Lavoie & D. Marcotte. 1992. Mapping, estimating biomass, and optimizing sampling programs for spatially autocorrelated data: case study of the northern shrimp (*Pandalus borealis*). Can. J. Fish. Aquat. Sci., 49: 32-45.
- Smith, S.J. 1990. Use of statistical models for the estimation of abundance from groundfish trawl survey data. Can. J. Fish. Aquat. Sci., 47: 894-903.
- Sokal, R. R. & F. J. Rohlf. 1981. Biometry. W. H. Freeman and Co., San Francisco, California, 859 pp.
- Sousa, W. P., 1989. The role of disturbance in natural communities. Ann. Rev Ecol. Syst., 15:353-391.
- Tapia, F. 1999. Distribución espacial del potencial reproductivo de la población de langostino colorado (*Pleuroncodes monodon*) de Chile centro – sur. Tesis Magister en Ciencias mención Oceanografía. Universidad de Concepción.

- Thompson, S.K. 1982. Adaptive sampling of animal populations. Oregon State University Tech. Rep. 82.
- Thompson, S.K. 1992. Sampling. John Wiley and Sons, New York. 343 pp.
- Venables, W. & B. Ripley. 1994. Modern Applied Statistics with S-plus. Statistics and Computing, Springer Verlag, Berlin, 462 p.
- Wakabayashi, K. et al. 1985. Methods of the US Japan Demersal Trawl Surveys. Bull. Nº 44 North Pacific Commission, 44:7-29.
- Warwick, R. M. 1986. A new method for detecting pollution effect on marine macrobenthic communities. Mar. Biol., 92: 557-562.
- Warwick, R. M., A. J. McEvoy & S. F. Thrush. 1997. The influence of Atrina zelandica Gray on meiobenthic nematode diversity and community structure. J. Exp. Mar. Biol. Ecol., 214: 231-247.
- Wathne, F. 1977. Performance of trawls used in resource assessment. MFR Paper 1253. Marine Fisheries Review, 39(6):16-23.
- Wackernagel, H. 1995. Multivariate geostatistics. Springer-Verlag, Berlin.
- Zwifel, J.R. & P.E. Smith. 1981. Estimation of abundance and mortality of larval anchovies (1951-75): Application of a new method. Rapp. P.-V. Réun. Cons. Int. Explor. Mer 178: 248-259.

Anexo 1

N°	Lat.(°)	min-Lat	Long.(°)	min-Long.	Dist.	CA	CPUE Kg Cam
lance			5.()	- 8	Lineal	(Mn-Lin)	por MnLin
							1
1	21	39.21	70	13.183	0.700	0	0.00
2	21	39.215	70	17.071	1.000	0	0.00
3	21	49,163	70	11.462	1.067	0	0.00
4	21	49 526	70	17 156	1 000	0	0,00
5	22	9.52	70	17.63	1,000	0	0.00
6	22	19.07	70	16.48	1.000	0	0.00
7	22	19.21	70	18.15	1.000	0	0.00
8	22	19.92	70	21.02	1.033	0.1	0.08
9	22	29.01	70	17,99	1.000	0.1	0.08
10	22	29,15	70	21,14	1,000	0,1	0,06
11	22	29.13	70	22,07	1.000	0	0.00
12	22	39.08	70	20.17	1.000	0	0.00
13	22	39.13	70	22.09	1.000	0	0.01
14	22	49.11	70	20.98	1.000	0	0.00
15	22	49.11	70	23.01	1.033	0	0.00
16	22	49.14	70	30.16	· ·	0	- ,
17	22	49.25	70	31.06	1.000	0	0.00
18	22	59.06	70	23.19	1.000	0	0.00
19	22	59.18	70	26.54	1.000	0	0.00
20	22	59.11	70	29.14	1.000	0	0.00
21	22	59.1	70	33.13	1.000	2	2.00
22	22	58.89	70	36.58	· · · ·	1	, ,
23	23	19.06	70	36,96	0,833	0	0,00
24	23	39.2	70	27,16	1,000	0	0,00
25	23	39,18	70	30,13	1,000	0	0,00
26	23	39,14	70	33,14	1,000	0	0,01
27	23	39,14	70	35,27	1,000	0	0,00
28	23	· · ·	70	32,71	1,000	0	0,00
29	23	49,23	70	33,17	1,000	0	0,00
30	23	59,21	70	35,22	1,000	0	0,00
31	23	59,1	70	36,54	1,000	0	0,00
32	24	9,31	70	34,21	1,000	0	0,00
33	24	9,41	70	36,22	1,000	0	0,00
34	24	19,21	70	34,33	1,000	0	0,00
35	24	19,2	70	36,12	1,000	0,1	0,11
36	24	19,31	70	38,12	1,000	0	0,00
37	24	29,01	70	36,1	1,000	9	9,00
38	24	29,11	70	38,12	1,000	0	0,00
39	24	39,22	70	35,27	0,600	0	0,00
40	24	39,21	70	37,66	1,000	4,5	4,50
41	24	49,41	70	33,32	1,000	0	0,00
42	24	49,41	70	35,23	1,000	9	9,00
43	24	59,61	70	34,41	1,000	0	0,00
44	24	59.17	70	33.71	1,000	36	36.00

Anexo 1.1. Número del lance, Posición, distancia recorrida, captura de especie objetivo y CPUE.

N°	Lat.(°)	min-Lat	Long.(°)	min-Long.	Dist.	CA	CPUE Kg Cam
lance					Lineal	(Mn-Lin)	por MnLin
45	24	54,23	70	35,61	1,000	198	198,00
46	25	4,12	70	33,26	1,000	45	45,00
47	25	9,21	70	30,33	1,000	0	0,00
48	25	9,31	70	33,61	1,000	72	72,00
49	24	9,43	70	35,66	1,000	54	54,00
50	25	14,33	70	33,38	1,000	342	342,00
51	25	19,41	70	30,41	1,000	4,5	4,50
52	25	19,13	70	32,77	1,000	108	108,00
53	25	19,11	70	34,14	1,000	90	90,00
54	25	19,11	70	36,33	1,000	54	54,00
55	25	24,016	70	36,164	1,133	1,1	0,99
56	25	25,446	70	37,64	3,000	9	3,00
57	25	29,224	70	35,246	1,000	0	0,00
58	25	29,141	70	37,461	1,000	0	0,00
59	25	29,468	70	41,19	1,000	18	18,00
60	25	38,871	70	43,144	1,000	0,2	0,16
61	25	38,91	70	45,261	1,000	72	72,00
62	25	33,977	70	43,561	1,033	144	139,35
63	25	34,061	70	44,224	1,000	1	1,00
64	25	44,146	70	45,656	1,000	0	0,00
65	25	49,114	70	48,448	1,000	72	72,00
66	25	54,106	70	46,694	1,000	0	0,00
67	25	58,171	70	43,618	1,000	0	0,00
68	25	59,35	70	46,823	1,000	90	90,00
69	25	58,428	70	48,496	1,000	180	180,00
70	25	54,428	70	47,639	1,000	90	90,00
71	26	4,114	70	45,218	1,400	54	38,57
72	26	4,194	70	48,108	1,000	36	36,00
73	26	14,034	70	50,641	1,000	36	36,00
74	26	19,386	70	48,196	1,000	0,1	0,14
75	26	19,216	70	50,319	1,000	36	36,00
76	26	24,116	70	50,524	1,067	54	50,63
77	26	29,153	70	49,124	0,833	54	64,80
78	26	29,158	70	51,028	1,000	72	72,00
79	26	34,121	70	50,124	1,000	27	27,00
80	26	39,956	70	49,018	1,033	0	0,00
81	26	49,176	70	55,114	1,033	72	69,68
82	26	57,198	70	55,346	1,000	0	0,00
83	27	49,02	71	8,11	1,000	0	0,00
84	27	59,03	71	11,35	0,667	90	135,00
85	27	54.11	71	9.33	1.000	126	126.00
86	28	4.1	71	9.24	1.000	0	0.00
87	28	9.01	71	12.03	0.667	0	0.00
88	28	9.22	71	15.17	1.000	126	126.00
89	28	9.11	71	17.32	1.000	27	27.00
90	28	14,21	71	13,19	1,000	0	0,00

N°	Lat.(°)	min-Lat	Long.(°)	min-Long.	Dist.	CA	CPUE Kg Cam
lance			0.00	C	Lineal	(Mn-Lin)	por MnLin
91	28	14,22	71	15,04	1,000	0	0,00
92	28	19,19	71	14,43	1,000	0	0,00
93	28	19,14	71	16,28	1,000	54	54,00
94	28	24,14	71	17,62	0,733	54	73,64
95	28	29,03	71	18,3	1,000	9	9,00
96	28	29,11	71	19,33	1,000	9	9,00
97	26	9,069	70	43,375	0,667	0	0,00
98	26	9,091	70	45,616	1,000	0	0,00
99	26	19,44	70	43,5	2,000	0	0,00
100	26	24,352	70	47,275	0,400	0	0,00
101							
102	26	34,161	70	46,501			
103	28	39,02	71	20,26	1,000	0	0,00
104	28	39,47	71	22,78	1,000	162	162,00
105	28	44,16	71	25,08	1,000	27	27,00
106	28	49,09	71	29,31	1,000	0	0,00
107	26	39,172	70	46,358	1,000		0,00
108	26	39,754	70	48,461		117	
109	26	44,412	70	52,491	1,000	108	108,00
110	26	49,377	70	51,166	1,000	0	0,00
111	26	54,465	70	52,188		0	
112	26	59,401	70	50,25	0,867	0	0,00
113	26	59,352	70	52,036		0	
114					0,000	0	
115					0,000	0	
116					0,000	0	
117					0,000	0	
118	27	29,556	70	58,075	0,000	0	
119	27	39,903	71	4,674	1,000	9	9,00
120	27	39,941	71	6,153	1,000	2,3	2,25
121	27	9,189	71	0,047	1,000		0,00
122	29	8,995	71	33,084	1,000	27	27,00
123	29	9,763	71	34,396	1,000	522	522,00
124	29	19,098	71	24,675	1,000	0	0,00
125	29	19,114	71	27,626	1,000	0	0,00
126	29	19,128	71	38,129	1,000	750	750,00
127	29	24,118	71	36,025	1,000	0	0,00
128	29	29,134	71	22,346	1,000	0	0,00
129	29	29,023	71	25,129	1,000	0	0,00
130	29	29,125	71	27,328	1,000	0	0,00
131	29	29,126	71	29,416	1,000	324	324,00
132	29	29,129	71	31,227	1,000	270	270,00
133	29	34,026	71	27,153	0,667	234	351,00
134	29	39,028	71	20,156	1,000	0	0,00
135	29	39,118	71	22,124	1,133	0	0,00
136	29	39,028	71	25,018	1,133	0	0,00

N°	Lat.(°)	min-Lat	Long.(°)	min-Long.	Dist.	CA	CPUE Kg Cam
lance					Lineal	(Mn-Lin)	por MnLin
137	29	39,158	71	27,456	1,000	288	288,00
138	29	34,041	71	25,261	1,000	234	234,00
139	29	49,114	71	20,261	1,000	0,1	0,10
140	29	49,068	71	22,048	1,000	54	54,00
141	29	44,028	71	22,124	1,000	0	0,00
142	29	54,03	71	23,91	1,000	0	0,00
143	29	59,15	71	26,79	1,000	90	90,00
144	29	59,12	71	29,35	1,000	72	72,00
145	30	4,03	71	26,25	1,000	0	0,00
146	30	4,1	71	27,21	1,000	0	0,00
147	30	8,93	71	29,44	1,000	0	0,00
148	30	9,19	71	32,21	1,000	72	72,00
149	30	9,21	71	34,66	1,000	18	18,00
150	30	9,15	71	36,21	1,000	4,5	4,50
151	30	14,28	71	40,46	1,000	18	18,00
152	30	19,02	71	42,77	1,000	216	216,00
153	30	23,71	71	42,93	1,000	0	0,00
154	30	29,3	71	44,64	1,000	4,5	4,50
155	30	39	71	45,78	1,000	216	216,00
156	30	34,23	71	44,32	1,000	18	18,00
157	30	43,98	71	45,68	,		,
158	30	48,97	71	45,12	1,000	360	360,00
159	30	53,93	71	42,84	1,000	0	0,00
160	30	58,93	71	42,39	1,000	0	0,00
161	30	59,12	71	44,82	1,000	216	216,00
162	30	59,81	71	46,12	1,000	9	9,00
163	31	3,97	71	43,92	0,733	0	0,00
164	31	9,25	71	42,86	1,000	0	0,00
165	31	9,42	71	44,79	1,033	0	0,00
166	31	9,31	71	46,08	1,000	0	0,00
167	31	19,21	71	41,4	0,433	0	0,00
168	31	19,34	71	43,4	1,000	0	0,00
169	31	29,2	71	38	1,000	0	0,03
170	31	29,59	71	42,15	1,000	0,1	0,05
171	31	39,51	71	41,97	1,000	1	1,00
172	31	49,19	71	36,06	1,000	0	0,00
173		,		, , , , , , , , , , , , , , , , , , ,	, ,		
174	31	49,27	71	38,21	1,000	144	144,00
175	31	49,43	71	40,4	1,000	108	108,00
176	31	44,53	71	36,47	1,000	0	0,00
177	31	44,94	71	38,7	1,000	0	0,00
178	32	8,871	71	33,014	1,000	0	0,00
179	32	9,023	71	35,033	1,000	144	144,00
180	32	9,053	71	37.045	1.000	72	72.00
181	32	14,054	71	36,124	1.000	90	90.00
182	32	4,138	71	34,428	1,000	0	0,00

lanceLineal(Mn-Lin)por MnLin183324,067136,0281,00000,001843159,0467134,0221,000104144,001853159,0837136,1411,0009090,001863159,0617138,0331,000108108,001873154,0327133,0541,000000,00188301,377128,177,00045064,291892957,157128,437,16748667,81190305,667130,524,66714430,86193309,827133,053,66721658,91194309,957136,473,50018051,43195304,667129,988,00023429,25196304,657129,789,76736036,861973010,537136,176,00022450,072002956,717126,524,66734664,202012952,077126,822,60030640,002022951,497126,822,60036040,002032952,077126,822,60036040,00204306,1771<	N°	Lat.(°)	min-Lat	Long.(°)	min-Long.	Dist.	CA	CPUE Kg Cam
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	lance			0.00	C	Lineal	(Mn-Lin)	por MnLin
184 31 59,046 71 34,028 1,000 144 144,00 185 31 59,061 71 38,053 1,000 108 108,00 187 31 54,032 71 33,054 1,000 0 0,000 188 30 1,37 71 28,17 7,000 450 64,29 189 29 57,15 71 28,43 7,167 486 67,81 190 30 5,66 71 33,44 7,500 342 45,60 191 30 10,99 71 33,44 7,500 342 45,60 193 30 9,82 71 36,47 3,500 180 51,43 194 30 9,95 71 36,47 3,500 180 51,43 194 30 9,95 71 36,17 6,000 270 45,00 197 30 10,53 71 26,12 4,600 124 50,87 198 30 2,42 71	183	32	4,06	71	36,028	1,000	0	0,00
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	184	31	59,046	71	34,028	1,000	144	144,00
1863159,0617138,0331,000108108,001873154,0327133,0541,00000,00188301,377128,177,00045064,291892957,157128,437,16748667,81190305,667132,446,00032454,001913010,997133,447,50034245,60192309,827133,053,66721658,91194309,957136,473,50018051,43195304,667129,988,00023429,25196304,657129,789,76736036,861973010,537136,176,00027045,00198302,427130,324,80016233,751992956,717126,624,76730664,202002956,717126,852,600306114,002032952,077126,852,60030640,00204306,177130,599,00036040,002053010,537144,273,33316248,602063016,527144,273,33316248,602073022,73 <td< td=""><td>185</td><td>31</td><td>59,083</td><td>71</td><td>36,141</td><td>1,000</td><td>90</td><td>90,00</td></td<>	185	31	59,083	71	36,141	1,000	90	90,00
18731 $54,032$ 71 $33,054$ $1,000$ 0 $0,00$ 18830 $1,37$ 71 $28,17$ $7,000$ 450 6429 18929 $57,15$ 71 $28,43$ $7,167$ 486 $67,81$ 19030 $5,66$ 71 $32,44$ $6,000$ 324 $54,00$ 19130 $10,99$ 71 $33,44$ $7,500$ 342 $45,60$ 19230671 $30,52$ $4,667$ 144 $30,867$ 19330 $9,82$ 71 $36,47$ $3,500$ 180 $51,43$ 19530 $4,66$ 71 $29,98$ $8,000$ 234 $29,25$ 19630 $4,65$ 71 $29,78$ $9,767$ 360 $36,86$ 19730 $10,53$ 71 $36,17$ 6000 270 $45,00$ 19830 $2,42$ 71 $30,32$ $4,800$ 162 $33,75$ 19929 $56,43$ 71 $26,52$ $4,767$ 306 $64,20$ 20129 $51,77$ 71 $26,85$ $2,600$ 306 $40,00$ 20229 $51,49$ 71 $24,8$ $3,000$ 342 $114,00$ 20329 $52,07$ 71 $26,85$ $2,600$ 306 $43,26$ 20430 $6,17$ 71 $30,572$ $9,200$ 306 $33,26$ 20630 $16,52$ 71 $41,25$ $2,667$ 270 $101,25$	186	31	59,061	71	38,033	1,000	108	108,00
188301,377128,177,00045064,291892957,157128,437,16748667,81190305,667132,446,00032454,001913010,997133,447,50034245,601923067130,524,66714430,86193309,827136,473,50018051,43194309,957136,473,60023429,25196304,657129,789,76736036,861973010,537136,176,00027045,00198302,427130,324,60023450,872002956,437126,524,76730664,202012956,717126,425,00025250,402022951,497126,852,600306117,69204306,177130,599,00036040,002053010,537144,723,33316248,602073021,217144,474,833882182,482083020,727143,872,533288113,682113020,537143,336,43312619,592133020,7271	187	31	54,032	71	33,054	1,000	0	0,00
1892957,157128,437,16748667,81190305,667132,446,00032454,001913010,997133,447,50034245,601923067130,524,66714430,86193309,827133,053,66721658,91194309,957136,473,50018051,43195304,667129,988,00023429,25196304,657129,789,76736036,861973010,537136,176,00027045,00198302,427130,324,80016233,751992956,437126,524,76730664,202012956,717126,425,00032250,402022951,497124,83,000342114,002032952,077126,852,600306117,69204306,177130,599,00036040,002053010,537136,729,20030633,262063016,527141,214,16740998,162073021,217144,074,833882182,482083020,4571<	188	30	1,37	71	28,17	7,000	450	64,29
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	189	29	57,15	71	28,43	7,167	486	67,81
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	190	30	5,66	71	32,44	6,000	324	54,00
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	191	30	10,99	71	33,44	7,500	342	45,60
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	192	30	6	71	30,52	4,667	144	30,86
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	193	30	9,82	71	33,05	3,667	216	58,91
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	194	30	9,95	71	36,47	3,500	180	51,43
19630 $4,65$ 71 $29,78$ $9,767$ 360 $36,86$ 1973010,5371 $36,17$ $6,000$ 270 $45,00$ 19830 $2,42$ 71 $30,32$ $4,800$ 162 $33,75$ 19929 $55,17$ 71 $26,12$ $4,600$ 234 $50,87$ 20029 $56,43$ 71 $26,52$ $4,767$ 306 $64,20$ 20129 $56,71$ 71 $26,85$ $2,600$ 306 $117,69$ 20229 $51,49$ 71 $24,8$ $3,000$ 342 $114,00$ 20329 $52,07$ 71 $26,85$ $2,600$ 306 $40,00$ 20430 $6,17$ 71 $30,59$ $9,000$ 360 $40,00$ 20530 $10,53$ 71 $36,72$ $9,200$ 306 $33,26$ 20630 $16,33$ 71 $44,07$ $4,333$ 882 $182,48$ 20830 $20,48$ 71 $44,27$ $3,767$ 432 $114,69$ 20930 $16,52$ 71 $41,25$ $2,667$ 270 $101,25$ 21030 $22,73$ 71 $43,33$ $6,433$ 126 $49,80$ 21130 $20,27$ 71 $43,87$ $2,533$ 288 $113,68$ 21130 $20,72$ 71 $43,87$ $2,533$ 540 $190,59$ 21330 $20,72$ 71 $42,15$ $4,167$ 342 8	195	30	4,66	71	29,98	8,000	234	29,25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	196	30	4,65	71	29,78	9,767	360	36,86
19830 $2,42$ 71 $30,32$ $4,800$ 162 $33,75$ 1992955,177126,12 $4,600$ 23450,872002956,437126,52 $4,767$ 30664,202012956,717126,425,00025250,402022951,497124,83,000342114,002032952,077126,852,60030610,769204306,177130,599,00036040,002053010,537136,729,20030633,262063016,337141,214,16740998,162073021,217144,074,833882182,482083020,487144,293,33316248,602093016,527141,252,667270101,252103022,737143,872,533288113,682113020,727142,894,33312619,592133020,727142,154,16734282,082143020,297142,154,16734282,082153015,447140,22,833540190,59216305,117129,734,66723450,1421929 <td>197</td> <td>30</td> <td>10,53</td> <td>71</td> <td>36,17</td> <td>6,000</td> <td>270</td> <td>45,00</td>	197	30	10,53	71	36,17	6,000	270	45,00
1992955,177126,12 $4,600$ 23450,872002956,437126,524,76730664,202012956,717126,425,00025250,402022951,497124,83,000342114,002032952,077126,852,600306117,69204306,177130,599,00036040,002053010,537136,729,20030633,262063016,337141,214,16740998,162073021,217144,074,833882182,482083020,487144,293,33316248,602093016,527141,252,667270101,252103022,737143,872,533288113,682113024,257144,273,767432114,692123020,537143,336,43312619,592133020,727142,894,33321649,852143020,297142,154,16734282,082153015,447136,614,00032481,00216305,117129,794,66723450,142192918,	198	30	2,42	71	30.32	4.800	162	33.75
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	199	29	55,17	71	26,12	4,600	234	50,87
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	200	29	56.43	71	26.52	4,767	306	64.20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	201	29	56.71	71	26.42	5.000	252	50,40
203 29 $52,07$ 71 $26,85$ $2,600$ 306 $117,69$ 204 30 $6,17$ 71 $30,59$ $9,000$ 360 $40,00$ 205 30 $10,53$ 71 $36,72$ $9,200$ 306 $33,26$ 206 30 $16,33$ 71 $41,21$ $4,167$ 409 $98,16$ 207 30 $21,21$ 71 $44,07$ $4,833$ 882 $182,48$ 208 30 $20,48$ 71 $44,29$ $3,333$ 162 $48,60$ 209 30 $16,52$ 71 $41,25$ $2,667$ 270 $101,25$ 210 30 $22,73$ 71 $43,87$ $2,533$ 288 $113,68$ 211 30 $22,73$ 71 $43,33$ $6,433$ 126 $19,59$ 213 30 $20,72$ 71 $42,89$ $4,333$ 216 $49,85$ 214 30 $20,29$ 71 $42,15$ $4,167$ 342 $82,08$ 215 30 $15,44$ 71 $40,2$ $2,833$ 540 $190,59$ 216 30 $5,11$ 71 $29,79$ $4,167$ 396 $95,04$ 217 29 $18,4$ 71 $36,61$ $4,000$ 324 $81,00$ 218 29 $14,52$ 71 $37,53$ $4,000$ 378 $94,50$ 221 29 $22,67$ 71 $37,53$ $4,000$ 378 $94,50$ <tr<< td=""><td>202</td><td>29</td><td>51.49</td><td>71</td><td>24.8</td><td>3.000</td><td>342</td><td>114.00</td></tr<<>	202	29	51.49	71	24.8	3.000	342	114.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	203	29	52 07	71	26 85	2 600	306	117 69
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	204	$\frac{-}{30}$	617	71	30,59	9,000	360	40.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	205	30	10.53	71	36 72	9 200	306	33 26
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	206	30	16 33	71	41 21	4 167	409	98,16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	207	30	21 21	71	44 07	4 833	882	182 48
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	208	30	20.48	71	44 29	3 333	162	48 60
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	209	30	16.52	71	41 25	2 667	270	101 25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	210	30	22 73	71	43 87	2,533	288	113 68
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	211	30	24 25	71	44 27	3 767	432	114 69
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	212	30	20.53	71	43 33	6 4 3 3	126	19.59
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	213	30	20.72	71	42,89	4 333	216	49.85
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	214	30	20 29	71	42,15	4 167	342	82.08
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	215	30	15 44	71	40.2	2 833	540	190,59
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	216	30	5 11	71	29 79	4 167	396	95.04
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	217	29	18.3	71	36.61	4 000	324	81.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	218	29	14 52	71	35,66	4 667	234	50.14
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	219	29	18.4	71	36 72	3 467	522	150 58
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	220	29	22.67	71	37,53	4 000	378	94 50
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	220	29	27,61	71	32 39	7,967	396	49 71
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	221	29	40.83	71	30.07	7,000	450	64 29
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	222	29	52 57	71	27,13	6 1 3 3	0	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	223	29	57.36	71	27,15	4 767	468	98.18
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	224	30	1 15	71	30.87	4,707	27	5 87
220 27 $35,70$ 71 $27,28$ $5,700$ 542 $00,00$	225	20	55.96	71	27.28	5 700	342	60.00
	220	29	56.81	71	27,20	6,000	558	93.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	227	29 20	50,01	71	27,42	5 722	250	/3.00

N°	Lat.(°)	min-Lat	Long.(°)	min-Long.	Dist.	CA	CPUE Kg Cam
lance					Lineal	(Mn-Lin)	por MnLin
229	29	52,4	71	25,75	4,600	108	23,48
230	29	56,37	71	26,29	3,300	378	114,55
231	32	18,098	71	37,954	1,000		0,00
232	32	18,146	71	35,942	1,000	20	20,00
233	32	18,37	71	34,858	1,000		0,00
234	32	19,625	71	36,947	1,000	10	10,00
235	32	19,934	71	35,19	1,000	20	20,00
236	32	20,137	71	34,297	1,000		0,00
237	32	28,253	71	37,152	1,000	162	162,00
238	32	28,302	71	38,465	1,000		0,00
239	32	28,697	71	36,572	1,000		0,00
240	32	28,832	71	37,879	1,000	20	20,00
241	32	28,902	71	34,03	0,833		0,00
242	32	29,507	71	37,784	1,000	126	126,00
243	32	38,211	71	39,366	1,000	20	20,00
244	32	38,336	71	37,089	1,000		0,00
245	32	38,519	71	38,606	1,000	90	90,00
246	32	39,91	71	39,39	1,000	72	72,00
247	32	42,817	71	38,433	1,000	18	18,00
248	32	48,536	71	42,072	1,033		0,00
249	32	48,587	71	40,853	1,000	18	18,00
250	32	49,47	71	39,499	1,000		0,00
251	32	49,548	71	41,902	1,000	144	144,00
252	32	49,954	71	41,948	1,033	10	9,68
253	32	50,625	71	40,389	1,000		0,00
254	32	58,188	71	48,069	0,667		0,00
255	32	58,268	71	47,001	1,000		0,00
256	32	59,017	71	46,843	1,000		0,00
257	32	59,441	71	45,623	1,000		0,00
258	32	59,674	71	48,306	1,000		0,00
259	33	7,611	71	51,705	1,000		0,00
260	33	8,51	71	54,908	1,000		0,00
261	33	9,218	71	51,857	1,000		0,00
262	33	9,615	71	52,24	1,000		0,00
263	33	10,564	71	51,569	1,000		0,00
264	33	17,602	71	51,597	1,000		0,00
265	33	18,317	71	52,8	1,000		0,00
266	33	18,697	71	52,327	1,000		0,00
267	33	19,576	71	51,994	1,000		0,00
268	33	20,6	71	53,081	1,000		0,00
269	33	25,647	71	52,142	1,000		0,00
270	33	27,923	71	51,147	1,000		0,00
271	33	28,398	71	52,207	1,000		0,00
272	33	28,539	71	51,354	1,000	252	252,00
273	33	29,152	71	49,8	1,000	270	270,00
274	33	29,85	71	52,021	1,000		0.00

N°	Lat.(°)	min-Lat	Long.(°)	min-Long.	Dist.	CA	CPUE Kg Cam
lance			0.07	C	Lineal	(Mn-Lin)	por MnLin
275	33	35,367	71	58,459	1,000		0,00
276	33	37,056	72	2,141	1,000		0,00
277	33	37,092	72	0,96	1,000	126	126,00
278	33	37,637	72	1,259	1,000	198	198,00
279	33	38,505	72	1,929	1,000		0,00
280	33	39,633	71	59,711	1,167		0,00
281	33	48,085	72	5,096	1,000		0,00
282	33	48,223	72	5,675	1,000		0,00
283	33	48,886	72	7,242	1,000		0,00
284	33	49,08	72	6,3	1,000		0,00
285	33	49,7	72	4,3	1,000		0,00
286	33	57,992	72	9,874	1,000		0,00
287	33	58,172	72	9,741	1,000	144	144,00
288	33	58,2	72	9,022	1,000		0,00
289	33	59,389	72	10,316	1,000		0,00
290	33	59,62	72	10,088	1,000	162	162,00
291	34	3,347	72	13,065	1,000	90	90,00
292	34	7.97	72	16,136	1,000		0,00
293	34	8.09	72	12.21	1.000		0.00
294	34	8.618	72	12.9	1.000		0.00
295	34	8.7	72	14.183	1.000	36	36.00
296	34	9.703	72	16.707	1.000		0.00
297	34	17.683	72	14.765	1.000		0.00
298	34	18,129	72	13,042	1,000	342	342,00
299	34	18,243	72	14,508	1,000		0,00
300	34	19,667	72	12,351	0,833	360	432,00
301	34	20,077	72	11,027	1,000		0,00
302	34	24,895	72	10,642	1,000	162	162,00
303	34	27,96	72	9,352	1,000		0,00
304	34	28,456	72	10.957	1,167	198	169.71
305	34	28,671	72	12,201	1,000		0,00
306	34	29,509	72	6,674	1,000		0,00
307	34	29,752	72	10.654	1,000	36	36,00
308	34	29,992	72	11,321	1,000		0,00
309	34	37,838	72	12,919	1,000		0,00
310	34	38,314	72	10,216	1,000		0,00
311	34	38,537	72	13,608	1,000		0,00
312	34	39,107	72	14,641	1,000		0,00
313	34	39.661	72	12,732	1.000	5	5.00
314	34	45,177	72	15,782	1.000	126	126.00
315	34	46.099	72	18.355	1.000	54	54.00
316	34	47.16	72	17.673	1,000	450	450.00
317	34	47.235	72	18.86	1,000		0.00
318	34	47.924	72	18.693	1,000	486	486.00
319	34	49.521	72	17.179	1.000		0.00
320	34	57,783	72	36,361	1,000		0,00
N°	Lat.(°)	min-Lat	Long.(°)	min-Long.	Dist.	CA	CPUE Kg Cam
-------	----------	------------------	----------	---------------	--------	----------	-------------
lance					Lineal	(Mn-Lin)	por MnLin
321	34	58,706	72	28,957	1,000		0,00
322	34	58,915	72	32,112	1,000		0,00
323	34	58,959	72	34,911	1,033		0,00
324	34	59,569	72	36,207	0,967		0,00
325	35	6.812	72	42.76	1.000		0.00
326	35	7 648	72	38 788	1 000	30	30,00
327	35	8 448	72	34 987	0.933		0,00
328	35	8 955	72	39 206	1 000	8	8 00
329	35	9 304	72	37 648	1,067	12	11.25
330	35	18 088	72	48 214	1,000		0,00
331	35	18 389	72	43 582	1 167	8	6.86
332	35	18 65	72	39.4	1,000	0	0,00
333	35	19 746	72	45 576	0.967		0,00
334	35	19,835	72	45 649	0,900		0,00
335	35	26 987	72	1 89	1,000		0,00
336	35	20,207	73	1,058	1,000		0,00
337	35	27,755	73	1,050	1,000	224	210.00
338	35	28,074	75	56 973	1,007	224	210,00
330	35	20,050	72	0 563	1,000		0,00
240	25	29,559	75 73	50,505	1,000	20	16.22
241	25	29,003	72	39,090	1,233	20	20.00
241	25	28 015	75 27	2,239	1,000	50	50,00
242	55 25	20,013	75 72	4,317	1,000	15	13,00
243	33 25	38,087	/ 3	2,321	1,000	3	5,00
244	33 25	38,301 20.051	12	30,03 7.10	0,300		0,00
345	35	38,831	/3	/,19	1,000		0,00
340	33 25	39,097	/3	8,837	1,000	15	0,00
347	35	39,408	/3	5,492	1,033	15	14,52
348	35	47,896	/3	10,479	1,000		0,00
349	35	47,994	/3	16,141	1,000	1.65	0,00
350	35	48,02	/3	4,49	1,000	165	165,00
351	35	48,228	73	2,795	1,000	30	30,00
352	35	48,546	/3	0,009	1,000		0,00
353	35	49,488	73	7,396	1,000		0,00
354	35	49,608	73	12,625	0,933		0,00
355	35	49,65	72	54,476	1,000	• • •	0,00
356	35	53,004	73	0,611	1,100	210	190,91
357	35	57,997	73	0,047	1,000	10	10,00
358	35	58,158	72	57,967	1,000	60	60,00
359	35	58,328	72	53,259	1,000		0,00
360	35	58,402	72	57,431	1,000	0,7	0,65
361	35	58,896	73	13,091	1,000		0,00
362	35	59,687	73	2,509	1,000		0,00
363	36	3,018	72	58,291	1,000	5	5,00
364	36	8	73	9,524	1,000		0,00
365	36	8,061	73	31,51	1,000		0,00
366	36	8,453	73	6,416	1,000		0,00

N°	Lat.(°)	min-Lat	Long.(°)	min-Long.	Dist.	CA	CPUE Kg Cam
lance					Lineal	(Mn-Lin)	por MnLin
367	36	8,528	72	57,481	0,967		0,00
368	36	8,829	73	4,25	1,000		0,00
369	36	9,158	73	2,257	1,000		0,00
370	36	9,471	73	2,128	1,000		0,00
371	36	17,856	73	35,464	1,000		0,00
372	36	18,36	73	33,88	1,000		0,00
373	36	18,577	73	33,605	1,000	72	72,00
374	36	19,448	73	33,323	1,000	6,3	6,25
375	36	19,58	73	32,24	1,000		0,00
376	36	19,873	73	32,548	1,000	72	72,00
377	36	23,524	73	32,607	1,067	72	67,50
378	36	28,174	73	34,03	1,000		0,00
379	36	28,42	73	33,195	1,000	6,5	6,50
380	36	28,8	73	32,19	0,500		0,00
381	36	29,567	73	33,52	1,000		0,00
382	36	34,176	73	34,176	1,000	30	30,00
383	36	58,516	73	41,052	1,000		0,00
384	36	58,922	73	43,416	1,000		0,00
385	37	17,002	73	50,62	1,000		0,00
386	37	18,815	73	47,59	1,000		0,00
387	37	19,434	73	45	1,033		0,00
388	37	29,012	73	49,588	1,000		0,00
389	37	29,013	73	46,741	1,000		0,00
390	37	29,5	73	44,279	1,000		0,00
391	37	38,85	73	43,863	1,167		0,00
392	37	38,961	73	49,56	1,100		0,00
393	37	38,99	73	46,725	1,033		0,00
394	37	48,67	73	52,556	1,167		0,00
395	37	48,993	73	46,871	1,000		0,00
396	37	49,019	73	49,685	1,000		0,00
397	37	49,182	73	44,11	1,000		0,00
398	37	58,816	73	52,923	0,833		0,00
399	37	58,862	73	4,677	1,000		0,00
400	37	58,998	73	55,882	1,000		0,00
401	37	59,175	73	4,903	1,167		0,00
402	38	8,969	73	44,594	1,000		0,00
403	38	8,992	73	46,831	1,167		0,00
404	38	9,484	73	43	1,033		0,00
405	38	19,185	74	7,536	1,000		0,00
406	38	29,115	73	59,352	0,833		0,00

Anexo 1.2. Datos de los lances positivos utilizados en la evaluación de este estudio.

42,91608 27.16000	80.90232	36,17021	11,16327	7,12459	11 71878	7,39314	8,28906 7,59110	0.53702	2,04316	24,63190	0,70886	2,34254	10,03991 51,88517	24,13220	1,35638	0,00420	0,00630	U,149/3	15 59464	11,39999	13,62744	18,24995	4,30002 9.75816	12,35341	2,14585	1,32484	2,11990	CE0C00'07	1.77832	3,91914	7,26900	11,04347 2.05987	2,00001 16.59041	1,96946	1,01797	25,33738	10 94435	25,92155	17,29703	20,49174 a aente	4,12738	46,49374	54,54852	18,233UU A 01571	23,40639	0,54388	13,99205	6,33309 56,66010	19,66761	3,68947	1,16646	1,413U9 0.92099	23,95362	2,48196 3,19282
0,00755	/2/00/0	0,00647	00/00/0	0,00758	89/00/0	0,00974	0,00869	1 /000/0	0,00881	2/100877	0,00635	0,00768	0.0069A	56800 ⁰	0,00664	0,00715	0,00794	299900'n	2000010	68/00/0	0,00793	0,00789	1001010	0,00729	0,00932	0,00755	0,00943	, 00870 C	0.01125	0,00510	0,00991	0,00815	4,000,0	0,00914	0,00982	0,01066	+00000	0,00764	0,00833	0,00791	0,00872	0,00736	0,00558	98900 U	0,00846	0,00919	0,00901	5 89800 U	90600	0,00813	0,00686	0,00849	900035	0,00806
1,002	0.945	0,800	0,851	0,894	1 044 0	1,150 0	1,088	1,059 1,059 1,059	0,992	1,066 (0,905	1,027	0 070 0	1,001	0,822	1,003	0,876	1,943	0.965	0,974 0	1,010	1,064	1 101 0	0,952	1,242 (1,230 0	1,246 0	1193	1,156	0,646	1,339 (1,216 0	1 220	1,228 0	1,238 (1,316	1,100	1,055	1,146 0	1,217 0	1,187 0	1,167 0	0,917	1,142 (1,421	1,298 (1,208	1314 0	1,159 0	1,154 0	1,135	1,162 0	1,141 0	1,356 0
1,004	0.890	0,934	107,0	0,789	1 088	1,300	1,176	1.118	686	1,132	0,811	1,053	5/5/	1,002	0,644	1,006	0,752	000	761'1	948	1,020	1,129	040 1088	904	1,484	1,460	1,492	1385	313	0,292	1,679	1,432 1,456	1.440	1,455	1,477	1,632	1 430	1,111	1,291	1,433	1,373	1,335	000	1,85	1,675	1,595	1,415	2 <u>6</u>	1,319	1,308	1,271	1,256 1,648	1,216	1,478 1,413
8	88	1,667	00	88	38	0	88	88		8	8	000	3,8	18	8	00	88		88		00	8	9 E	0	000	00	88	88	88	10	000	88	88	8	8	88	88	80	8	88	18	8	88	38	167	8	8	88	18	8	8	,067 167	067	000
075 1	080	081	082	085	074 1	085	080	620	680	082 1	20	075	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 080	081	071 1	191		1072	1081	078 1	074 1	067	077 1	075 1	061 1	076		097	079 1	074 1	067 1	071	074 1	079 1	081	080	072 1	073 1	065 1	074 1	063 1	061	1/8 8/0	800	071 1	075	0.65	078	070 1	060	073	082	059 1078 1
000		0'0 02	00	00 00		34 00	00		24 00	0'0 88	20 0'0 22	200 000 000	10 0 0	000	18 0,0	0,0	90 90 90 90				32 O,D	19		00 44	96 0,0	64 O,0			100	00 18	95 0,0	11 0,0		88	92 O,O	88			0'0 69	34 0,0	14 0,0	71 0,0	8	10 00	27 0,0	21 0,0			74 0,0	19 0'0	00	00 00 00	73 0,0	0,0 0,0 26 0,0
13.99	14.00	14,97	15,23	15,66	0 19 19 19 19 19	15.66	14,78	14.65	16,46	15,23	12,96	10,00	0 7 7 7 7	16.51	14.94	13,20	16,78	1.51	10.00	15,00	14,55	13,75	101	14.17	13,89	11,36	14,00	4 19 19	180,0	14,60	13,66	12,41	101	13,78	14,69	14,90	14.82	13,40	13,45	12,00 21,00 21,00 21,00	19.0	11,67	11,26	14 4 14 4 14 4	12	13,12	13.0	12.00	14.47	13,02	11,18	14 14 14	15,17	11,00
26,631	28,323	28,572	29,074	29,952	255 396	29,934	28,214 DE 673	27.973	31,403	29,073	24,787	26,458	25,104	31,605	28,530	25,197	32,037	95U, 62	25,014	28,645	27,736	26,206	24,603 73,693	27,057	26,246	21,463	26,486	25,574	34 022	27,635	25,867	23,441	24,889	26,043	27,750	28,328	78 071	25,316	25,421	22,730	25,714	22,043	21,283	977, 17, 00C	20,827	24,783	26,084	27 837	27,337	24,647	21,132	25,5/4 21,590	28,657	20,789 27,247
0,480	0.428	0,670	0,575	0,667	0,437	0,616	0,467	0.741	0,569	0,598	0,555	0,302	9/Q'N	0.617	0,775	0,478	0,694	6///n	0.566	0,587	0,610	0,509	0,416	0,534	0,610	0,619	0,486	0,567	0,560	0,596	0,543	0,452	0.492	0,529	0,559	0,482	0.511	0,482	0,545	0,478	0,492	0,491	0,467	0,436	0,458	0,421	0,547	0.478	0,448	0,456	0,519	0,433	0,401	0,374 0,437
0,016	0.015	0,019	0,017	0,022	0,045	0,018	0,019	0.018	0,020	0,021	0,020	0,021	120 0	0.024	0,019	0,021	0,021	0,017	0,019	0,018	0,016	0,018	0,015	0,017	0,022	0,014	0,021	010/0	0.025	0,020	0,019	0,018	0.019	0,021	0,021	0,023	0.073	0,020	0,021	0,017	0,020	0,017	0,014	1/1/1 1/1/1	0,015	0,019	0,021	0,019	0,026	0,019	0,015	0,022	0,025	0,016 0,023
20	20	2,0	2,0	20	200	20	20	202	20	2,0	20	0.0	n 0 7	20	20	2,0	0 0 0 7	n'7	0.0	20	2,0	20	0,00	20	2,0	2,0	0.0	n 0 v 0	20	20	2,0	200	207	2,0	2,0	0.0	200	50	2,0	20	20	2,0	20	n 0 7	20	2,0	20		20	2,0	2,0	2'n 2'n	0.0	2,0
0,500	0200	0,333	0'200	0,500	0200	0,500	0,500	0200	0'200	0,500	0,500	0,500	0090	0.500	0,500	0'200	0200		0.500	0200	0'200	0,500	0.567	0200	0'200	0'200	0,500	0.500	0200	0'200	0,500	0,500	0200	0,500	0'200	0,500	0,500	0200	0,500	0,500	0200	0,500	0,417	0.500	0,583	0'200	0200	020	0,500	0,500	0'200	0,583	0,533	0,617 0,500
336,0	356.0	466,0	435,0	460,0	756.0	445,0	320,0	570.0	408,0	386,0	280,0	174,0	0,000	420.0	580,0	230,0	460,0	544,U	0,200	420,0	460,0	328,0	456 D	388,0	330,0	402,0	260,0	2/U/U	340.0	360,0	300,0	260,0	260.0	275,0	306,0	230,0	268.0	260,0	280,0	266,0	260,0	263,0	270,0	0,152	242,0	230,0	340,0	0,022	200,0	245,0	295,0	207,U 260.0	190,0	185,0 210,0
71,502	71.428	71,459	71,461	71,372	71 453	71,498	71,553	71.614	71,676	71,725	71,753	71,748	19/1/	71.761	71 759	71,646	71,703	71 CE7	71 674	71,615	71,645	71,580	71 631	71,608	71,605	71,625	71,594	71 621	71.638	71,655	71,649	71,652	71,680	71,699	71,693	71,855	700.07	72,018	72,168	72,162	72,240	72,208	72,216	111/2/	72,185	72,206	72,253	96C CZ	72,311	72,642	72,663	72,637	73,004	72,992 73,043
29,497	29,580	29,581	29,664	29,830	30,003	30,005	30,165 20,165	30,168	30,254	30,332	30,499	30,586	000'NC	30,995	30,992	31,498	31,506	31,0/2	31,839	31,995	31,997	31,997	32,161 37,167	32,248	32,326	32,304	32,309	37.470	32,501	32,642	32,638	32,664 37 779	32.810	32,826	32,809	33,476	33,639	33,646	33,990	33,971 34 080	34,168	34,322	34,315	34,394	34,502	34,635	34,731	34.776 34.776	34,800	35,149	35,130	35,136	35,488	35,472 35,584
19,333	0,000 16,233	9,583	14,583	10,650	15,000	16,417	13,583	17,250	000'6	10,583	13,917	8,000	0 883 0	14.667	17,500	11,783	13,683	16,36/ 0 100	0000	12,250	13,833	10,783	10.650	11,233	11,000	12,000	10,000	17 250	16,333	10,083	000'6	8,000 11,667	16.667	17,583	18,583	18,667	0,833	8,667	15,333	14,333 10.000	9,750	11,667	16,000	14,417	11,167	17,167	15,750	13,5UU	11,417	17,167	18,167	16,25U 8 917	17,783	18,950 7,917
10,0	0.80	66,0	35,0	0,00	0 4 8 4	80,0	85,0	10.01	0'00	146,0	0,0	23.0	04'0	32.0	40,0	30,0		1 0 0 0 0	0,00	11.0	67,0	000	60 D	24,0	0'00	10,0	54,0	0,00	200	0'02	20,0	20,0	0.09	80,0	0'00	0,080	0,002	20'0	0'06	(40 0 60 0	0,08	56,0	0'02	34 U	44,0	20,0	32,0		0'06	39,0	0'00	13,0 90,0	0'00	80,0 13,0
71,490	71.421	71,453 4	71,458 4	71,367 4	71 447	71,489 4	71,537	71,604 5	71,674 4	71,713 3	71,744	71,739 1	71 753 4	71.747	71,769 5	71,633 2	71,703	4 000/17	71 673 1	71,602 4	71,634_4	71,567	71 617	71,602	71,599 3	71,616 4	71,587	71 630 3	71 631	71,656	71,667	71,643 2	71,698,2	71,681	71,699 3	71,830 2	72 016	72,021	72,162 2	72,168 2	72,236 2	72,217 2	72,206 2	77 178	72,183 2	72,212 2	72,263 2	70 310 V	72,295 1	72,646 2	72,663	72,62/ 4	73,000	72,995 1
29,485 20,485	29,567	29,567	29,653	29,818	29,019	29,985	30,153	30,154 30,155	30,238	30,317	30,488	30,571	30,816 318,05	30,985	30,997	31,487	31,493	51,009	31 824	31,985	31,984	31,984	32,15U 37,151	32,234	32,302	32,327	32,332	174,20	32,481	32,637	32,665	32,642	32,826	32,810	32,833	33,486	33.618	33,627	026'EE	33,994 34 066	34,145	34,302	34,328	34,415 34,406	34,474	34,661	34,753	34 / 100 34 799	34,786	35,127	35,149	35,155 35,306	35,468	35,497 35,562
18,833	15.733	9,250	14,083	10,150	14.500	15,917	13,083	16.750	8,500	10,083	13,417	7,500	0,282,0	14.167	17,000	11,283	13,183	700/1	8,800	11,750	13,333	10,283	9,000 10.083	10,733	10,500	11,500	9,500	16.750	15,833	9,583	8,500	7,500	16.167	17,083	18,083	18,167	0 333	8,167	14,833	13,833 18,600	9,250	11,167	15,583	13,91/ 0,583	10,583	16,667	15,250	13,000	10,917	16,667	17,667	15,71/ 8.333	17,250	18,333 7,417
6 5	17	12	16	6	•	i m	~ 0	0 01	10	11	φ	55	4 C	4 10	o O	13	<u>+</u>	0 t	- @	. 00	ത	~ 0	N CT	4	116	117	115	77	120	128	127	126	00	110	111	160	3 5	152	137	136	145	146	147	£ 19	102	95	94	7 5	5 6	8	34	2E 2E	4	45 47
6,30	7,02	7,02	7,02	2,03	2012	2,06	707	2012	2,08	7,08	7,08	7,09	7,11	7.11	7,11	7,13	7,13	7.13	7 14	7,16	7,16	7,16	cl./ 7.15	7,15	7,21	7,21	7,21	121	7.21	7,22	7,22	722	7.20	7,20	7,20	7.25	2.2	7,25	7,23	7,23	7,24	7,24	7,24	7.15	7,15	7,14	7,14	7.14	7,14	7,01	7,01	10'2	7,02	7,02
ں می	م م	9	ى	~ ~	~	~	~ ~	~	. @	00	00	ω c	α	0 00	00	б	on (ກເ	n 07	5	5	5 (ກອ	5	ŋ	5	on c	ກອ	ით	0	Б	on o	ით	6	5	2 9	2 12	: 1	11	11		11	1	1	: =	11	: 1	= =	: =	12	12	12	: @	t t t
4	4 4	4	4	4	4 4	4	4 *	4 4	4	4	4	4 •	4 5	1 4	4	4	4 •	4 *	1 4	4	4	4	4 4	- un	чл	чл	נה ג	n 40	о ча	ι. L	υ	w w	n 40	S	ъ	un u		ы Б	9	ی م	0 00	9	و	ی م	0 00	9	~ 1	~ ~	2	2	2	2	~	~ ~
130	<u>5</u> 8	134	137	140	143	144	148	<u>8</u>	151	152	154	58 5	8 8	9 19	162	169	12	1/1	177	179	18	101	18 18	187	189	190	192	<u>4</u> 5	8 66	201	203	204	202	208	209	33	2 2	237	246	248	254	256	288	797	265	270	272	275	276	284	285	.985 286	296	298 299

1,91365	0,61416	1,73261	20,69265	4,23243	23,09708	1,48090	7,11472	0,09463	0,44304	0,67003	6,81509	7,62593	6,24706	0,60517	1,39180
0,00784	0,00814	0,00866	26200,0	0/00/0	0,0000	0,00675	0,00843	0,00687	0,01129	0,00933	0,01056	0,00944	0,01153	0,01074	0,02155
1,173	1,162	1,121	1,141	1,147	1,187	1,108	1,107	1,050	1,323	1,241	1,327	1,166	1,418	1,327	2,704
1,345	1,323	1,209	1,282	1,295	1,274	1,217	1,213	1,100	1,647	1,482	1,653	1,333	1,770	1,655	4,408
1,000	1,000	1,033	1,000	1,000	1,100	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,067	1,000	1,000
0,0067	0/00/0	2/200'0	0/00/0	0,0062	2/00/0	0,0061	0,0076	0,0065	0,0085	0,0075	0,0080	0,0081	0,0081	0,0081	0'00800
12,380	12,980	14,303	12,940	11,440	14,184	11,283	14,112	12,117	15,793	13,918	14,748	14,992	15,051	14,987	14,764
23,382	24,517	27,015	24,441	21,608	26,791	21,310	26,654	22,885	29,829	26,287	27,856	28,315	28,427	28,306	27,886
0,445	0,379	0,417	0,433	0,436	0,447	0,575	0,467	0,440	0,475	0,574	0,442	0,461	0,456	0,466	0,488
0,018	0,020	0,023	0,018	0,017	0,021	0,017	0,021	0,017	0,024	0,022	0,024	0,025	0,023	0,025	0,023
2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0
0,500	0,500	0,517	0,500	0,500	0,550	0,500	0,500	0,500	0,500	0,500	0,500	0,500	0,533	0,500	0,500
236,0	185,0	205,0	233,0	212,0	245,0	295,0	250,0	237,0	248,0	297,0	205,0	215,0	246,0	219,0	256,0
73,086	73,042	73,053	73,063	73,034	73,003	72,989	72,963	72,956	72,979	73,569	73,543	73,557	73,546	73,563	73,562
35,653	35,657	35,637	35,818	35,821	35,903	35,983	35,989	35,992	36,077	36,304	36,331	36,315	36,421	36,499	36,643
12,833	10,667	11,717	8,833	10,000	14,133	19,583	20,667	21,667	7,917	16,500	19,500	18,417	11,450	14,583	15,667
5 238,0	9 185,0	8 200,0	5 229,0	7 210,0	0 230,0	1 303,0	6 245,0	7 232,0	2 255,0	5 300,0	0 223,0	2 230,0	3 238,0	3 230,0	0 260,0
73,07	73,03	73,05	73,07	73,04	73,01	73,00	72,96	72,95	72,97	73,55	73,56	73,54	73,54	73,55	73,57
35,634	35,635	35,657	35,800	35,804	35,883	35,967	35,969	35,973	36,050	36,324	36,310	36,331	36,392	36,474	36,570
12,333	10,167	11,200	8,333	9,500	13,583	19,083	20,167	21,167	7,417	16,000	19,000	17,917	10,917	14,083	15,167
5	49	3	8	8	8	8	88	67	8	78	8	8	8	8	87
7,03	2,03	7,03	7,04	7,04	7,04	7,04	7,04	7,04	7,06	60'2	2,09	2,09	7,10	7,10	7,10
Ω	13	13	14	14	14	14	14	14	14	5	15	15	5	15	15
2	2	2	2	2	2	2	2	2	œ	ω	ω	ω	œ	00	œ
80	301	303	307	309	314	316	317	318	321	330	333	334	335	338	340

RED DE ARRASTRE	BARCO	PAM "Nisshin Maru III"	REVISION PLANO:
De fondo, con puertas	Loa	19.63 m	Guillermo Martínez González
Camarón	Нр	325	Ingeniero Pesquero UCV
Chile	TRG	97.8	14 Agosto 2001

										Ca	laderos
LCT	2	3	4	5	6	9	10	11	13	14	15
10	0	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0
12	0	0	2	0	0	0	0	0	0	0	0
13	4	5	0	1	0	1	0	1	0	0	0
14	9	15	2	1	0	0	0	0	0	1	0
15	12	11	1	0	5	0	0	2	0	2	1
16	8	17	2	2	2	8	0	5	0	4	1
17	15	32	5	8	0	12	3	9	0	6	6
18	38	52	14	22	0	47	6	13	0	11	9
19	51	73	24	23	7	69	6	34	1	19	8
20	78	88	17	33	3	121	26	122	5	39	29
21	70	78	32	36	9	174	33	195	11	74	58
22	82	62	10	12	5	222	37	263	46	107	105
23	68	40	14	29	2	202	34	269	58	108	108
24	103	73	17	47	2	180	31	272	45	70	87
25	91	115	20	38	3	132	32	247	15	47	83
26	102	83	10	15	3	82	14	152	21	34	38
27	52	31	7	7	2	36	4	58	5	9	31
28	39	10	0	4	0	19	5	57	1	9	26
29	16	4	0	0	0	13	5	28	1	6	9
30	2	0	0	0	0	8	3	17	0	4	13
31	2	0	0	0	0	1	0	6	0	2	13
32	0	0	0	0	0	2	0	5	0	1	17
33	1	0	0	0	0	0	0	2	0	1	17
34	0	0	0	0	0	0	0	1	1	0	11
35	0	0	0	1	0	1	0	1	0	1	15
36	0	0	0	0	0	0	0	0	0	0	18
37	0	0	0	0	0	0	0	0	0	0	7
38	0	0	0	0	0	0	0	0	0	0	7
39	0	0	0	0	0	0	0	0	0	0	5
40	0	0	0	0	0	0	0	0	0	0	4
41	0	0	0	0	0	0	0	0	0	0	2
42	0	0	0	0	0	0	0	0	0	0	2
43	0	0	0	0	0	0	0	0	0	0	0
44	0	0	0	0	0	0	0	0	0	0	0
45	0	0	0	0	0	0	0	0	0	0	0
Total	843	789	177	279	43	1.330	239	1.759	210	555	730

Anexo 3.1. Distribución de frecuencias de talla de camarón nailon por caladero. Caladeros 2 a 6 y 9 a 15. Machos.

					Ca	aladeros					
LCT	2	3	4	5	6	9	10	11	13	14	15
10	0	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0
12	0	3	3	1	0	0	0	0	0	0	0
13	7	7	5	0	0	0	0	0	0	0	0
14	24	11	4	2	1	2	0	0	0	0	0
15	25	24	1	2	1	2	0	0	0	0	0
16	22	20	3	4	4	0	0	0	0	0	0
17	20	35	5	8	3	9	0	0	0	0	0
18	28	45	10	12	4	21	0	2	0	0	0
19	51	71	19	31	4	23	0	0	0	0	0
20	69	90	28	32	9	38	0	2	0	0	0
21	95	94	37	53	26	45	1	0	0	0	2
22	141	85	29	52	37	51	0	13	0	0	14
23	156	67	45	32	49	106	5	43	0	10	28
24	151	58	54	40	51	177	1	100	4	43	33
25	182	99	109	77	25	269	18	140	9	57	59
26	187	147	179	102	17	260	43	179	12	64	70
27	211	142	160	124	17	222	42	128	15	42	67
28	169	77	120	102	20	162	49	217	7	52	80
29	149	58	47	58	16	81	22	132	1	14	13
30	124	25	13	41	15	41	18	130	2	16	20
31	96	22	9	6	5	31	4	41	0	6	18
32	86	5	8	0	5	23	3	37	1	11	9
33	49	3	4	0	1	12	1	49	0	9	11
34	37	3	0	0	0	3	2	22	0	4	3
35	13	0	1	0	0	6	0	26	0	3	3
36	7	0	0	0	0	1	0	8	0	0	0
37	1	0	0	0	0	2	0	1	0	1	0
38	0	0	0	0	0	0	0	1	0	0	0
39	0	0	0	0	0	0	0	0	0	0	0
40	0	0	0	0	0	0	0	0	0	0	0
41	0	0	0	0	0	0	0	0	0	0	0
42	0	0	0	0	0	0	0	0	0	0	0
43	0	0	0	0	0	0	0	0	0	0	0
44	0	0	0	0	0	0	0	0	0	0	0
45	0	0	0	0	0	0	0	0	0	0	0
Total	2.100	1.191	893	779	310	1.587	209	1.271	51	332	430

Anexo 3.2. Distribución de frecuencias de talla de camarón nailon por caladero. Caladeros 2 a 6, y 9 a 15. Hembras.

				Región			
LCT	II	III	IV	V	VI	VII	VIII
10	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0
12	0	2	0	0	0	0	0
13	9	1	0	1	1	0	0
14	22	5	0	0	0	1	0
15	22	7	0	0	2	2	1
16	23	8	5	4	4	4	1
17	46	14	10	7	4	9	6
18	88	38	32	22	9	14	9
19	123	55	52	34	21	22	8
20	161	58	51	134	71	57	29
21	145	80	61	192	123	111	58
22	142	29	83	221	178	193	105
23	106	47	88	177	182	224	108
24	174	68	73	167	170	188	87
25	203	64	39	146	170	118	83
26	184	29	30	79	100	94	38
27	83	16	17	25	37	33	31
28	49	4	4	28	32	27	26
29	20	0	4	14	21	14	9
30	2	0	0	11	13	8	13
31	2	0	0	1	1	7	13
32	0	0	0	2	2	4	17
33	1	0	0	0	2	1	17
34	0	0	0	0	0	2	11
35	0	1	0	1	1	1	15
36	0	0	0	0	0	0	18
37	0	0	0	0	0	0	7
38	0	0	0	0	0	0	7
39	0	0	0	0	0	0	5
40	0	0	0	0	0	0	4
41	0	0	0	0	0	0	2
42	0	0	0	0	0	0	2
43	0	0	0	0	0	0	0
44	0	0	0	0	0	0	0
45	0	0	0	0	0	0	0
Total	1.605	526	549	1.266	1.144	1.134	730

Anexo 3.3. Distribución de frecuencias de talla de camarón nailon por región. Machos.

	Región												
LCT	II	III	IV	V	VI	VII	VIII						
10	0	0	0	0	0	0	0						
11	0	0	0	0	0	0	0						
12	2	5	0	0	0	0	0						
13	11	8	0	0	0	0	0						
14	33	9	2	0	0	0	0						
15	44	9	2	0	0	0	0						
16	42	11	0	0	0	0	0						
17	53	18	9	0	0	0	0						
18	67	32	20	1	0	2	0						
19	119	57	23	0	0	0	0						
20	153	75	37	2	1	0	0						
21	175	130	37	9	0	0	2						
22	211	133	46	10	6	2	14						
23	208	141	72	47	27	18	28						
24	197	157	97	111	41	76	33						
25	265	227	124	186	69	114	59						
26	310	322	124	194	107	133	70						
27	336	318	100	175	77	97	67						
28	241	247	71	145	140	131	80						
29	205	123	46	62	100	42	13						
30	148	70	19	40	89	59	20						
31	117	21	20	15	27	20	18						
32	91	13	12	15	22	26	9						
33	52	5	5	10	32	24	11						
34	40	0	2	3	9	17	3						
35	13	1	3	3	17	12	3						
36	7	0	0	1	6	2	0						
37	1	0	1	1	0	2	0						
38	0	0	0	0	1	0	0						
39	0	0	0	0	0	0	0						
40	0	0	0	0	0	0	0						
41	0	0	0	0	0	0	0						
42	0	0	0	0	0	0	0						
43	0	0	0	0	0	0	0						
44	0	0	0	0	0	0	0						
45 Tet 1	0	0	0	U 1.030	0	0	0						
Total	3.141	2.132	872	1.030	771	111	430						

Anexo 3.4. Distribución de frecuencias de talla de camarón nailon por región. Hembras.

Caladero	a	b	SCR	n
1				
2	4,473 x 10 ⁻⁴	2,947	60,581	167
3	$3,067 \ge 10^{-4}$	3,072	62,118	210
4	7,720 x 10 ⁻⁴	2,778	60,493	176
5	8,830 x 10 ⁻⁴	2,740	43,150	177
6	5,611 x 10 ⁻⁴	2,878	3,519	35
7				
8				
9	2,252 x 10 ⁻⁴	3,218	274,328	273
10	1,792 x 10 ⁻³	2,562	47,266	51
11	1,312 x 10 ⁻⁴	3,384	367,894	434
12				
13	1,549 x 10 ⁻³	2,640	20,950	52
14	2,033 x 10 ⁻⁴	3,254	37,469	114
15	1,134 x 10 ⁻³	2,718	69,393	114
Total	4,933 x 10 ⁻⁴	2,952	1426,9	1803

Anexo 4.1. Parámetros de la relación longitud-peso de camarón nailon por caladero. Machos.

Anexo 4.2. Parámetros de la relación longitud-peso de camarón nailon por caladero. Hembras

Caladero	a	b	SCR	n
1	_			
2	9,209 x 10 ⁻⁵	3,489	3233, 4	1447
3	5,365 x 10 ⁻⁵	3,638	837,8	788
4	1,962 x 10 ⁻⁴	3,269	1564,5	859
5	$4,421 \times 10^{-4}$	2,985	960,7	847
6	$3,960 \times 10^{-4}$	3,041	130,4	134
7			,	
8				
9	3,715 x 10 ⁻⁴	3,097	1173,9	789
10	5,209 x 10 ⁻³	2,318	140,6	69
11	$5,034 \times 10^{-4}$	3,014	549,1	271
12	,	,	,	
13				8
14	1,233 x 10 ⁻³	2,764	126,7	66
15	$2,188 \times 10^{-4}$	3,273	216,2	127
Total	1,786 x 10 ⁻⁴	3,295	10580,9	5405

Caladero	a	b	SCR	n
1				
2	9,156 x 10 ⁻⁵	3,489	3494,1	1614
3	5,322 x 10 ⁻⁵	3,638	957,2	998
4	1,676 x 10 ⁻⁴	3,313	1778,6	1035
5	4,193 x 10 ⁻⁴	2,999	1051,6	1024
6	2,886 x 10 ⁻⁴	3,133	148,3	169
7				
8				
9	2,505 x 10 ⁻⁴	3,212	1565,5	1062
10	$2,505 \times 10^{-4}$	3,219	274,0	120
11	1,397 x 10 ⁻⁴	3,384	1092,1	705
12				
13	2,546 x 10 ⁻⁴	3,217	53, 9	60
14	2,249 x 10 ⁻⁴	3,254	263,7	180
15	1,218 x 10 ⁻⁴	3,442	335,9	241
Total	1,327 x 10 ⁻⁴	3,381	12251,9	7208

Anexo 4.3. Parámetros de la relación longitud-peso de camarón nailon por caladero. Ambos.

		Caladeros										
LCT	1	2	3	4	5	6	7	8	9			
10	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
11	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
12	0,00	0,00	0,00	0,02	0,00	0,00	0,00	0,00	0,00			
13	0,01	0,22	0,19	0,00	0,20	0,00	0,04	0,06	0,03			
14	0,02	0,62	0,71	0,03	0,24	0,00	0,05	0,00	0,00			
15	0,04	1,01	0,64	0,02	0,00	4,91	0,30	0,00	0,00			
16	0,03	0,81	1,20	0,05	0,72	2,38	0,29	0,93	0,42			
17	0,07	1,82	2,69	0,15	3,46	0,00	0,69	1,66	0,75			
18	0,22	5,47	5,18	0,49	11,25	0,00	2,24	7,70	3,46			
19	0,34	8,61	8,52	1,00	13,80	13,82	3,58	13,26	5,96			
20	0,61	15,33	11,95	0,82	23,03	6,89	5,00	27,05	12,16			
21	0,63	15,89	12,24	1,78	29,02	23,87	7,22	44,93	20,19			
22	0,85	21,35	11,16	0,64	11,10	15,21	3,13	65,77	29,55			
23	0,80	20,19	8,21	1,02	30,58	6,94	6,50	68,23	30,66			
24	1,38	34,67	16,99	1,40	56,19	7,87	11,66	68,94	30,98			
25	1,38	34,56	30,19	1,86	51,25	13,31	11,00	57,03	25,63			
26	1,73	43,49	24,46	1,05	22,71	14,95	5,42	39,78	17,87			
27	0,99	24,79	10,21	0,82	11,85	11,14	3,03	19,52	8,77			
28	0,82	20,70	3,67	0,00	7,54	0,00	1,50	11,47	5,15			
29	0,37	9,42	1,63	0,00	0,00	0,00	0,00	8,71	3,91			
30	0,05	1,30	0,00	0,00	0,00	0,00	0,00	5,92	2,66			
31	0,06	1,43	0,00	0,00	0,00	0,00	0,00	0,82	0,37			
32	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,79	0,80			
33	0,03	0,86	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
34	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
35	0,00	0,00	0,00	0,00	3,64	0,00	0,72	1,17	0,52			
36	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
37	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
38	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
39	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
40	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
41	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
42	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
43	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
44	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
45	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
Total	10,45	262,55	149.83	11.16	276.58	121,29	62.37	444.74	199.83			

Anexo 5.1. Biomasa (tons) a la talla de **machos** de camarón nailon por caladero **dentro de las 5 mn** de reserva artesanal. Enfoque geoestadístico.

	Caladeros										
LCT	1	2	3	4	5	6	7	8	9		
10	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
11	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
12	0,00	0,00	0,08	0,03	0,13	0,00	0,03	0,00	0,00		
13	0,01	0,34	0,23	0,06	0,00	0,00	0,00	0,00	0,00		
14	0,06	1,47	0,47	0,06	0,44	0,72	0,13	0,14	0,06		
15	0,08	1,92	1,28	0,02	0,55	0,90	0,16	0,18	0,08		
16	0,08	2,09	1,32	0,07	1,35	4,45	0,54	0,00	0,00		
17	0,09	2,32	2,81	0,14	3,30	4,07	0,90	1,19	0,53		
18	0,16	3,93	4,36	0,34	5,98	6,56	1,59	3,35	1,51		
19	0,34	8,55	8,23	0,78	18,46	7,84	4,15	4,39	1,97		
20	0,55	13,70	12,35	1,36	22,56	20,88	5,75	8,58	3,86		
21	0,88	22,15	15,15	2,12	43,88	70,83	13,02	11,94	5,36		
22	1,52	38,32	15,97	1,93	50,19	117,50	17,09	15,77	7,08		
23	1,95	49,08	14,57	3,47	35,75	180,15	18,01	37,94	17,05		
24	2,18	54,66	14,51	4,80	51,42	215,72	23,28	72,89	32,75		
25	3,00	75,36	28,34	11,08	113,23	120,97	29,85	126,73	56,94		
26	3,51	88,11	47,88	20,70	170,69	93,61	39,63	139,38	62,63		
27	4,48	112,59	52,37	20,96	234,98	106,00	53,17	134,77	60,55		
28	4,05	101,65	32,01	17,72	217,89	140,58	51,86	110,86	49,81		
29	4,00	100,61	27,07	7,79	139,09	126,25	35,31	62,23	27,96		
30	3,73	93,62	13,05	2,41	109,94	132,35	29,88	35,22	15,82		
31	3,21	80,75	12,79	1,86	17,92	49,15	6,54	29,67	13,33		
32	3,20	80,32	3,23	1,83	0,00	54,57	3,30	24,44	10,98		
33	2,02	50,64	2,14	1,01	0,00	12,08	0,73	14,11	6,34		
34	1,68	42,19	2,36	0,00	0,00	0,00	0,00	3,89	1,75		
35	0,65	16,31	0,00	0,31	0,00	0,00	0,00	8,56	3,85		
36	0,38	9,64	0,00	0,00	0,00	0,00	0,00	1,57	0,70		
37	0,06	1,51	0,00	0,00	0,00	0,00	0,00	3,43	1,54		
38	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
39	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
40	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
41	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
42	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
43	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
44	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
45	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
Total	41.86	1051.84	312.56	100.86	1237.75	1465.16	334.9	851.21	382.46		

Anexo 5.2. Biomasa (tons) a la talla de **hembras** de camarón nailon por caladero **dentro de las 5 mn** de reserva artesanal. Enfoque geoestadístico.

	Caladeros														
LCT	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
10	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
11	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
12	0,00	0,00	0,00	0,17	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
13	0,01	0,07	0,23	0,00	0,08	0,00	0,04	0,01	0,08	0,00	0,05	0,01	0,00	0,00	0,00
14	0,03	0,21	0,85	0,27	0,10	0,00	0,05	0,00	0,00	0,00	0,00	0,00	0,00	0,11	0,00
15	0,05	0,34	0,76	0,16	0,00	14,15	0,28	0,00	0,00	0,00	0,14	0,02	0,00	0,26	0,01
16	0,04	0,27	1,43	0,40	0,31	6,85	0,27	0,12	1,20	0,00	0,42	0,05	0,00	0,64	0,01
17	0,09	0,61	3,21	1,19	1,46	0,00	0,64	0,22	2,14	0,71	0,91	0,11	0,00	1,14	0,10
18	0,27	1,84	6,18	3,94	4,76	0,00	2,09	1,00	9,94	1,67	1,56	0,19	0,00	2,47	0,18
19	0,43	2,89	10,18	7,92	5,83	39,82	3,35	1,73	17,12	1,96	4,78	0,60	0,18	5,01	0,19
20	0,76	5,15	14,28	6,52	9,74	19,86	4,67	3,53	34,93	9,89	19,94	2,55	1,02	11,97	0,81
21	0,79	5,34	14,62	14,18	12,27	68,80	6,74	5,86	58,01	14,50	36,81	4,78	2,59	26,22	1,87
22	1,06	7,17	13,33	5,08	4,69	43,85	2,92	8,57	84,90	18,66	56,96	8,23	12,43	43,50	3,88
23	1,00	6,78	9,81	8,12	12,93	20,00	6,08	8,89	88,09	19,55	66,43	9,93	17,87	50,06	4,55
24	1,72	11,65	20,30	11,18	23,76	22,68	10,89	8,98	89,00	20,21	76,16	10,91	15,72	36,79	4,15
25	1,72	11,61	36,07	14,83	21,67	38,37	10,28	7,43	73,63	23,53	78,02	10,18	5,91	27,87	4,47
26	2,16	14,61	29,23	8,33	9,60	43,08	5,07	5,18	51,35	11,56	53,90	7,54	9,29	22,63	2,30
27	1,23	8,33	12,20	6,52	5,01	32,10	2,83	2,54	25,20	3,69	22,99	3,07	2,47	6,70	2,10
28	1,03	6,95	4,38	0,00	3,19	0,00	1,40	1,49	14,81	5,14	25,16	3,15	0,55	7,46	1,96
29	0,47	3,16	1,94	0,00	0,00	0,00	0,00	1,13	11,24	5,70	13,71	1,75	0,61	5,51	0,75
30	0,06	0,44	0,00	0,00	0,00	0,00	0,00	0,77	7,64	3,78	9,20	1,13	0,00	4,06	1,20
31	0,07	0,48	0,00	0,00	0,00	0,00	0,00	0,11	1,05	0,00	3,58	0,44	0,00	2,24	1,32
32	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,23	2,31	0,00	3,27	0,40	0,00	1,23	1,90
33	0,04	0,29	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,43	0,18	0,00	1,35	2,08
34	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,78	0,19	0,98	0,00	1,47
35	0,00	0,00	0,00	0,00	1,54	0,00	0,68	0,15	1,51	0,00	0,85	0,10	0,00	1,60	2,18
36	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	2,84
37	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,20
38	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,30
39	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00
40	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,86
41	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,46
42	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,50
43	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
44	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
45	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Total	13,06	88,20	179,03	88,80	116,94	349,55	58,27	57,96	574,16	140,55	477,04	65,52	69,63	258,81	45,65

Anexo 5.3. Biomasa (tons) a la talla de **machos** de camarón nailon por caladero fuera de las 5 mn de reserva artesanal. Enfoque geoestadístico.

							Ca	laderos							
LCT	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
10	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
11	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
12	0,00	0,00	0,09	0,22	0,06	0,00	0,02	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
13	0,02	0,11	0,28	0,47	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
14	0,07	0,49	0,56	0,48	0,18	2,06	0,12	0,02	0,18	0,00	0,00	0,00	0,00	0,00	0,00
15	0,10	0,65	1,53	0,15	0,23	2,59	0,15	0,02	0,23	0,00	0,00	0,00	0,00	0,00	0,00
16	0,10	0,70	1,57	0,56	0,57	12,82	0,50	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
17	0,12	0,78	3,36	1,13	1,40	11,74	0,84	0,16	1,54	0,00	0,00	0,00	0,00	0,00	0,00
18	0,20	1,32	5,21	2,74	2,53	18,90	1,48	0,44	4,33	0,00	0,23	0,03	0,00	0,00	0,00
19	0,43	2,87	9,83	6,22	7,80	22,58	3,87	0,57	5,66	0,00	0,00	0,00	0,00	0,00	0,00
20	0,68	4,60	14,76	10,85	9,54	60,17	5,37	1,12	11,08	0,00	0,33	0,04	0,00	0,00	0,00
21	1,10	7,44	18,10	16,84	18,55	204,14	12,16	1,56	15,41	0,45	0,00	0,00	0,00	0,00	0,07
22	1,91	12,87	19,08	15,39	21,22	338,62	15,97	2,05	20,36	0,00	2,94	0,36	0,00	0,00	0,54
23	2,44	16,49	17,41	27,65	15,12	519,17	16,82	4,94	48,98	3,05	11,25	1,38	0,00	4,91	1,25
24	2,72	18,36	17,34	38,17	21,74	621,71	21,75	9,50	94,10	0,70	30,10	3,85	1,50	24,30	1,69
25	3,75	25,32	33,86	88,14	47,87	348,63	27,88	16,51	163,60	14,43	48,21	6,31	3,87	36,85	3,46
26	4,38	29,60	57,21	164,71	72,17	269,77	37,02	18,16	179,94	39,23	70,15	9,20	5,87	47,08	4,68
27	5,60	37,82	62,58	166,72	99,35	305,49	49,67	17,56	173,99	43,39	56,80	7,80	8,31	34,99	5,07
28	5,06	34,15	38,25	140,96	92,12	405,15	48,45	14,45	143,13	57,07	108,56	13,78	4,37	48,83	6,82
29	5,00	33,80	32,35	61,97	58,80	363,84	32,99	8,11	80,33	28,76	74,13	9,18	0,70	14,76	1,24
30	4,66	31,45	15,59	19,17	46,48	381,41	27,91	4,59	45,47	26,32	81,63	10,19	1,57	18,86	2,14
31	4,02	27,13	15,28	14,78	7,58	141,64	6,11	3,87	38,30	6,52	28,68	3,53	0,00	7,88	2,15
32	3,99	26,98	3,86	14,59	0,00	157,26	3,08	3,18	31,55	5,43	28,74	3,63	0,97	16,04	1,19
33	2,52	17,01	2,56	8,07	0,00	34,81	0,68	1,84	18,22	2,00	42,12	5,18	0,00	14,52	1,61
34	2,10	14,17	2,83	0,00	0,00	0,00	0,00	0,51	5,02	4,42	20,87	2,57	0,00	7,12	0,49
35	0,81	5,48	0,00	2,45	0,00	0,00	0,00	1,12	11,06	0,00	27,13	3,34	0,00	5,88	0,53
36	0,48	3,24	0,00	0,00	0,00	0,00	0,00	0,20	2,02	0,00	9,16	1,13	0,00	0,00	0,00
37	0,07	0,51	0,00	0,00	0,00	0,00	0,00	0,45	4,43	0,00	1,25	0,15	0,00	2,35	0,00
38	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,37	0,17	0,00	0,00	0,00
39	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
40	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
41	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
42	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
43	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
44	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
45	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Total	52,32	353,36	373,47	802,44	523,31	4222,52	312,8	110,92	1098,9	231,77	643,67	81,82	27,1	284,37	32,95

Anexo 5.4. Biomasa (tons) a la talla de **hembras** de camarón nailon por caladero **fuera de las 5 mn** de reserva artesanal. Enfoque geoestadístico.

	Caladeros											
LCT	1	2	3	4	5	6	7	8	9			
10	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
11	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
12	0,00	0,00	0,00	0,03	0,00	0,00	0,00	0,00	0,00			
13	0,00	0,30	0,32	0,00	0,12	0,00	0,04	0,05	0,06			
14	0,00	0,83	1,21	0,05	0,15	0,00	0,05	0,00	0,00			
15	0,00	1,36	1,09	0,03	0,00	4,85	0,30	0,00	0,00			
16	0,00	1,09	2,04	0,08	0,43	2,35	0,29	0,74	0,87			
17	0,00	2,45	4,59	0,23	2,07	0,00	0,70	1,32	1,56			
18	0,01	7,36	8,82	0,75	6,74	0,00	2,28	6,14	7,23			
19	0,01	11,58	14,53	1,51	8,26	13,64	3,65	10,58	12,45			
20	0,02	20,61	20,38	1,24	13,80	6,80	5,10	21,58	25,40			
21	0,02	21,36	20,86	2,70	17,38	23,57	7,36	35,84	42,18			
22	0,03	28,71	19,02	0,97	6,65	15,02	3,19	52,46	61,74			
23	0,03	27,14	13,99	1,54	18,32	6,85	6,63	54,43	64,06			
24	0,05	46,62	28,95	2,13	33,66	7,77	11,89	54,99	64,73			
25	0,05	46,46	51,45	2,82	30,70	13,15	11,22	45,49	53,54			
26	0,06	58,47	41,69	1,58	13,61	14,76	5,53	31,73	37,35			
27	0,04	33,32	17,41	1,24	7,10	11,00	3,09	15,57	18,33			
28	0,03	27,82	6,25	0,00	4,52	0,00	1,53	9,15	10,77			
29	0,01	12,66	2,77	0,00	0,00	0,00	0,00	6,94	8,17			
30	0,00	1,75	0,00	0,00	0,00	0,00	0,00	4,72	5,56			
31	0,00	1,93	0,00	0,00	0,00	0,00	0,00	0,65	0,77			
32	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,43	1,68			
33	0,00	1,16	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
34	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
35	0,00	0,00	0,00	0,00	2,18	0,00	0,74	0,93	1,10			
36	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
37	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
38	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
39	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
40	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
41	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
42	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
43	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
44	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
45	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
Total	0,38	352,98	255,38	16,89	165,66	119,76	63,61	354,75	417,54			

Anexo 5.5. Biomasa (tons) a la talla de **machos** de camarón nailon por caladero **dentro de las 5 mn** de reserva artesanal. Distribución Delta.

	Caladeros										
LCT	1	2	3	4	5	6	7	8	9		
10	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
11	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
12	0,00	0,00	0,13	0,04	0,08	0,00	0,03	0,00	0,00		
13	0,00	0,45	0,40	0,09	0,00	0,00	0,00	0,00	0,00		
14	0,00	1,98	0,79	0,09	0,26	0,71	0,13	0,11	0,13		
15	0,00	2,59	2,18	0,03	0,33	0,89	0,17	0,14	0,16		
16	0,00	2,81	2,24	0,11	0,81	4,39	0,55	0,00	0,00		
17	0,00	3,12	4,79	0,22	1,98	4,02	0,92	0,95	1,12		
18	0,01	5,28	7,44	0,52	3,58	6,47	1,62	2,67	3,15		
19	0,01	11,50	14,02	1,18	11,06	7,74	4,23	3,50	4,12		
20	0,02	18,42	21,05	2,06	13,51	20,61	5,87	6,85	8,06		
21	0,03	29,78	25,82	3,20	26,28	69,94	13,28	9,52	11,21		
22	0,05	51,51	27,21	2,93	30,06	116,01	17,43	12,58	14,80		
23	0,07	65,98	24,83	5,26	21,42	177,87	18,37	30,26	35,62		
24	0,08	73,48	24,73	7,26	30,80	213,00	23,74	58,14	68,43		
25	0,11	101,32	48,30	16,76	67,82	119,44	30,44	101,09	118,98		
26	0,13	118,46	81,61	31,32	102,24	92,42	40,42	111,18	130,86		
27	0,16	151,37	89,27	31,70	140,74	104,66	54,23	107,50	126,53		
28	0,15	136,67	54,57	26,80	130,51	138,81	52,89	88,43	104,08		
29	0,14	135,26	46,14	11,78	83,31	124,65	36,02	49,64	58,42		
30	0,13	125,87	22,24	3,64	65,85	130,67	30,48	28,09	33,07		
31	0,12	108,57	21,80	2,81	10,74	48,53	6,67	23,66	27,85		
32	0,12	107,98	5,50	2,77	0,00	53,88	3,37	19,49	22,94		
33	0,07	68,09	3,65	1,54	0,00	11,93	0,74	11,26	13,25		
34	0,06	56,73	4,03	0,00	0,00	0,00	0,00	3,10	3,65		
35	0,02	21,93	0,00	0,47	0,00	0,00	0,00	6,83	8,04		
36	0,01	12,96	0,00	0,00	0,00	0,00	0,00	1,25	1,47		
37	0,00	2,03	0,00	0,00	0,00	0,00	0,00	2,73	3,22		
38	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
39	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
40	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
41	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
42	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
43	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
44	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
45	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
lotal	1.51	1414,14	532,74	152,58	741,57	1446.65	341.5	678.99	799.16		

Anexo 5.6. Biomasa (ton) a la talla de **hembras** de camarón nailon por caladero **dentro de las 5 mn** de reserva artesanal. Distribución Delta.

							Ca	laderos							
LCT	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
10	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
11	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
12	0,00	0,00	0,00	0,26	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
13	0,00	0,10	0,39	0,00	0,05	0,00	0,04	0,01	0,17	0,00	0,03	0,00	0,00	0,00	0,00
14	0,00	0,28	1,45	0,41	0,06	0,00	0,05	0,00	0,00	0,00	0,00	0,00	0,00	0,11	0,00
15	0,00	0,46	1,30	0,25	0,00	13,98	0,28	0,00	0,00	0,00	0,10	0,00	0,00	0,26	0,01
16	0,00	0,37	2,43	0,60	0,18	6,76	0,27	0,10	2,50	0,00	0,30	0,01	0,00	0,63	0,01
17	0,00	0,82	5,48	1,80	0,88	0,00	0,66	0,17	4,48	0,29	0,65	0,03	0,00	1,12	0,06
18	0,01	2,47	10,54	5,96	2,85	0,00	2,13	0,80	20,77	0,69	1,11	0,04	0,00	2,44	0,10
19	0,02	3,89	17,36	11,98	3,49	39,32	3,41	1,38	35,77	0,81	3,40	0,14	0,09	4,93	0,10
20	0,03	6,92	24,35	9,87	5,83	19,60	4,76	2,81	72,98	4,07	14,19	0,58	0,50	11,78	0,44
21	0,03	7,18	24,92	21,46	7,35	67,93	6,88	4,67	121,21	5,96	26,20	1,08	1,27	25,83	1,02
22	0,04	9,64	22,73	7,69	2,81	43,29	2,98	6,84	177,41	7,67	40,54	1,86	6,08	42,84	2,11
23	0,04	9,12	16,72	12,28	7,74	19,75	6,20	7,09	184,06	8,03	47,28	2,25	8,75	49,30	2,47
24	0,06	15,66	34,60	16,91	14,23	22,39	11,11	7,17	185,98	8,30	54,21	2,47	7,69	36,23	2,26
25	0,06	15,61	61,48	22,44	12,98	37,88	10,48	5,93	153,85	9,67	55,53	2,30	2,89	27,44	2,43
26	0,08	19,64	49,82	12,60	5,75	42,53	5,17	4,13	107,31	4,75	38,37	1,71	4,55	22,29	1,25
27	0,04	11,19	20,80	9,86	3,00	31,70	2,89	2,03	52,66	1,52	16,37	0,70	1,21	6,60	1,14
28	0,04	9,35	7,47	0,00	1,91	0,00	1,43	1,19	30,94	2,11	17,91	0,71	0,27	7,34	1,06
29	0,02	4,25	3,31	0,00	0,00	0,00	0,00	0,90	23,48	2,34	9,76	0,40	0,30	5,43	0,41
30	0,00	0,59	0,00	0,00	0,00	0,00	0,00	0,62	15,97	1,55	6,55	0,26	0,00	4,00	0,65
31	0,00	0,65	0,00	0,00	0,00	0,00	0,00	0,08	2,20	0,00	2,55	0,10	0,00	2,20	0,72
32	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,19	4,83	0,00	2,33	0,09	0,00	1,21	1,03
33	0,00	0,39	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,02	0,04	0,00	1,33	1,13
34	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,56	0,04	0,48	0,00	0,80
35	0,00	0,00	0,00	0,00	0,92	0,00	0,69	0,12	3,15	0,00	0,61	0,02	0,00	1,58	1,19
36	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,55
37	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,65
38	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,71
39	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,54
40	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,47
41	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,25
42	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,27
43	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
44	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
45	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Total	0,47	118,58	305,14	134,34	70,04	345,13	59,43	46,23	1199,7	57,76	339,57	14,83	34,0	254,89	24,82

Anexo 5.7. Biomasa (ton) a la talla de machos de camarón nailon por caladero fuera de las 5 mn de reserva artesanal. Distribución Delta.

							Ca	laderos							
LCT	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
10	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
11	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
12	0,00	0,00	0,16	0,33	0,03	0,00	0,02	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
13	0,00	0,15	0,47	0,71	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
14	0,00	0,66	0,95	0,72	0,11	2,04	0,12	0,01	0,38	0,00	0,00	0,00	0,00	0,00	0,00
15	0,00	0,87	2,60	0,23	0,14	2,56	0,16	0,02	0,47	0,00	0,00	0,00	0,00	0,00	0,00
16	0,00	0,95	2,68	0,84	0,34	12,66	0,51	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
17	0,00	1,05	5,73	1,72	0,84	11,59	0,86	0,12	3,21	0,00	0,00	0,00	0,00	0,00	0,00
18	0,01	1,77	8,89	4,14	1,51	18,66	1,51	0,35	9,04	0,00	0,17	0,01	0,00	0,00	0,00
19	0,02	3,86	16,76	9,41	4,67	22,30	3,95	0,46	11,83	0,00	0,00	0,00	0,00	0,00	0,00
20	0,02	6,19	25,15	16,42	5,71	59,41	5,48	0,89	23,15	0,00	0,24	0,01	0,00	0,00	0,00
21	0,04	10,00	30,85	25,48	11,11	201,56	12,40	1,24	32,20	0,19	0,00	0,00	0,00	0,00	0,04
22	0,07	17,31	32,52	23,28	12,71	334,34	16,28	1,64	42,53	0,00	2,09	0,08	0,00	0,00	0,29
23	0,09	22,17	29,67	41,83	9,05	512,62	17,16	3,94	102,35	1,25	8,01	0,31	0,00	4,84	0,68
24	0,10	24,69	29,55	57,75	13,02	613,85	22,18	7,58	196,63	0,29	21,43	0,87	0,74	23,93	0,92
25	0,14	34,04	57,71	133,34	28,68	344,23	28,44	13,17	341,85	5,93	34,32	1,43	1,89	36,29	1,88
26	0,16	39,80	97,51	249,18	43,23	266,36	37,76	14,49	375,99	16,12	49,93	2,08	2,87	46,37	2,54
27	0,20	50,85	106,66	252,22	59,51	301,63	50,66	14,01	363,55	17,83	40,44	1,77	4,07	34,46	2,76
28	0,18	45,91	65,20	213,24	55,18	400,03	49,41	11,52	299,06	23,45	77,28	3,12	2,14	48,09	3,71
29	0,18	45,44	55,13	93,76	35,22	359,25	33,64	6,47	167,86	11,82	52,77	2,08	0,34	14,54	0,68
30	0,17	42,29	26,57	29,00	27,84	376,59	28,47	3,66	95,01	10,81	58,11	2,31	0,77	18,57	1,16
31	0,14	36,47	26,05	22,37	4,54	139,85	6,23	3,08	80,03	2,68	20,42	0,80	0,00	7,76	1,17
32	0,14	36,28	6,57	22,07	0,00	155,27	3,14	2,54	65,92	2,23	20,46	0,82	0,47	15,80	0,65
33	0,09	22,87	4,36	12,21	0,00	34,37	0,70	1,47	38,06	0,82	29,98	1,17	0,00	14,30	0,88
34	0,08	19,06	4,82	0,00	0,00	0,00	0,00	0,40	10,50	1,81	14,85	0,58	0,00	7,01	0,26
35	0,03	7,37	0,00	3,71	0,00	0,00	0,00	0,89	23,10	0,00	19,31	0,76	0,00	5,79	0,29
36	0,02	4,35	0,00	0,00	0,00	0,00	0,00	0,16	4,23	0,00	6,52	0,25	0,00	0,00	0,00
37	0,00	0,68	0,00	0,00	0,00	0,00	0,00	0,36	9,25	0,00	0,89	0,03	0,00	2,32	0,00
38	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,97	0,04	0,00	0,00	0,00
39	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
40	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
41	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
42	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
43	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
44	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
45	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Total	1,89	475,07	636,57	1213,9	313,45	4169,17	319,0	88,48	2296,2	95,25	458,19	18,52	13,2	280,07	17,91

Anexo 5.8. Biomasa (ton) a la talla de hembras de camarón nailon por caladero fuera de las 5 mn de reserva artesanal. Distribución Delta.

		Reg	gión	
LCT	II	III	IV	V
10	0,00	0,00	0,00	0,00
11	0,00	0,00	0,00	0,00
12	0,00	0,23	0,00	0,00
13	0,46	0,14	0,00	0,01
14	1,41	0,90	0,00	0,00
15	1,73	1,54	0,00	0,00
16	2,19	2,13	2,45	0,05
17	5,24	4,46	5,86	0,10
18	11,86	14,33	22,18	0,37
19	19,45	24,34	42,28	0,67
20	29,61	29,86	48,25	3,05
21	30,80	47,57	66,65	5,05
22	34,61	19,78	104,04	6,67
23	29,46	36,56	125,77	6,09
24	54,83	59,97	118,30	6,51
25	72,16	63,67	71,30	6,42
26	73,43	32,39	61,58	3,90
27	37,03	19,98	39,01	1,38
28	24,34	5,56	10,22	1,72
29	11,02	0,00	11,33	0,95
30	1,22	0,00	0,00	0,83
31	1,34	0,00	0,00	0,08
32	0,00	0,00	0,00	0,18
33	0,81	0,00	0,00	0,00
34	0,00	0,00	0,00	0,00
35	0,00	2,69	0,00	0,12
36	0,00	0,00	0,00	0,00
37	0,00	0,00	0,00	0,00
38	0,00	0,00	0,00	0,00
39	0,00	0,00	0,00	0,00
40	0,00	0,00	0,00	0,00
41	0,00	0,00	0,00	0,00
42	0,00	0,00	0,00	0,00
43	0,00	0,00	0,00	0,00
44	0,00	0,00	0,00	0,00
45	0,00	0,00	0,00	0,00
Total	442,99	366,10	729,21	44,14

Anexo 5.9. Biomasa (ton) a la talla de machos de camarón nailon **por región dentro de las 5 mn** de reserva artesanal. Enfoque geoestadístico.

		Reg	gión	
LCT	II	III	IV	V
10	0,00	0,00	0,00	0,00
11	0,00	0,00	0,00	0,00
12	0,07	0,48	0,00	0,00
13	0,49	1,01	0,00	0,00
14	1,89	1,45	0,59	0,00
15	3,17	1,81	0,74	0,00
16	3,74	2,74	0,00	0,00
17	5,76	5,48	5,03	0,00
18	8,80	11,76	13,51	0,02
19	18,67	25,03	18,56	0,00
20	28,43	39,00	35,36	0,05
21	38,19	79,39	41,52	0,24
22	53,67	94,68	60,18	0,31
23	61,25	116,21	109,04	1,71
24	66,74	148,87	169,02	4,65
25	102,70	246,24	247,17	8,92
26	136,72	397,47	281,27	10,59
27	167,81	444,50	256,86	10,82
28	135,68	389,21	205,59	10,10
29	129,56	217,57	149,52	4,85
30	104,59	138,45	69,06	3,50
31	92,11	46,27	80,98	1,46
32	79,54	31,81	53,95	1,62
33	50,30	13,54	24,88	1,20
34	42,69	0,00	10,98	0,40
35	15,27	3,29	18,12	0,44
36	9,02	0,00	0,00	0,16
37	1,41	0,00	7,25	0,17
38	0,00	0,00	0,00	0,00
39	0,00	0,00	0,00	0,00
40	0,00	0,00	0,00	0,00
41	0,00	0,00	0,00	0,00
42	0,00	0,00	0,00	0,00
43	0,00	0,00	0,00	0,00
44	0,00	0,00	0,00	0,00
45	0,00	0,00	0,00	0,00
Total	1358,29	2456,27	1859,19	61,21

Anexo 5.10. Biomasa (ton) a la talla de hembras de camarón nailon por región dentro de las 5 mn de reserva artesanal. Enfoque geoestadístico.

				Región			
LCT	II	III	IV	V	VI	VII	VIII
10	0,00	0,00	0,00	0,00	0,00	0,00	0,00
11	0,00	0,00	0,00	0,00	0,00	0,00	0,00
12	0,00	0,15	0,00	0,00	0,00	0,00	0,00
13	0,23	0,10	0,00	0,06	0,05	0,00	0,00
14	0,71	0,60	0,00	0,00	0,00	0,08	0,00
15	0,88	1,02	0,00	0,00	0,16	0,20	0,03
16	1,11	1,42	5,63	0,45	0,39	0,49	0,03
17	2,65	2,96	13,46	0,95	0,47	1,31	0,24
18	6,00	9,52	51,00	3,52	1,25	2,42	0,42
19	9,84	16,16	97,22	6,39	3,42	4,46	0,44
20	14,98	19,82	110,94	29,30	13,46	13,45	1,85
21	15,58	31,58	153,26	48,48	26,93	30,26	4,27
22	17,50	13,13	239,23	64,02	44,71	60,35	8,87
23	14,90	24,27	289,20	58,46	52,12	79,87	10,40
24	27,73	39,81	272,03	62,54	55,20	76,01	9,50
25	36,50	42,27	163,94	61,68	62,27	53,82	10,23
26	37,14	21,51	141,59	37,47	41,13	48,13	5,26
27	18,73	13,26	89,69	13,26	17,01	18,89	4,79
28	12,31	3,69	23,50	16,53	16,38	17,21	4,48
29	5,57	0,00	26,06	9,17	11,92	9,90	1,72
30	0,62	0,00	0,00	7,96	8,16	6,25	2,74
31	0,68	0,00	0,00	0,80	0,69	6,02	3,02
32	0,00	0,00	0,00	1,75	1,52	3,78	4,34
33	0,41	0,00	0,00	0,00	1,66	1,04	4,75
34	0,00	0,00	0,00	0,00	0,00	2,26	3,36
35	0,00	1,78	0,00	1,14	0,99	1,23	4,99
36	0,00	0,00	0,00	0,00	0,00	0,00	6,51
37	0,00	0,00	0,00	0,00	0,00	0,00	2,74
38	0,00	0,00	0,00	0,00	0,00	0,00	2,97
39	0,00	0,00	0,00	0,00	0,00	0,00	2,29
40	0,00	0,00	0,00	0,00	0,00	0,00	1,97
41	0,00	0,00	0,00	0,00	0,00	0,00	1,06
42	0,00	0,00	0,00	0,00	0,00	0,00	1,14
43	0,00	0,00	0,00	0,00	0,00	0,00	0,00
44	0,00	0,00	0,00	0,00	0,00	0,00	0,00
45	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Total	224,1	243,1	1676,8	423,9	359,9	437,4	104,4

Anexo 5.11. Biomasa (ton) a la talla de machos de camarón nailon por región fuera de las 5 mn de reserva artesanal. Enfoque geoestadístico.

	Región									
LCT	II	III	IV	V	VI	VII	VIII			
10	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
11	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
12	0,03	0,32	0,00	0,00	0,00	0,00	0,00			
13	0,25	0,67	0,00	0,00	0,00	0,00	0,00			
14	0,96	0,96	1,36	0,00	0,00	0,00	0,00			
15	1,60	1,20	1,70	0,00	0,00	0,00	0,00			
16	1,89	1,82	0,00	0,00	0,00	0,00	0,00			
17	2,92	3,64	11,58	0,00	0,00	0,00	0,00			
18	4,45	7,81	31,06	0,16	0,00	0,34	0,00			
19	9,44	16,62	42,68	0,00	0,00	0,00	0,00			
20	14,38	25,89	81,30	0,44	0,19	0,00	0,00			
21	19,31	52,71	95,48	2,33	0,00	0,00	0,15			
22	27,14	62,86	138,37	3,02	1,57	0,65	1,23			
23	30,98	77,15	250,74	16,45	8,19	6,80	2,86			
24	33,76	98,84	388,65	44,70	14,31	33,04	3,88			
25	51,95	163,48	568,35	85,68	27,56	56,69	7,93			
26	69,15	263,88	646,75	101,69	48,63	75,26	10,70			
27	84,87	295,11	590,63	103,88	39,63	62,16	11,60			
28	68,63	258,40	472,73	97,03	81,23	94,63	15,61			
29	65,53	144,45	343,81	46,57	65,13	34,06	2,85			
30	52,90	91,92	158,79	33,60	64,82	53,50	4,90			
31	46,59	30,72	186,22	14,04	21,91	20,20	4,91			
32	40,23	21,12	124,05	15,58	19,82	29,16	2,73			
33	25,44	8,99	57,20	11,50	31,90	29,79	3,69			
34	21,59	0,00	25,25	3,81	9,90	23,28	1,11			
35	7,72	2,18	41,66	4,19	20,57	18,08	1,22			
36	4,56	0,00	0,00	1,53	7,97	3,31	0,00			
37	0,71	0,00	16,68	1,68	0,00	3,62	0,00			
38	0,00	0,00	0,00	0,00	1,59	0,00	0,00			
39	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
40	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
41	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
42	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
43	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
44	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
45	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
Total	687,0	1630,7	4275,0	587,9	464,9	544,6	75,4			

Anexo 5.12. Biomasa (ton) a la talla de hembras de camarón nailon por región fuera de las 5 mn de reserva artesanal. Enfoque geoestadístico.

	Región							
LCT	II	III	IV	V				
10	0,00	0,00	0,00	0,00				
11	0,00	0,00	0,00	0,00				
12	0,00	0,18	0,00	0,00				
13	0,65	0,12	0,00	0,01				
14	1,97	0,72	0,00	0,00				
15	2,41	1,24	0,00	0,00				
16	3,05	1,72	2,69	0,10				
17	7,30	3,60	6,44	0,21				
18	16,52	11,57	24,41	0,77				
19	27,09	19,64	46,53	1,39				
20	41,26	24,09	53,10	6,37				
21	42,92	38,38	73,35	10,55				
22	48,22	15,96	114,49	13,93				
23	41,04	29,50	138,41	12,72				
24	76,39	48,39	130,19	13,61				
25	100,54	51,38	78,46	13,42				
26	102,31	26,14	67,76	8,15				
27	51,59	16,12	42,93	2,88				
28	33,91	4,49	11,24	3,60				
29	15,35	0,00	12,47	1,99				
30	1,70	0,00	0,00	1,73				
31	1,87	0,00	0,00	0,17				
32	0,00	0,00	0,00	0,38				
33	1,12	0,00	0,00	0,00				
34	0,00	0,00	0,00	0,00				
35	0,00	2,17	0,00	0,25				
36	0,00	0,00	0,00	0,00				
37	0,00	0,00	0,00	0,00				
38	0,00	0,00	0,00	0,00				
39	0,00	0,00	0,00	0,00				
40	0,00	0,00	0,00	0,00				
41	0,00	0,00	0,00	0,00				
42	0,00	0,00	0,00	0,00				
43	0,00	0,00	0,00	0,00				
44	0,00	0,00	0,00	0,00				
45	0,00	0,00	0,00	0,00				
Total	617,2	295,4	802,5	92,2				

Anexo 5.13. Biomasa (ton) a la talla de machos de camarón nailon por región dentro de las 5 mn de reserva artesanal. Distribución Delta.

	Región							
LCT	II	III	IV	V				
10	0,00	0,00	0,00	0,00				
11	0,00	0,00	0,00	0,00				
12	0,10	0,39	0,00	0,00				
13	0,69	0,81	0,00	0,00				
14	2,64	1,17	0,65	0,00				
15	4,41	1,46	0,82	0,00				
16	5,21	2,21	0,00	0,00				
17	8,03	4,42	5,54	0,00				
18	12,26	9,49	14,86	0,03				
19	26,02	20,20	20,43	0,00				
20	39,61	31,47	38,91	0,10				
21	53,21	64,06	45,70	0,51				
22	74,78	76,40	66,22	0,66				
23	85,34	93,77	120,00	3,58				
24	92,99	120,12	186,00	9,72				
25	143,10	198,69	272,00	18,64				
26	190,49	320,71	309,53	22,13				
27	233,80	358,67	282,67	22,60				
28	189,05	314,05	226,24	21,11				
29	180,52	175,56	164,54	10,13				
30	145,72	111,72	76,00	7,31				
31	128,34	37,34	89,12	3,05				
32	110,83	25,66	59,37	3,39				
33	70,09	10,92	27,38	2,50				
34	59,49	0,00	12,08	0,83				
35	21,27	2,65	19,94	0,91				
36	12,57	0,00	0,00	0,33				
37	1,96	0,00	7,98	0,36				
38	0,00	0,00	0,00	0,00				
39	0,00	0,00	0,00	0,00				
40	0,00	0,00	0,00	0,00				
41	0,00	0,00	0,00	0,00				
42	0,00	0,00	0,00	0,00				
43	0,00	0,00	0,00	0,00				
44	0,00	0,00	0,00	0,00				
45	0,00	0,00	0,00	0,00				
Total	1892,5	1981,9	2046,0	127,9				

Anexo 5.14. Biomasa (ton) a la talla de hembras de camarón nailon por región dentro de las 5 mn de reserva artesanal. Distribución Delta.

	Región										
LCT	II	III	IV	V	VI	VII	VIII				
10	0,00	0,00	0,00	0,00	0,00	0,00	0,00				
11	0,00	0,00	0,00	0,00	0,00	0,00	0,00				
12	0,00	0,18	0,00	0,00	0,00	0,00	0,00				
13	0,33	0,11	0,00	0,09	0,04	0,00	0,00				
14	1,01	0,69	0,00	0,00	0,00	0,06	0,00				
15	1,23	1,19	0,00	0,00	0,12	0,15	0,02				
16	1,56	1,64	6,62	0,67	0,28	0,36	0,03				
17	3,74	3,44	15,83	1,39	0,33	0,97	0,19				
18	8,46	11,05	59,95	5,19	0,89	1,79	0,33				
19	13,87	18,76	114,28	9,40	2,44	3,30	0,35				
20	21,12	23,02	130,41	43,12	9,58	9,95	1,46				
21	21,97	36,68	180,14	71,35	19,17	22,39	3,38				
22	24,68	15,25	281,19	94,22	31,82	44,66	7,03				
23	21,01	28,19	339,94	86,04	37,10	59,10	8,24				
24	39,11	46,24	319,75	92,05	39,30	56,24	7,53				
25	51,47	49,09	192,70	90,78	44,33	39,82	8,10				
26	52,38	24,98	166,43	55,15	29,28	35,62	4,16				
27	26,41	15,40	105,42	19,51	12,11	13,98	3,80				
28	17,36	4,29	27,62	24,33	11,66	12,73	3,55				
29	7,86	0,00	30,63	13,49	8,49	7,32	1,36				
30	0,87	0,00	0,00	11,72	5,81	4,62	2,17				
31	0,96	0,00	0,00	1,17	0,49	4,46	2,39				
32	0,00	0,00	0,00	2,58	1,08	2,80	3,44				
33	0,58	0,00	0,00	0,00	1,18	0,77	3,77				
34	0,00	0,00	0,00	0,00	0,00	1,67	2,66				
35	0,00	2,07	0,00	1,68	0,70	0,91	3,95				
36	0,00	0,00	0,00	0,00	0,00	0,00	5,15				
37	0,00	0,00	0,00	0,00	0,00	0,00	2,17				
38	0,00	0,00	0,00	0,00	0,00	0,00	2,35				
39	0,00	0,00	0,00	0,00	0,00	0,00	1,81				
40	0,00	0,00	0,00	0,00	0,00	0,00	1,56				
41	0,00	0,00	0,00	0,00	0,00	0,00	0,84				
42	0,00	0,00	0,00	0,00	0,00	0,00	0,90				
43	0,00	0,00	0,00	0,00	0,00	0,00	0,00				
44	0,00	0,00	0,00	0,00	0,00	0,00	0,00				
45	0,00	0,00	0,00	0,00	0,00	0,00	0,00				
Total	316.0	282.3	1970,9	623,9	256.2	323.7	82.7				

Anexo 5.15. Biomasa (ton) a la talla de machos de camarón nailon por región fuera de las 5 mn de reserva artesanal. Distribución Delta.

	Región									
LCT	II	III	IV	V	VI	VII	VIII			
10	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
11	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
12	0,05	0,37	0,00	0,00	0,00	0,00	0,00			
13	0,35	0,78	0,00	0,00	0,00	0,00	0,00			
14	1,35	1,11	1,60	0,00	0,00	0,00	0,00			
15	2,26	1,40	2,00	0,00	0,00	0,00	0,00			
16	2,67	2,11	0,00	0,00	0,00	0,00	0,00			
17	4,11	4,23	13,61	0,00	0,00	0,00	0,00			
18	6,28	9,07	36,51	0,23	0,00	0,25	0,00			
19	13,32	19,30	50,17	0,00	0,00	0,00	0,00			
20	20,28	30,07	95,56	0,65	0,14	0,00	0,00			
21	27,24	61,22	112,23	3,44	0,00	0,00	0,12			
22	38,28	73,00	162,64	4,45	1,12	0,48	0,98			
23	43,69	89,60	294,72	24,21	5,83	5,03	2,26			
24	47,61	114,79	456,82	65,78	10,19	24,45	3,07			
25	73,26	189,86	668,05	126,10	19,62	41,95	6,28			
26	97,52	306,46	760,20	149,67	34,62	55,69	8,48			
27	119,69	342,73	694,24	152,89	28,21	45,99	9,19			
28	96,78	300,10	555,65	142,80	57,82	70,02	12,37			
29	92,41	167,76	404,12	68,54	46,36	25,20	2,26			
30	74,60	106,75	186,65	49,45	46,14	39,58	3,88			
31	65,70	35,68	218,88	20,66	15,59	14,95	3,89			
32	56,74	24,52	145,81	22,94	14,11	21,58	2,16			
33	35,88	10,44	67,24	16,92	22,71	22,04	2,92			
34	30,45	0,00	29,67	5,60	7,05	17,23	0,88			
35	10,89	2,53	48,97	6,16	14,65	13,38	0,97			
36	6,43	0,00	0,00	2,25	5,67	2,45	0,00			
37	1,01	0,00	19,60	2,47	0,00	2,68	0,00			
38	0,00	0,00	0,00	0,00	1,13	0,00	0,00			
39	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
40	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
41	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
42	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
43	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
44	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
45	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
Total	968,8	1893,9	5024,9	865,2	330,9	402,9	59,7			

Anexo 5.16. Biomasa (ton) a la talla de hembras de camarón nailon por región fuera de las 5 mn de reserva artesanal. Distribución Delta.

	Caladeros									
LCT	1	2	3	4	5	6	7	8	9	
10	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
11	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
12	0,0	0,0	0,0	28,2	0,0	0,0	0,0	0,0	0,0	
13	9,2	229,9	198,6	0,0	204,1	0,0	40,6	65,4	29,4	
14	20,6	517,3	595,9	28,2	204,1	0,0	40,6	0,0	0,0	
15	27,4	689,7	437,0	14,1	0,0	3358,2	203,1	0,0	0,0	
16	18,3	459,8	675,4	28,2	408,2	1343,3	162,5	523,1	235,0	
17	34,3	862,1	1271,3	70,5	1632,9	0,0	324,9	784,7	352,6	
18	86,9	2184,0	2065,8	197,5	4490,6	0,0	893,6	3073,3	1380,9	
19	116,7	2931,2	2900,1	338,6	4694,7	4701,4	1218,5	4511,8	2027,2	
20	178,4	4483,0	3496,0	239,8	6735,9	2014,9	1462,2	7912,1	3555,0	
21	160,1	4023,2	3098,7	451,4	7348,2	6044,7	1827,8	11377,7	5112,2	
22	187,6	4712,9	2463,1	141,1	2449,4	3358,2	690,5	14516,3	6522,5	
23	155,5	3908,3	1589,1	197,5	5919,4	1343,3	1259,1	13208,6	5934,8	
24	235,6	5919,9	2900,1	239,8	9593,5	1343,3	1990,2	11770,0	5288,5	
25	208,2	5230,2	4568,6	282,1	7756,5	2014,9	1665,3	8631,3	3878,2	
26	233,3	5862,4	3297,3	141,1	3061,8	2014,9	731,1	5361,9	2409,2	
27	118,9	2988,7	1231,5	98,8	1428,8	1343,3	365,6	2354,0	1057,7	
28	89,2	2241,5	397,3	0,0	816,5	0,0	162,5	1242,4	558,2	
29	36,6	919,6	158,9	0,0	0,0	0,0	0,0	850,1	381,9	
30	4,6	114,9	0,0	0,0	0,0	0,0	0,0	523,1	235,0	
31	4,6	114,9	0,0	0,0	0,0	0,0	0,0	65,4	29,4	
32	0,0	0,0	0,0	0,0	0,0	0,0	0,0	130,8	58,8	
33	2,3	57,5	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
34	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
35	0,0	0,0	0,0	0,0	204,1	0,0	40,6	65,4	29,4	
36	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
37	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
38	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
39	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
40	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
41	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
42	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
43	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
44	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
45	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
Total	1928,3	48450,9	31344,6	2497,0	56948,7	28880,2	13078,7	86967,3	39075,9	

Anexo 5.17. Abundancia (miles de ejemplares) a la talla de machos de camarón nailon por caladero dentro de las 5 mn de reserva artesanal. Enfoque geoestadístico.

		Caladeros										
LCT	1	2	3	4	5	6	7	8	9			
10	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0			
11	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0			
12	0,0	0,0	119,2	42,3	204,1	0,0	40,6	0,0	0,0			
13	16,0	402,3	278,1	70,5	0,0	0,0	0,0	0,0	0,0			
14	54,9	1379,4	437,0	56,4	408,2	671,6	121,9	130,8	58,8			
15	57,2	1436,9	953,4	14,1	408,2	671,6	121,9	130,8	58,8			
16	50,3	1264,4	794,5	42,3	816,5	2686,5	324,9	0,0	0,0			
17	45,7	1149,5	1390,4	70,5	1632,9	2014,9	446,8	588,5	264,4			
18	64,0	1609,3	1787,7	141,1	2449,4	2686,5	649,9	1373,2	617,0			
19	116,7	2931,2	2820,6	268,0	6327,6	2686,5	1421,6	1503,9	675,7			
20	157,8	3965,7	3575,4	395,0	6531,8	6044,7	1665,3	2484,8	1116,5			
21	217,3	5460,1	3734,3	522,0	10818,2	17462,5	3208,8	2942,5	1322,1			
22	322,5	8103,9	3376,8	409,1	10614,1	24850,4	3614,9	3334,8	1498,4			
23	356,8	8966,0	2661,7	634,8	6531,8	32910,0	3290,0	6931,2	3114,3			
24	345,4	8678,6	2304,2	761,8	8164,7	34253,3	3696,2	11573,8	5200,3			
25	416,3	10460,3	3933,0	1537,7	15717,0	16790,8	4143,0	17589,6	7903,3			
26	427,7	10747,7	5839,9	2525,2	20820,0	11417,8	4833,4	17001,1	7638,9			
27	482,6	12127,1	5641,2	2257,1	25310,5	11417,8	5727,0	14516,3	6522,5			
28	386,6	9713,2	3059,0	1692,9	20820,0	13432,7	4955,3	10593,0	4759,6			
29	340,8	8563,7	2304,2	663,0	11838,8	10746,1	3005,7	5296,5	2379,8			
30	283,6	7126,8	993,2	183,4	8368,8	10074,5	2274,6	2680,9	1204,6			
31	219,6	5517,5	874,0	127,0	1224,7	3358,2	446,8	2027,1	910,8			
32	196,7	4942,8	198,6	112,9	0,0	3358,2	203,1	1503,9	675,7			
33	112,1	2816,2	119,2	56,4	0,0	671,6	40,6	784,7	352,6			
34	84,6	2126,6	119,2	0,0	0,0	0,0	0,0	196,2	88,1			
35	29,7	747,2	0,0	14,1	0,0	0,0	0,0	392,3	176,3			
36	16,0	402,3	0,0	0,0	0,0	0,0	0,0	65,4	29,4			
37	2,3	57,5	0,0	0,0	0,0	0,0	0,0	130,8	58,8			
38	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0			
39	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0			
40	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0			
41	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0			
42	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0			
43	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0			
44	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0			
45	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0			
Total	4803,5	120696,1	47314,9	12597,7	159007,3	208206,3	44232,1	103772,3	46626,7			

Anexo 5.18. Abundancia (miles de ejemplares) a la talla de hembras de camarón nailon por caladero dentro de las 5 mn de reserva artesanal. Enfoque geoestadístico.
LCT	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
10	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
11	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
12	0,0	0,0	0,0	224,5	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
13	11,4	77,2	237,3	0,0	86,3	0,0	37,9	8,5	84,4	0,0	47,8	5,9	0,0	0,0	0,0
14	25,7	173,8	712,0	224,5	86,3	0,0	37,9	0,0	0,0	0,0	0,0	0,0	0,0	89,7	0,0
15	34,3	231,7	522,2	112,2	0,0	9678,1	189,7	0,0	0,0	0,0	95,6	11,8	0,0	179,5	8,2
16	22,9	154,5	807,0	224,5	172,6	3871,2	151,8	68,2	675,3	0,0	239,0	29,4	0,0	358,9	8,2
17	42,9	289,6	1519,0	561,2	690,4	0,0	303,5	102,3	1013,0	333,9	430,2	52,9	0,0	538,4	48,9
18	108,6	733,7	2468,4	1571,3	1898,6	0,0	834,7	400,5	3967,7	667,7	621,4	76,4	0,0	987,0	73,4
19	145,8	984,7	3465,2	2693,7	1984,9	13549,3	1138,3	588,0	5824,8	667,7	1625,3	205,7	59,7	1704,9	65,2
20	223,0	1506,0	4177,3	1908,0	2847,9	5806,8	1366,0	1031,0	10214,6	2893,6	5831,8	746,5	298,3	3499,5	236,4
21	200,1	1351,6	3702,6	3591,6	3106,8	17420,5	1707,4	1482,7	14688,8	3672,6	9321,3	1210,8	656,2	6640,0	472,8
22	234,4	1583,3	2943,1	1122,4	1035,6	9678,1	645,0	1891,7	18740,8	4117,8	12571,8	1816,3	2744,0	9601,1	855,9
23	194,4	1312,9	1898,8	1571,3	2502,7	3871,2	1176,2	1721,3	17052,5	3783,9	12858,6	1922,1	3459,8	9690,8	880,4
24	294,5	1988,7	3465,2	1908,0	4056,1	3871,2	1859,2	1533,8	15195,3	3450,0	13002,0	1863,3	2684,3	6281,1	709,2
25	260,1	1757,0	5458,9	2244,8	3279,4	5806,8	1555,7	1124,8	11143,2	3561,3	11807,0	1540,0	894,8	4217,3	676,6
26	291,6	1969,4	3939,9	1122,4	1294,5	5806,8	683,0	698,7	6922,3	1558,1	7265,8	1016,9	1252,7	3050,8	309,8
27	148,7	1004,0	1471,5	785,7	604,1	3871,2	341,5	306,8	3039,1	445,2	2772,5	370,3	298,3	807,6	252,7
28	111,5	753,0	474,7	0,0	345,2	0,0	151,8	161,9	1603,9	556,5	2724,7	340,9	59,7	807,6	211,9
29	45,7	308,9	189,9	0,0	0,0	0,0	0,0	110,8	1097,4	556,5	1338,4	170,5	59,7	538,4	73,4
30	5,7	38,6	0,0	0,0	0,0	0,0	0,0	68,2	675,3	333,9	812,6	99,9	0,0	358,9	106,0
31	5,7	38,6	0,0	0,0	0,0	0,0	0,0	8,5	84,4	0,0	286,8	35,3	0,0	179,5	106,0
32	0,0	0,0	0,0	0,0	0,0	0,0	0,0	17,0	168,8	0,0	239,0	29,4	0,0	89,7	138,6
33	2,9	19,3	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	95,6	11,8	0,0	89,7	138,6
34	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	47,8	11,8	59,7	0,0	89,7
35	0,0	0,0	0,0	0,0	86,3	0,0	37,9	8,5	84,4	0,0	47,8	5,9	0,0	89,7	122,3
36	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	146,7
37	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	57,1
38	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	57,1
39	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	40,8
40	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	32,6
41	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	16,3
42	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	16,3
43	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
44	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
45	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Total	2409,9	16276,7	37453,1	19866,1	24077,4	83231,3	12217,7	11333	112276,1	26598,6	840830	11573,5	12526,9	498000	5950,6

Anexo 5.19. Abundancia (miles de ejemplares) a la talla de machos de camarón nailon por caladero fuera de las 5 mn de reserva artesanal. Enfoque geoestadístico.

	Caladeros														
LCT	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
10	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
11	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
12	0,0	0,0	142,4	336,7	86,3	0,0	37,9	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
13	20,0	135,2	332,3	561,2	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
14	68,6	463,4	522,2	449,0	172,6	1935,6	113,8	17,0	168,8	0,0	0,0	0,0	0,0	0,0	0,0
15	71,5	482,7	1139,3	112,2	172,6	1935,6	113,8	17,0	168,8	0,0	0,0	0,0	0,0	0,0	0,0
16	62,9	424,8	949,4	336,7	345,2	7742,4	303,5	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
17	57,2	386,2	1661,4	561,2	690,4	5806,8	417,4	76,7	759,8	0,0	0,0	0,0	0,0	0,0	0,0
18	80,0	540,6	2136,1	1122,4	1035,6	7742,4	607,1	178,9	1772,8	0,0	95,6	11,8	0,0	0,0	0,0
19	145,8	984,7	3370,3	2132,5	2675,3	7742,4	1328,0	196,0	1941,6	0,0	0,0	0,0	0,0	0,0	0,0
20	197,3	1332,3	4272,2	3142,7	2761,6	17420,5	1555,7	323,8	3207,9	0,0	95,6	11,8	0,0	0,0	0,0
21	271,6	1834,3	4462,1	4152,8	4573,8	50325,9	2997,5	383,4	3798,8	111,3	0,0	0,0	0,0	0,0	16,3
22	403,1	2722,4	4034,9	3254,9	4487,5	71617,6	3376,9	434,6	4305,3	0,0	621,4	76,4	0,0	0,0	114,1
23	446,0	3012,1	3180,4	5050,7	2761,6	94845,0	3073,4	903,2	8948,3	556,5	2055,5	252,7	0,0	897,3	228,2
24	431,7	2915,5	2753,2	6060,8	3452,0	98716,2	3452,8	1508,2	14942,0	111,3	4780,2	611,3	238,6	3858,4	269,0
25	520,3	3514,1	4699,4	12233,9	6645,0	48390,3	3870,2	2292,2	22708,5	2003,2	6692,2	875,8	536,9	5114,6	480,9
26	534,6	3610,6	6978,0	20090,6	8802,5	32905,4	4515,2	2215,5	21948,7	4785,5	8556,5	1122,7	715,8	5742,7	570,6
27	603,2	4074,0	6740,6	17958,1	10701,1	32905,4	5350,0	1891,7	18740,8	4674,2	6118,6	840,5	894,8	3768,6	546,2
28	483,1	3263,1	3655,1	13468,5	8802,5	38712,2	4629,1	1380,4	13675,7	5453,3	10372,9	1316,6	417,6	4665,9	652,1
29	426,0	2876,9	2753,2	5275,2	5005,3	30969,8	2807,8	690,2	6837,9	2448,4	6309,8	781,8	59,7	1256,2	106,0
30	354,5	2394,2	1186,7	1459,1	3538,3	29034,2	2124,8	349,4	3461,1	2003,2	6214,2	775,9	119,3	1435,7	163,0
31	274,4	1853,6	1044,3	1010,1	517,8	9678,1	417,4	264,2	2617,0	445,2	1959,9	241,0	0,0	538,4	146,7
32	245,9	1660,5	237,3	897,9	0,0	9678,1	189,7	196,0	1941,6	333,9	1768,7	223,4	59,7	987,0	73,4
33	140,1	946,1	142,4	449,0	0,0	1935,6	37,9	102,3	1013,0	111,3	2342,3	288,0	0,0	807,6	89,7
34	105,8	714,4	142,4	0,0	0,0	0,0	0,0	25,6	253,3	222,6	1051,6	129,3	0,0	358,9	24,5
35	37,2	251,0	0,0	112,2	0,0	0,0	0,0	51,1	506,5	0,0	1242,8	152,8	0,0	269,2	24,5
36	20,0	135,2	0,0	0,0	0,0	0,0	0,0	8,5	84,4	0,0	382,4	47,0	0,0	0,0	0,0
37	2,9	19,3	0,0	0,0	0,0	0,0	0,0	17,0	168,8	0,0	47,8	5,9	0,0	89,7	0,0
38	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	47,8	5,9	0,0	0,0	0,0
39	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
40	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
41	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
42	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
43	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
44	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
45	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Total	6003,4	405470	56535,7	100228,4	67226,9	600039,5	413200	13522,9	133971,5	23259,9	60755,8	7770,6	3042,2	29790,2	3505,2

Anexo 5.20. Abundancia (miles de ejemplares) a la talla de hembras de camarón nailon por caladero fuera de las 5 mn de reserva artesanal. Enfoque geoestadístico.

	Caladeros										
LCT	1	2	3	4	5	6	7	8	9		
10	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
11	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
12	0,0	0,0	0,0	42,7	0,0	0,0	0,0	0,0	0,0		
13	0,3	309,1	338,6	0,0	122,3	0,0	41,4	52,2	61,4		
14	0,7	695,4	1015,7	42,7	122,3	0,0	41,4	0,0	0,0		
15	1,0	927,3	744,8	21,3	0,0	3315,7	207,1	0,0	0,0		
16	0,7	618,2	1151,1	42,7	244,5	1326,3	165,7	417,3	491,1		
17	1,2	1159,1	2166,8	106,7	978,1	0,0	331,4	625,9	736,7		
18	3,1	2936,3	3521,1	298,8	2689,7	0,0	911,4	2451,5	2885,4		
19	4,2	3940,8	4943,1	512,2	2812,0	4642,0	1242,8	3599,0	4236,0		
20	6,4	6027,2	5958,8	362,8	4034,6	1989,4	1491,4	6311,2	7428,3		
21	5,8	5409,0	5281,6	682,9	4401,3	5968,3	1864,2	9075,7	10682,0		
22	6,8	6336,2	4198,2	213,4	1467,1	3315,7	704,3	11579,3	13628,7		
23	5,6	5254,5	2708,5	298,8	3545,5	1326,3	1284,2	10536,1	12400,9		
24	8,5	7958,9	4943,1	362,8	5746,2	1326,3	2029,9	9388,6	11050,3		
25	7,5	7031,7	7787,0	426,8	4645,9	1989,4	1698,5	6885,0	8103,6		
26	8,4	7881,7	5620,2	213,4	1833,9	1989,4	745,7	4277,0	5034,0		
27	4,3	4018,1	2099,1	149,4	855,8	1326,3	372,8	1877,7	2210,1		
28	3,2	3013,6	677,1	0,0	489,0	0,0	165,7	991,0	1166,4		
29	1,3	1236,3	270,9	0,0	0,0	0,0	0,0	678,1	798,1		
30	0,2	154,5	0,0	0,0	0,0	0,0	0,0	417,3	491,1		
31	0,2	154,5	0,0	0,0	0,0	0,0	0,0	52,2	61,4		
32	0,0	0,0	0,0	0,0	0,0	0,0	0,0	104,3	122,8		
33	0,1	77,3	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
34	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
35	0,0	0,0	0,0	0,0	122,3	0,0	41,4	52,2	61,4		
36	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
3/	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
38 20	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
39	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
40	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
41	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
42	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
43	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
44	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
43 Total	60.5	65120 7	53425 9	0,0 3777 5	3/110 /	28515 4	0,0	60371 5	0,0 81640 5		
Total	07,5	03139,/	33423,0	3///,3	34110,4	20313,4	13337,3	073/1,3	01049,3		

Anexo 5.21. Abundancia (miles de ejemplares) a la talla de machos de camarón nailon por caladero dentro de las 5 mn de reserva artesanal. Distribución Delta.

	Caladeros										
LCT	1	2	3	4	5	6	7	8	9		
10	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
11	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
12	0,0	0,0	203,1	64,0	122,3	0,0	41,4	0,0	0,0		
13	0,6	540,9	474,0	106,7	0,0	0,0	0,0	0,0	0,0		
14	2,0	1854,5	744,8	85,4	244,5	663,1	124,3	104,3	122,8		
15	2,1	1931,8	1625,1	21,3	244,5	663,1	124,3	104,3	122,8		
16	1,8	1700,0	1354,3	64,0	489,0	2652,6	331,4	0,0	0,0		
17	1,6	1545,4	2370,0	106,7	978,1	1989,4	455,7	469,4	552,5		
18	2,3	2163,6	3047,1	213,4	1467,1	2652,6	662,8	1095,3	1289,2		
19	4,2	3940,8	4807,6	405,5	3790,0	2652,6	1449,9	1199,7	1412,0		
20	5,7	5331,7	6094,2	597,6	3912,3	5968,3	1698,5	1982,0	2332,8		
21	7,8	7340,8	6365,0	789,6	6479,7	17241,8	3272,7	2347,2	2762,6		
22	11,6	10895,3	5755,6	618,9	6357,5	24536,5	3687,0	2660,1	3130,9		
23	12,9	12054,3	4536,8	960,4	3912,3	32494,3	3355,5	5528,9	6507,4		
24	12,4	11668,0	3927,4	1152,5	4890,4	33820,5	3769,8	9232,1	10866,1		
25	15,0	14063,4	6703,6	2326,3	9414,0	16578,7	4225,5	14030,8	16514,1		
26	15,4	14449,7	9953,9	3820,2	12470,5	11273,5	4929,8	13561,3	15961,6		
27	17,4	16304,2	9615,3	3414,7	15160,2	11273,5	5841,1	11579,3	13628,7		
28	13,9	13058,9	5213,9	2561,0	12470,5	13263,0	5054,0	8449,8	9945,3		
29	12,3	11513,4	3927,4	1003,1	7091,0	10610,4	3065,6	4224,9	4972,6		
30	10,2	9581,6	1692,8	277,4	5012,6	9947,2	2319,9	2138,5	2517,0		
31	7,9	7418,0	1489,7	192,1	733,6	3315,7	455,7	1616,9	1903,1		
32	7,1	6645,3	338,6	170,7	0,0	3315,7	207,1	1199,7	1412,0		
33	4,0	3786,3	203,1	85,4	0,0	663,1	41,4	625,9	736,7		
34	3,1	2859,0	203,1	0,0	0,0	0,0	0,0	156,5	184,2		
35	1,1	1004,5	0,0	21,3	0,0	0,0	0,0	313,0	368,3		
36	0,6	540,9	0,0	0,0	0,0	0,0	0,0	52,2	61,4		
37	0,1	77,3	0,0	0,0	0,0	0,0	0,0	104,3	122,8		
38	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
39	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
40	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
41	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
42	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
43	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
44	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
45	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
Total	173,1	162269,8	80646,5	19058,2	95240,1	205575,9	45113,5	82776,3	97426,9		

Anexo 5.22. Abundancia (miles de ejemplares) a la talla de hembras de camarón nailon por caladero dentro de las 5 mn de reserva artesanal. Distribución Delta.

	Caladeros														
LCT	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
10	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
11	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
12	0,0	0,0	0,0	339,6	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
13	0,4	103,8	404,5	0,0	51,7	0,0	38,7	6,8	176,4	0,0	34,0	1,3	0,0	0,0	0,0
14	0,9	233,6	1213,6	339,6	51,7	0,0	38,7	0,0	0,0	0,0	0,0	0,0	0,0	88,4	0,0
15	1,2	311,5	890,0	169,8	0,0	9555,8	193,5	0,0	0,0	0,0	68,1	2,7	0,0	176,7	4,4
16	0,8	207,7	1375,5	339,6	103,4	3822,3	154,8	54,4	1411,1	0,0	170,1	6,7	0,0	353,5	4,4
17	1,5	389,4	2589,1	849,0	413,5	0,0	309,6	81,6	2116,7	137,2	306,2	12,0	0,0	530,2	26,6
18	3,9	986,4	4207,3	2377,2	1137,2	0,0	851,4	319,5	8290,4	274,4	442,3	17,3	0,0	972,1	39,9
19	5,3	1323,9	5906,4	4075,1	1188,9	13378,1	1161,0	469,0	12171,1	274,4	1156,9	46,6	29,2	1679,1	35,5
20	8,0	2024,8	7120,0	2886,5	1705,8	5733,5	1393,2	822,4	21343,5	1189,1	4151,2	169,0	146,0	3446,5	128,5
21	7,2	1817,1	6310,9	5433,5	1860,8	17200,4	1741,5	1182,7	30692,3	1509,2	6635,2	274,1	321,1	6539,5	257,0
22	8,4	2128,6	5016,4	1698,0	620,3	9555,8	657,9	1508,9	39159,1	1692,2	8949,0	411,2	1342,8	9455,8	465,3
23	7,0	1765,2	3236,4	2377,2	1499,0	3822,3	1199,7	1373,0	35631,3	1555,0	9153,2	435,1	1693,1	9544,2	478,6
24	10,6	2673,7	5906,4	2886,5	2429,4	3822,3	1896,3	1223,5	31750,6	1417,8	9255,2	421,8	1313,6	6186,1	385,5
25	9,4	2362,2	9304,6	3395,9	1964,2	5733,5	1586,7	897,2	23283,8	1463,5	8404,6	348,6	437,9	4153,5	367,8
26	10,5	2647,8	6715,5	1698,0	775,4	5733,5	696,6	557,4	14464,2	640,3	5172,0	230,2	613,0	3004,7	168,4
27	5,4	1349,9	2508,2	1188,6	361,8	3822,3	348,3	244,7	6350,1	182,9	1973,5	83,8	146,0	795,4	137,4
28	4,0	1012,4	809,1	0,0	206,8	0,0	154,8	129,1	3351,5	228,7	1939,5	77,2	29,2	795,4	115,2
29	1,6	415,3	323,6	0,0	0,0	0,0	0,0	88,4	2293,1	228,7	952,7	38,6	29,2	530,2	39,9
30	0,2	51,9	0,0	0,0	0,0	0,0	0,0	54,4	1411,1	137,2	578,5	22,6	0,0	353,5	57,6
31	0,2	51,9	0,0	0,0	0,0	0,0	0,0	6,8	176,4	0,0	204,2	8,0	0,0	176,7	57,6
32	0,0	0,0	0,0	0,0	0,0	0,0	0,0	13,6	352,8	0,0	170,1	6,7	0,0	88,4	75,3
33	0,1	26,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	68,1	2,7	0,0	88,4	75,3
34	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	34,0	2,7	29,2	0,0	48,7
35	0,0	0,0	0,0	0,0	51,7	0,0	38,7	6,8	1/6,4	0,0	34,0	1,3	0,0	88,4	66,5 70,9
30	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	79,8
3/	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	21.0
38	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	22.2
39	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	17.7
40	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	80
41	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	8.0
42	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
45	0,0	0,0	0,0	0,0	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total	86,9	21883,2	63837,5	30054	14421,6	82179,8	12461,1	9040	234601,9	10930,6	59852,8	2620	6130,1	49046,6	3235

Anexo 5.23. Abundancia (miles de ejemplares) a la talla de machos de camarón nailon por caladero fuera de las 5 mn de reserva artesanal. Distribución Delta.

	Caladeros														
LCT	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
10	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
11	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
12	0,0	0,0	242,7	509,4	51,7	0,0	38,7	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
13	0,7	181,7	566,4	849,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
14	2,5	623,0	890,0	679,2	103,4	1911,2	116,1	13,6	352,8	0,0	0,0	0,0	0,0	0,0	0,0
15	2,6	649,0	1941,8	169,8	103,4	1911,2	116,1	13,6	352,8	0,0	0,0	0,0	0,0	0,0	0,0
16	2,3	571,1	1618,2	509,4	206,8	7644,6	309,6	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
17	2,1	519,2	2831,8	849,0	413,5	5733,5	425,7	61,2	1587,5	0,0	0,0	0,0	0,0	0,0	0,0
18	2,9	726,8	3640,9	1698,0	620,3	7644,6	619,2	142,7	3704,2	0,0	68,1	2,7	0,0	0,0	0,0
19	5,3	1323,9	5744,6	3226,1	1602,4	7644,6	1354,5	156,3	4057,0	0,0	0,0	0,0	0,0	0,0	0,0
20	7,1	1791,2	7281,8	4754,3	1654,1	17200,4	1586,7	258,3	6702,9	0,0	68,1	2,7	0,0	0,0	0,0
21	9,8	2466,1	7605,5	6282,5	2739,6	49690,1	3057,2	305,9	7937,7	45,7	0,0	0,0	0,0	0,0	8,9
22	14,5	3660,2	6877,3	4924,1	2687,9	70712,8	3444,2	346,6	8996,0	0,0	442,3	17,3	0,0	0,0	62,0
23	16,1	4049,6	5420,9	7640,9	1654,1	93646,7	3134,6	720,5	18697,6	228,7	1463,1	57,2	0,0	883,7	124,1
24	15,6	3919,8	4692,7	9169,0	2067,6	97469,0	3521,6	1203,1	31221,5	45,7	3402,7	138,4	116,8	3800,0	146,2
25	18,8	4724,5	8010,0	18507,9	3980,1	47778,9	3947,3	1828,4	47449,6	823,2	4763,7	198,3	262,7	5037,2	261,5
26	19,3	4854,3	11893,7	30393,6	5272,4	32489,7	4605,2	1767,2	45862,0	1966,6	6090,8	254,1	350,3	5655,8	310,2
27	21,7	5477,3	11489,1	27167,5	6409,6	32489,7	5456,6	1508,9	39159,1	1920,9	4355,4	190,3	437,9	3711,6	296,9
28	17,4	4387,0	6230,0	20375,6	5272,4	38223,1	4721,3	1101,1	28575,6	2241,0	7383,8	298,1	204,3	4595,4	354,5
29	15,4	3867,8	4692,7	7980,5	2998,0	30578,5	2863,7	550,6	14287,8	1006,2	4491,5	177,0	29,2	1237,2	57,6
30	12,8	3218,9	2022,7	2207,4	2119,3	28667,4	2167,2	278,7	7232,1	823,2	4423,5	175,6	58,4	1414,0	88,6
31	9,9	2492,0	1780,0	1528,2	310,1	9555,8	425,7	210,7	5468,2	182,9	1395,1	54,6	0,0	530,2	79,8
32	8,9	2232,5	404,5	1358,4	0,0	9555,8	193,5	156,3	4057,0	137,2	1259,0	50,6	29,2	972,1	39,9
33	5,0	1272,0	242,7	679,2	0,0	1911,2	38,7	81,6	2116,7	45,7	1667,3	65,2	0,0	795,4	48,7
34	3,8	960,5	242,7	0,0	0,0	0,0	0,0	20,4	529,2	91,5	748,6	29,3	0,0	353,5	13,3
35	1,3	337,5	0,0	169,8	0,0	0,0	0,0	40,8	1058,4	0,0	884,7	34,6	0,0	265,1	13,3
36	0,7	181,7	0,0	0,0	0,0	0,0	0,0	6,8	176,4	0,0	272,2	10,6	0,0	0,0	0,0
37	0,1	26,0	0,0	0,0	0,0	0,0	0,0	13,6	352,8	0,0	34,0	1,3	0,0	88,4	0,0
38	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	34,0	1,3	0,0	0,0	0,0
39	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
40	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
41	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
42	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
43	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
44	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
45	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Total	216,4	54513,3	96363	151628,6	40266,7	592458,8	42143,3	10/86,9	279934,8	9558,6	43247,8	1759,1	1488,7	29339,6	1905,5

Anexo 5.24. Abundancia (miles de ejemplares) a la talla de hembras de camarón nailon por caladero fuera de las 5 mn de reserva artesanal. Distribución Delta.

	Región								
LCT	II	III	IV	V					
10	0,0	0,0	0,0	0,0					
11	0,0	0,0	0,0	0,0					
12	0,0	301,1	0,0	0,0					
13	484,2	150,6	0,0	6,7					
14	1183,5	752,8	0,0	0,0					
15	1183,5	1053,9	0,0	0,0					
16	1237,3	1204,5	1383,4	26,6					
17	2474,5	2107,9	2766,7	46,6					
18	4733,9	5721,4	8853,6	146,5					
19	6616,7	8281,0	14387,1	226,4					
20	8660,9	8732,7	14110,4	892,1					
21	7800,2	12045,1	16877,2	1278,3					
22	7638,8	4366,3	22964,0	1471,3					
23	5702,2	7076,5	24347,4	1178,4					
24	9360,2	10238,3	20197,3	1111,8					
25	10920,3	9636,1	10790,3	972,0					
26	9898,2	4366,3	8300,2	526,0					
27	4464,9	2409,0	4703,5	166,4					
28	2635,9	602,3	1106,7	186,4					
29	1075,9	0,0	1106,7	93,2					
30	107,6	0,0	0,0	73,2					
31	107,6	0,0	0,0	6,7					
32	0,0	0,0	0,0	13,3					
33	53,8	0,0	0,0	0,0					
34	0,0	0,0	0,0	0,0					
35	0,0	150,6	0,0	6,7					
36	0,0	0,0	0,0	0,0					
37	0,0	0,0	0,0	0,0					
38	0,0	0,0	0,0	0,0					
39	0,0	0,0	0,0	0,0					
40	0,0	0,0	0,0	0,0					
41	0,0	0,0	0,0	0,0					
42	0,0	0,0	0,0	0,0					
43	0,0	0,0	0,0	0,0					
44	0,0	0,0	0,0	0,0					
45	0,0	0,0	0,0	0,0					
Total	86340,1	79196,4	151894,5	8428,6					

Anexo 5.25. Abundancia (miles de ejemplares) a la talla de machos de camarón nailon por región dentro de las 5 mn de reserva artesanal. Enfoque geoestadístico.

	Región							
LCT	II	III	IV	V				
10	0,0	0,0	0,0	0,0				
11	0,0	0,0	0,0	0,0				
12	107,6	752,8	0,0	0,0				
13	591,7	1204,5	0,0	0,0				
14	1775,2	1355,1	553,4	0,0				
15	2367,0	1355,1	553,4	0,0				
16	2259,4	1656,2	0,0	0,0				
17	2851,1	2710,1	2490,1	0,0				
18	3604,2	4818,0	5533,5	6,7				
19	6401,5	8582,1	6363,5	0,0				
20	8230,5	11292,3	10237,0	13,3				
21	9414,0	19573,2	10237,0	59,9				
22	11350,6	20024,9	12727,0	66,6				
23	11189,2	21229,4	19920,6	312,9				
24	10597,5	23638,5	26837,5	739,0				
25	14255,5	34177,9	34307,7	1238,3				
26	16676,3	48481,4	34307,7	1291,6				
27	18074,9	47879,2	27667,5	1165,1				
28	12964,5	37189,2	19643,9	965,4				
29	11027,9	18519,3	12727,0	412,8				
30	7961,6	10539,4	5256,8	266,3				
31	6293,9	3161,8	5533,5	99,9				
32	4895,3	1957,3	3320,1	99,9				
33	2797,3	752,8	1383,4	66,6				
34	2151,8	0,0	553,4	20,0				
35	699,3	150,6	830,0	20,0				
36	376,6	0,0	0,0	6,7				
37	53,8	0,0	276,7	6,7				
38	0,0	0,0	0,0	0,0				
39	0,0	0,0	0,0	0,0				
40	0,0	0,0	0,0	0,0				
41	0,0	0,0	0,0	0,0				
42	0,0	0,0	0,0	0,0				
43	0,0	0,0	0,0	0,0				
44	0,0	0,0	0,0	0,0				
45	0,0	0,0	0,0	0,0				
Total	168968,3	321001,3	241260,5	6857,4				

Anexo 5.26. Abundancia (miles de ejemplares) a la talla de hembras de camarón nailon por región dentro de las 5 mn de reserva artesanal. Enfoque geoestadístico.

				Región			
LCT	II	III	IV	V	VI	VII	VIII
10	0,0	0,0	0,0	0,0	0,0	0,0	0,0
11	0,0	0,0	0,0	0,0	0,0	0,0	0,0
12	0,0	199,9	0,0	0,0	0,0	0,0	0,0
13	244,9	100,0	0,0	63,9	55,4	0,0	0,0
14	598,6	499,8	0,0	0,0	0,0	69,0	0,0
15	598,6	699,7	0,0	0,0	110,9	138,0	18,6
16	625,8	799,7	3180,9	255,7	221,8	276,1	18,6
17	1251,6	1399,4	6361,9	447,6	221,8	621,2	111,9
18	2394,3	3798,5	20358,0	1406,6	498,9	966,3	167,8
19	3346,6	5497,8	33081,8	2173,8	1164,2	1518,5	149,2
20	4380,5	5797,7	32445,6	8567,5	3936,1	3934,2	540,8
21	3945,2	7996,8	38807,4	12275,8	6818,9	7661,4	1081,6
22	3863,6	2898,8	52803,6	14130,0	9868,0	13321,2	1958,0
23	2884,1	4698,1	55984,5	11316,8	10089,8	15460,9	2014,0
24	4734,2	6797,3	46441,7	10677,4	9424,5	12976,1	1622,4
25	5523,3	6397,4	24811,3	9334,7	9424,5	8144,6	1547,8
26	5006,3	2898,8	19085,6	5051,0	5543,8	6488,0	708,6
27	2258,3	1599,4	10815,2	1598,4	2051,2	2277,7	578,1
28	1333,2	399,8	2544,8	1790,2	1774,0	1863,6	484,8
29	544,2	0,0	2544,8	895,1	1164,2	966,3	167,8
30	54,4	0,0	0,0	703,3	720,7	552,2	242,4
31	54,4	0,0	0,0	63,9	55,4	483,2	242,4
32	0,0	0,0	0,0	127,9	110,9	276,1	317,0
33	27,2	0,0	0,0	0,0	110,9	69,0	317,0
34	0,0	0,0	0,0	0,0	0,0	138,0	205,1
35	0,0	100,0	0,0	63,9	55,4	69,0	279,7
36	0,0	0,0	0,0	0,0	0,0	0,0	335,7
37	0,0	0,0	0,0	0,0	0,0	0,0	130,5
38	0,0	0,0	0,0	0,0	0,0	0,0	130,5
39	0,0	0,0	0,0	0,0	0,0	0,0	93,2
40	0,0	0,0	0,0	0,0	0,0	0,0	74,6
41	0,0	0,0	0,0	0,0	0,0	0,0	37,3
42	0,0	0,0	0,0	0,0	0,0	0,0	37,3
43	0,0	0,0	0,0	0,0	0,0	0,0	0,0
44	0,0	0,0	0,0	0,0	0,0	0,0	0,0
45	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Total	43669,1	52578,9	349267,0	80943,7	63421,6	78270,7	13612,9

Anexo 5.27. Abundancia (miles de ejemplares) a la talla de machos de camarón nailon por región fuera de las 5 mn de reserva artesanal. Enfoque geoestadístico.

	Región								
LCT	Π	III	IV	V	VI	VII	VIII		
10	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
11	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
12	54,4	499,8	0,0	0,0	0,0	0,0	0,0		
13	299,3	799,7	0,0	0,0	0,0	0,0	0,0		
14	897,9	899,6	1272,4	0,0	0,0	0,0	0,0		
15	1197,2	899,6	1272,4	0,0	0,0	0,0	0,0		
16	1142,7	1099,6	0,0	0,0	0,0	0,0	0,0		
17	1442,0	1799,3	5725,7	0,0	0,0	0,0	0,0		
18	1822,9	3198,7	12723,8	63,9	0,0	138,0	0,0		
19	3237,8	5697,7	14632,3	0,0	0,0	0,0	0,0		
20	4162,9	7497,0	23538,9	127,9	55,4	0,0	0,0		
21	4761,4	12994,8	23538,9	575,4	0,0	0,0	37,3		
22	5740,9	13294,7	29264,6	639,4	332,6	138,0	261,1		
23	5659,3	14094,4	45805,5	3005,0	1496,8	1242,4	522,1		
24	5360,0	15693,7	61710,2	7097,0	2273,0	5245,7	615,4		
25	7210,2	22690,9	78887,3	11892,2	3825,3	7868,5	1100,2		
26	8434,5	32187,1	78887,3	12403,7	5931,9	9179,9	1305,3		
27	9142,0	31787,3	63618,8	11188,9	4268,8	6695,1	1249,4		
28	6557,2	24690,1	45169,3	9270,8	7761,4	9041,9	1491,8		
29	5577,7	12295,1	29264,6	3964,1	5543,8	2898,9	242,4		
30	4026,8	6997,2	12087,6	2557,5	4934,0	4072,3	373,0		
31	3183,4	2099,2	12723,8	959,0	1496,8	1380,4	335,7		
32	2475,9	1299,5	7634,3	959,0	1219,6	1794,6	167,8		
33	1414,8	499,8	3180,9	639,4	1774,0	1656,5	205,1		
34	1088,3	0,0	1272,4	191,8	498,9	1173,4	55,9		
35	353,7	100,0	1908,6	191,8	942,5	828,3	55,9		
36	190,5	0,0	0,0	63,9	332,6	138,0	0,0		
37	27,2	0,0	636,2	63,9	0,0	138,0	0,0		
38	0,0	0,0	0,0	0,0	55,4	0,0	0,0		
39	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
40	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
41	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
42	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
43	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
44	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
45	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
Total	85460,9	213114,6	554755,6	65854,7	42743,1	53629,9	8018,6		

Anexo 5.28. Abundancia (miles de ejemplares) a la talla de hembras de camarón nailon por región fuera de las 5 mn de reserva artesanal. Enfoque geoestadístico.

	Región								
LCT	II	III	IV	V					
10	0,0	0,0	0,0	0,0					
11	0,0	0,0	0,0	0,0					
12	0,0	243,0	0,0	0,0					
13	674,6	121,5	0,0	13,9					
14	1649,0	607,4	0,0	0,0					
15	1649,0	850,4	0,0	0,0					
16	1723,9	971,9	1522,4	55,6					
17	3447,8	1700,8	3044,7	97,4					
18	6595,8	4616,6	9743,1	306,0					
19	9219,1	6681,9	15832,6	473,0					
20	12067,3	7046,3	15528,1	1864,1					
21	10868,1	9719,1	18572,8	2671,0					
22	10643,2	3523,2	25271,2	3074,4					
23	7944,9	5710,0	26793,5	2462,3					
24	13041,7	8261,2	22226,5	2323,2					
25	15215,3	7775,3	11874,4	2031,0					
26	13791,2	3523,2	9134,2	1099,0					
27	6221,0	1943,8	5176,0	347,8					
28	3672,7	486,0	1217,9	389,5					
29	1499,0	0,0	1217,9	194,8					
30	149,9	0,0	0,0	153,0					
31	149,9	0,0	0,0	13,9					
32	0,0	0,0	0,0	27,8					
33	75,0	0,0	0,0	0,0					
34	0,0	0,0	0,0	0,0					
35	0,0	121,5	0,0	13,9					
36	0,0	0,0	0,0	0,0					
37	0,0	0,0	0,0	0,0					
38	0,0	0,0	0,0	0,0					
39	0,0	0,0	0,0	0,0					
40	0,0	0,0	0,0	0,0					
41	0,0	0,0	0,0	0,0					
42	0,0	0,0	0,0	0,0					
43	0,0	0,0	0,0	0,0					
44	0,0	0,0	0,0	0,0					
45	0,0	0,0	0,0	0,0					
Total	120298,4	63903,0	167155,2	17611,6					

Anexo 5.29. Abundancia (miles de ejemplares) a la talla de machos de camarón nailon por región dentro de las 5 mn de reserva artesanal. Distribución Delta.

	Región								
LCT	Π	III	IV	V					
10	0,0	0,0	0,0	0,0					
11	0,0	0,0	0,0	0,0					
12	149,9	607,4	0,0	0,0					
13	824,5	971,9	0,0	0,0					
14	2473,4	1093,4	608,9	0,0					
15	3297,9	1093,4	608,9	0,0					
16	3148,0	1336,4	0,0	0,0					
17	3972,5	2186,8	2740,2	0,0					
18	5021,8	3887,6	6089,4	13,9					
19	8919,3	6924,8	7002,9	0,0					
20	11467,7	9111,6	11265,5	27,8					
21	13116,7	15793,5	11265,5	125,2					
22	15814,9	16158,0	14005,7	139,1					
23	15590,1	17129,9	21922,0	653,8					
24	14765,6	19073,7	29533,8	1544,1					
25	19862,4	27577,9	37754,5	2587,5					
26	23235,2	39119,3	37754,5	2698,8					
27	25184,0	38633,4	30447,2	2434,5					
28	18063,5	30007,7	21617,5	2017,1					
29	15365,2	14943,1	14005,7	862,5					
30	11092,9	8504,2	5785,0	556,4					
31	8769,4	2551,3	6089,4	208,7					
32	6820,7	1579,4	3653,7	208,7					
33	3897,5	607,4	1522,4	139,1					
34	2998,1	0,0	608,9	41,7					
35	974,4	121,5	913,4	41,7					
36	524,7	0,0	0,0	13,9					
37	75,0	0,0	304,5	13,9					
38	0,0	0,0	0,0	0,0					
39	0,0	0,0	0,0	0,0					
40	0,0	0,0	0,0	0,0					
41	0,0	0,0	0,0	0,0					
42	0,0	0,0	0,0	0,0					
43	0,0	0,0	0,0	0,0					
44	0,0	0,0	0,0	0,0					
45	0,0	0,0	0,0	0,0					
Total	235425,1	259013,6	265499,7	14328,6					

Anexo 5.30. Abundancia (miles de ejemplares) a la talla de hembras de camarón nailon por región dentro de las 5 mn de reserva artesanal. Distribución Delta.

	Región								
LCT	II	III	IV	V	VI	VII	VIII		
10	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
11	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
12	0,0	232,2	0,0	0,0	0,0	0,0	0,0		
13	345,3	116,1	0,0	94,1	39,5	0,0	0,0		
14	844,1	580,5	0,0	0,0	0,0	51,1	0,0		
15	844,1	812,6	0,0	0,0	78,9	102,1	14,8		
16	882,5	928,7	3738,9	376,4	157,9	204,3	14,8		
17	1765,0	1625,3	7477,9	658,7	157,9	459,7	88,6		
18	3376,6	4411,4	23929,2	2070,3	355,2	715,0	132,9		
19	4719,6	6385,0	38885,0	3199,5	828,7	1123,6	118,2		
20	6177,6	6733,3	38137,2	12609,8	2801,9	2911,2	428,3		
21	5563,7	9287,2	45615,1	18067,8	4853,9	5669,1	856,6		
22	5448,6	3366,6	62066,4	20796,8	7024,4	9857,1	1550,7		
23	4067,3	5456,3	65805,3	16656,3	7182,2	11440,3	1595,0		
24	6676,4	7894,2	54588,5	15715,3	6708,7	9601,7	1284,9		
25	7789,2	7429,8	29163,7	13739,1	6708,7	6026,6	1225,8		
26	7060,1	3366,6	22433,6	7434,2	3946,3	4800,9	561,2		
27	3184,7	1857,4	12712,4	2352,6	1460,1	1685,4	457,8		
28	1880,1	464,4	2991,2	2634,9	1262,8	1379,0	384,0		
29	767,4	0,0	2991,2	1317,4	828,7	715,0	132,9		
30	76,7	0,0	0,0	1035,1	513,0	408,6	192,0		
31	76,7	0,0	0,0	94,1	39,5	357,5	192,0		
32	0,0	0,0	0,0	188,2	78,9	204,3	251,1		
33	38,4	0,0	0,0	0,0	78,9	51,1	251,1		
34	0,0	0,0	0,0	0,0	0,0	102,1	162,5		
35	0,0	116,1	0,0	94,1	39,5	51,1	221,5		
36	0,0	0,0	0,0	0,0	0,0	0,0	265,8		
37	0,0	0,0	0,0	0,0	0,0	0,0	103,4		
38	0,0	0,0	0,0	0,0	0,0	0,0	103,4		
39	0,0	0,0	0,0	0,0	0,0	0,0	73,8		
40	0,0	0,0	0,0	0,0	0,0	0,0	59,1		
41	0,0	0,0	0,0	0,0	0,0	0,0	29,5		
42	0,0	0,0	0,0	0,0	0,0	0,0	29,5		
43	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
44	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
45	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
Total	61584,4	61063,6	410535,6	119134,8	45145,4	57916,7	10781,3		

Anexo 5.31. Abundancia (miles de ejemplares) a la talla de machos de camarón nailon por región fuera de las 5 mn de reserva artesanal. Distribución Delta.

	Región								
LCT	II	III	IV	V	VI	VII	VIII		
10	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
11	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
12	76,7	580,5	0,0	0,0	0,0	0,0	0,0		
13	422,1	928,7	0,0	0,0	0,0	0,0	0,0		
14	1266,2	1044,8	1495,6	0,0	0,0	0,0	0,0		
15	1688,3	1044,8	1495,6	0,0	0,0	0,0	0,0		
16	1611,6	1277,0	0,0	0,0	0,0	0,0	0,0		
17	2033,6	2089,6	6730,1	0,0	0,0	0,0	0,0		
18	2570,8	3714,9	14955,8	94,1	0,0	102,1	0,0		
19	4566,1	6617,2	17199,1	0,0	0,0	0,0	0,0		
20	5870,7	8706,8	27668,2	188,2	39,5	0,0	0,0		
21	6714,8	15091,8	27668,2	846,9	0,0	0,0	29,5		
22	8096,1	15440,0	34398,3	941,0	236,8	102,1	206,8		
23	7981,0	16368,8	53840,7	4422,9	1065,5	919,3	413,5		
24	7559,0	18226,2	72535,4	10445,5	1618,0	3881,5	487,4		
25	10168,1	26352,6	92725,7	17503,2	2722,9	5822,3	871,4		
26	11894,8	37381,2	92725,7	18256,0	4222,5	6792,7	1033,8		
27	12892,4	36916,8	74778,8	16468,1	3038,6	4954,1	989,5		
28	9247,2	28674,4	53093,0	13645,0	5524,8	6690,6	1181,5		
29	7865,9	14279,1	34398,3	5834,4	3946,3	2145,1	192,0		
30	5678,8	8126,3	14208,0	3764,1	3512,2	3013,3	295,4		
31	4489,3	2437,9	14955,8	1411,6	1065,5	1021,5	265,8		
32	3491,7	1509,2	8973,5	1411,6	868,2	1327,9	132,9		
33	1995,3	580,5	3738,9	941,0	1262,8	1225,8	162,5		
34	1534,8	0,0	1495,6	282,3	355,2	868,2	44,3		
35	498,8	116,1	2243,4	282,3	670,9	612,9	44,3		
36	268,6	0,0	0,0	94,1	236,8	102,1	0,0		
37	38,4	0,0	747,8	94,1	0,0	102,1	0,0		
38	0,0	0,0	0,0	0,0	39,5	0,0	0,0		
39	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
40	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
41	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
42	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
43	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
44	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
45	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
Total	120521,2	247505,0	652071,2	96926,4	30425,8	39683,7	6350,6		

Anexo 5.32. Abundancia (miles de ejemplares) a la talla de hembras de camarón nailon por región fuera de las 5 mn de reserva artesanal. Distribución Delta.