INFORMES TECNICOS F I P

FIP - IT / 96 - 11

INFORME : ÁREAS DE DESOVE DE ANCHOVETA Y SARDINA COMÚN EN LA ZONA CENTRAL

UNIDAD : UNIVERSIDAD DE CONCEPCION
EJECUTORA
INFORME FINAL

FONDO DE INVESTIGACION PESQUERA

PROYECTO N° 96-11

"AREAS DE DESOVE DE ANCHOVETA Y SARDINA COMUN EN LA ZONA CENTRAL"

PROPONENTE:
DEPARTAMENTO DE OCEANOGRAFIA
UNIVERSIDAD DE CONCEPCION

CONCEPCION, OCTUBRE 1997
Investigadores responsables

Leonardo Castro
Renato Quiñones
Hugo Arancibia
Dante Figueroa
Rubén Roa
Marcus Sobarzo
Marco Retamal
EQUIPO DE TRABAJO

Investigadores responsables

Dr. Leonardo Castro  Coordinación general / Análisis de ictioplancton
Dr. Renato Quiñones  Análisis micro- y macroplancton
Dr. Hugo Arancibia  Análisis estadísticos multivariados
Dr. Dante Figueroa  Análisis Oceanografía y meteorología
M.Sc Rubén Roa  Análisis geoestadísticos y de remuestreo computacional
M.Sc Marcus Sobarzo  Análisis Oceanografía y meteorología
Lic. Marco Retamal  Coordinación y ordenamiento resultados

Técnicos

Lic. Ariel Pacheco  Análisis de microplancton
Sr. Francisco Bustos  Programación, diagramación computacional

Otro personal colaborador

Sr. Claudio Maturana  Análisis macroplancton
Biol. Mar. Mario Baitazar  Muestreo bio-oceanográfico
Biol. Mar. Pablo Mena  Muestreo bio-oceanográfico
Tec. Mar. Alex Muñoz  Muestreo bio-oceanográfico
Sr. René Muñoz  Muestreo bio-oceanográfico
I.- RESUMEN EJECUTIVO

El objetivo general del presente estudio ha sido caracterizar y analizar las principales áreas de desove de anchoveta y sardina común entre el límite norte de la V Región y límite sur de la IX Región. Para ello se consideró un plan de muestreo que priorizó la caracterización espacial de las zonas de desove en el plano horizontal y vertical. El estudio involucró: i) el uso de técnicas múltiples de colección de data oceanográfica (data hidrográfica y meteorológica colectada in situ, data meteorológica en tierra, y fotografía satelital de temperatura superficial del mar), ii) un método de muestreo estratificado en la vertical de huevos y larvas de anchoveta y sardina común, iii) una descripción de la fauna planctónica del área que incluye información sobre larvas de otras especies, iv) información sobre zooplancton potencialmente predador de larvas de peces y, v) información sobre microplancton que puede representar oferta alimenticia de larvas en la zona de desove de la Octava Región.

El crucero bio-oceanográfico se realizó a bordo de la embarcación oceanográfica Kay-Kay, cubriéndose en total de 440 minutos de latitud en que se muestreó una grilla de transectas perpendiculares a la costa que van, latitudinalmente, desde el extremo norte de la V Región (32°20'S) hasta el extremo sur de la IX Región (39°40'S). El número de estaciones programado por transecta en las zonas más intensamente muestreadas fue 8 (principalmente en las V y VIII Regiones) y 7 en las zonas restantes. La distancia entre estaciones fue, desde la costa: 2, 5, 10, 15, 20, 30, 40 y 60 millas náuticas (hasta 40 mn en las transectas con 7 estaciones). Se realizó, además, muestreos en estaciones situadas dentro de bahías costeras (Bahías Coliumo, Concepción y Golfo De Arauco).

Para la determinación de los núcleos de mayor abundancia de huevos y larvas de anchoveta y sardina se utilizó un método geostadístico (kriging) mediante la modelación de las autocorrelaciones espaciales de las observaciones que permite mapear isólineas de densidad.
Los núcleos de mayor abundancia larval fueron caracterizados determinando la estructura de tallas larvales (longitud notocordial o estandar) corregidas por manipulación y preservación (Theilacker 1980), edades larvales (método de anillos diarios en otolitos) y estados de desarrollo (preflexión y postflexión).

Para comparar la asociación ictioplanctónica al interior de los núcleos de abundancia y con la comunidad ictioplantónica al exterior de éstas, se utilizó el Método Multivariado Robusto de Somerton. Posibles asociaciones ictioplanctónicas dentro de los núcleos fueron determinadas mediante análisis de clusters.

La caracterización de las condiciones bio-oceanográficas asociada a los principales núcleos de abundancia de huevos y larvas de anchoveta y sardina común se realizó a través de un análisis de: i) la oferta alimentaria para las larvas en la VIII Región (microplancton por taxa y tallas), ii) composición del zooplancton en los núcleos de abundancia con especial énfasis en los predadores potenciales de huevos y larvas y, iii) análisis de condiciones físicas y meteorológicas. Para estos efectos se utilizó los siguientes tests multivariados: i) dentro de los núcleos principales, se utilizó Análisis Factorial de Correspondencias y Análisis de Componentes Principales en que usó como variables oceanográficas la temperatura, salinidad, oxígeno, s, además y como variables biológicas los itemes alimentarios (copepoditos, nauplios, diatomeas, dinoflagelados, huevos de copépodos) y predadores (hidromedusas, quetognatos, sifonóforos, ctenóforos); ii) dentro y fuera de los núcleos, se utilizó el Método Multivariado Robusto de Somerton para caracterizar las condiciones bio-oceanográficas asociadas a los núcleos de abundancia de huevos y larvas de las especies objetivo y a las zonas fuera de los núcleos, en un sentido latitudinal.

**Resultados y discusión**

De las 157 estaciones muestreadas, 42 estaciones presentaron huevos de anchoveta y 34 presentaron de sardina común en estrato entre 0 y 40 m de profundidad En el estrato más profundo (40-100 m), sólo 3 estaciones presentaron huevos de anchoveta y 2 de sardina
común. En 29 estaciones se encontró huevos de ambas especies, lo cual representa el 76% de estaciones con huevos de anchoveta y el 87% de estaciones con huevos de sardina común, indicando una superposición de ambas especies en las zonas de desove.

Se identificó un núcleo principal de huevos de sardina con un centro frente a los 39°S, el cual se extiende más de un grado de latitud. El núcleo de abundancia de las larvas de esta especie se encontró más al norte, con centro en los 38°S, lo que indica que los huevos fueron transportados hacia el norte por la corriente superficial dominante. Un núcleo mucho menor de huevos y larvas se observa entre los 37° y los 36°S (zona costera de la Octava Región, incluido el Golfo de Arauco).

El núcleo principal de huevos de anchoveta está más al sur que el de huevos de sardina. La extensión de este núcleo es similar o mayor que la del núcleo de huevos de sardina. Asimismo, el centro del núcleo de larvas de anchoveta está a más de 1° de latitud hacia el norte del centro de huevos. Un núcleo menor de huevos ocurrió entre los 37°S y los 36°S, como en el caso de la sardina, pero no se aprecia ningún núcleo secundario de larvas de anchoveta.

El rango de tallas de larvas de anchoveta colectadas en el núcleo principal (Novena Región), varió desde 3 mm a 21 mm de longitud estándar. El rango de tallas de las larvas de sardina común en el núcleo principal varió entre 3 y 15 mm. En el núcleo secundario (Octava Región), las larvas de sardina común variaron entre 5 y 27 mm de longitud estándar.

 Para describir la relación entre talla larval y edad de ambas especies, se utilizó un modelo lineal simple. Las tasas de crecimiento diarias obtenidas a partir de estos modelos para cada especie correspondieron a 0.60 mm d⁻¹ para anchoveta entre 6.0 y 10.2 mm, y de 0.38 mm d⁻¹ para sardina común entre 4.6 y 18.3 mm.

La edad de las larvas de anchoveta varió entre 4 y 36 días desde el desove en el núcleo principal ubicado en la Novena Región. En este mismo núcleo principal, la edad de las larvas
de sardina común varió entre los 5 y 37 días de edad mientras que en el núcleo secundario, éstas variaron entre los 9 y los 67 días, insinuando (junto con las altas abundancias de huevos) que el desove habría estado ocurriendo hasta al menos fines de octubre.

Ambos estados, pre- y post flexión, tanto de larvas de anchoveta como de sardina común, se encontraron en abundancia en el estrato más somero (0-40 m) mientras que en el estrato más profundo (40-100m) las larvas de ambas especies en estado postflexión tienden a aumentar. Esto permite postular que el rango de distribución vertical aumentaría (se profundizaría) en la medida que las larvas se van desarrollando.

Los resultados de comparaciones de ictioplancton en diferentes de áreas latitudinales indican que no existe diferencia significativa entre las comunidades de larvas de peces del núcleo de la Novena Región y de Punta Lavapié, pero sí entre las comunidades del núcleo del Golfo de Arauco y la de la zona norte (de la V a VII Regiones). Por otro lado, en las regiones más al norte, la correspondencia de los máximos entre larvas de anchoveta y sardina común y el resto de la comunidad ictioplanctónica en la zona costera no es tan alta, y huevos y larvas de otros ictioplancteres tienden a ser relativamente abundantes en sectores más alejados de la costa y en el estrato más profundo.

El análisis de las características oceanográficas permitió identificar una serie de procesos de mesoescala, principalmente en la zona costera. Entre ello, la presencia de centros de surgencia (e.g. Punta Curaníl Alto, Punta Lavapié), la presencia de intrusiones de agua dulce (e.g. Río BioBio), y áreas de mayor contenido en oxígeno disuelto (Golfo de Arauco).

Por otro lado, el análisis de las características oceanográficas también permitió determinar posibles áreas más extensas con características similares. Entre ellas, la diferenciación talvez más clara estaría entre la zona comprendida entre la V Región y VII Regiones y el resto de regiones más al sur (VIII y IX Regiones). Estas mismas diferencias habrían sido detectadas en: i) un análisis ente características oceanográficas en forma latitudinal (Método Robusto de Somerston), ii) entre especies de las comunidades ictioplanctónicas de ambas zonas, y
talvéz más importante, iii) en la ubicación de los núcleos de desove de la anchoveta y sardina común. Se postula que estas diferencias, en conjunto, podrían caracterizar las zonas de desove en la VIII Región (ampliamente descrita previamente) y en la Novena Región (resultado inesperado del presente estudio).

Finalmente, un análisis de una serie de tiempo de información de TSM permitió caracterizar las áreas mayores de acuerdo a sus características respecto al promedio de 15 años (anomalías térmicas). Durante el invierno de 1996, la zona norte (V a VII Regiones) habrían presentado anomalías térmicas negativas (no así durante el periodo de muestreo). Estas observaciones permitirían postular una hipótesis alternativa sobre las zonas de desove en la región sur (Novena Región), esto es, la presencia de estas anomalías en la zona norte al inicio de la temporada de desove podría haber inducido un desplazamiento de las áreas de desove hacia el sector más al sur.
II.- INDICE GENERAL

I.- RESUMEN EJECUTIVO ... 4

II.- INDICE GENERAL ... 9

III.- INDICE DE FIGURAS Y TABLAS ... 12

IV.- OBJETIVOS ... 24

V.- ANTECEDENTES ... 25

VI.- METODOLOGIA

VI.1. Objetivo Específico 1

Diseño de muestreo ... 27
Detalle de la ubicación de las transectas y número de estaciones ... 28
Colección de muestras de ictioplancton ... 29
Submuestreo y estandarización de datos de abundancia ... 30
Correcciones por extrusión y evasión ... 30
Identificación de los núcleos de mayor abundancia ... 31

VI.2. Objetivo Específico 2

Caracterización de los núcleos de mayor abundancia ... 34
Determinación de tallas larvales y correcciones por preservación ... 34
Estimación de estado de desarrollo y edad larval ... 35

VI.3. Objetivo Específico 3

Identificación de grupos de especies asociadas ... 37
VI.4. Objetivo Específico 4

Cuantificación de oferta ambiental de alimento
Composición del macrooplantcón
Estimación de la biomasa fitoplanctónica
Colección de datos meteorológica y oceanográfica
Análisis de datos oceanográficos y meteorológicos
Análisis integrado de condiciones bio-oceanográficas
Análisis multivariado

VII.- RESULTADOS

Objetivo Específico 1.

Distribución de huevos de anchoveta y sardina común
Distribución de larvas de anchoveta y sardina común
Identificación de los núcleos de densidad de huevos y larvas de anchoveta y sardina común
Núcleos de huevos y larva de sardina
Núcleos de huevos y larvas de anchoveta

Objetivo específico 2.

Caracterizar los principales núcleos de abundancia de huevos y larva de anchoveta y sardina común.

Objetivo específico 3.

Determinar la dominancia numérica de anchoveta y sardina común y caracterizar la asociación iictiplantcónica.
Comparación de la comunidad larval dentro versus fuera de los núcleos

Objetivo específico 4.

Composición del microoplantcón < 150 um en la VIII Región
Composición del microoplantcón >150 um en la VIII Región
Distribución espacial de macrooplantcón y de los predadores de huevos y larvas de anchoveta y sardina común.
Distribución de presas de larvas de anchoveta y sardina común por tallas.
Distribución superficial de la clorofila a en la VIII Región
Análisis de información oceanográfica y meteorológica ... 73
Condiciones atmosféricas ... 73
Descripción general de la zona en base a TSM ... 75
Utilización de TSM obtenida de imágenes satelitales ... 77
Distribuciones horizontales de variables hidrográficas ... 78
Perfiles verticales de variables hidrográficas ... 79
Secciones verticales de variables hidrográficas ... 80
Sobre posibles zonas de características hidrográficas comunes ... 80
Distribución vertical de gradientes verticales ... 81

Análisis integrado de información bio-oceanográfica ... 82
Análisis multivariado ... 83
Método multivariado robusto de Somerton ... 86

VIII.- ANALISIS DE RESULTADOS

Objetivo específico 1. ... 90
Objetivo específico 2. ... 93
Objetivo específico 3. ... 95
Objetivo específico 4 ... 97
Análisis integrado de la información bio-oceanográfica ... 100

IX.- CONCLUSIONES ... 103

X.- REFERENCIAS ... 107

XI.- FIGURAS ... 115

XII.- ANEXO
III.- INDICE DE FIGURAS Y TABLAS

III. 1.- INDICE DE FIGURAS

Figura 1. Area total cubierta durante el presente estudio mostrando la ubicación de las estaciones muestreadas.

Figura 2. Detalle de la ubicación de las estaciones muestreadas dentro de las bahías de la Octava Región.

Objetivo específico 1.

Figura 1.1. Distribución de la abundancia de huevos de anchoveta frente a Chile central, estrato 0 a 100 m de profundidad.

Figura 1.2. Distribución de la abundancia de huevos de sardina común frente a Chile central, estrato 0 a 100 m de profundidad.

Figura 1.3. Distribución de la abundancia de huevos de anchoveta frente a Chile central, estrato 0 a 40 m de profundidad.

Figura 1.4. Distribución de la abundancia de huevos de sardina común frente a Chile central, estrato 0 a 40 m de profundidad.

Figura 1.5. Distribución de la abundancia de larvas de anchoveta frente a Chile central, estrato 0 a 100 m de profundidad.

Figura 1.6. Distribución de la abundancia de larvas de sardina común frente a Chile central, estrato 0 a 100 m de profundidad.

Figura 1.7. Distribución de la abundancia de larvas de anchoveta frente a Chile central, estrato 0 a 40 m de profundidad.

Figura 1.8. Distribución de la abundancia de larvas de sardina común frente a Chile central, estrato 0 a 40 m de profundidad.

Figura 1.9. Distribución de la abundancia de larvas totales de anchoveta frente a Chile central, estrato 40 a 100 m de profundidad.
Figura 1.10. Distribución de la abundancia de larvas totales de sardina común frente a Chile central, estrato 40 a 100 m de profundidad.

Figura 1.11. Identificación geoestadística de los núcleos de abundancia de huevos (a: izquierda) y larvas (b:derecha) de sardina común. Los círculos son las estaciones en transectas. Círculos abiertos (sin captura), círculos cerrados: con captura. El polígono es el área abarcada por la interpolación (kriging). Los números indican densidad (huevos/larvas/m²).

Figura 1.12. Identificación geoestadistica de los núcleos de abundancia de huevos (a: izquierda) y larvas (b: derecha) de anchoveta. Los círculos son las estaciones en transectas. Círculos abiertos (sin captura), círculos cerrados: con captura. El polígono es el área abarcada por la interpolación (kriging). Los números indican densidad (huevos/larvas/m²).

Objetivo específico 2.

Figura 2.1. Distribución de estructura de tallas para larvas totales de anchoveta en el núcleo principal.

Figura 2.2. Distribución de estructura de tallas para larvas totales de sardina común en: a) núcleo principal y b) núcleo secundario.

Figura 2.3. Ajuste de modelo lineal simple entre longitud larval corregida y número de anillos diarios para larvas de: a) anchoveta y b) sardina común.

Figura 2.4. Distribución de estructura de edades para larvas totales de anchoveta en el núcleo principal.

Figura 2.5. Distribución de estructura de edades para larvas totales de sardina común en: a) núcleo principal y b) núcleo secundario.

Figura 2.6. Distribución porcentual por núcleos para anchoveta y sardina común según estado de flexión notocordial.

Figura 2.7. Distribución de la abundancia de larvas de anchoveta en estado de preflexión notocordial frente a Chile central, estrato 0 a 40 m de profundidad.

Figura 2.8. Distribución de la abundancia de larvas de anchoveta en estado de postflexión notocordial frente a Chile central, estrato 0 a 40 m de profundidad.

Figura 2.9. Distribución de la abundancia de larvas de sardina común en estado de preflexión notocordial frente a Chile central, estrato 0 a 40 m de profundidad.
Figura 2.10. Distribución de la abundancia de larvas de sardina común en estado de posflexión notocordial frente a Chile central, estrato 0 a 40 m de profundidad.

Figura 2.11. Distribución de la abundancia de larvas de anchoveta en estado de preflexión notocordial frente a Chile central, estrato 40 a 100 m de profundidad.

Figura 2.12. Distribución de la abundancia de larvas de anchoveta en estado de posflexión notocordial frente a Chile central, estrato 40 a 100 m de profundidad.

Figura 2.13. Distribución de la abundancia de larvas de sardina común en estado de preflexión notocordial frente a Chile central, estrato 40 a 100 m de profundidad.

Figura 2.14. Distribución de la abundancia de larvas de sardina común en estado de posflexión notocordial frente a Chile central, estrato 40 a 100 m de profundidad.

Figura 2.15. Ajuste de modelo potencial entre longitud larval corregida y el diámetro de los otolitos en: a) anchoveta y b) sardina común.

**Objetivo específico 3.**

Figura 3.1. Distribución de la abundancia de huevos de peces, *incluidos* anchoveta y sardina común, frente a Chile Central, estrato 0 a 40 m.

Figura 3.2. Distribución de la abundancia de huevos de peces, *excluidos* anchoveta y sardina común, frente a Chile Central, estrato 0 a 40 m.

Figura 3.3. Distribución de la abundancia de huevos de peces, *incluidos* anchoveta y sardina común, frente a Chile Central, estrato 40 a 100 m.

Figura 3.4. Distribución de la abundancia de huevos de peces, *excluidos* anchoveta y sardina común, frente a Chile Central, estrato 40 a 100 m.

Figura 3.5. Distribución de la abundancia de larvas de peces, *incluidos* anchoveta y sardina común, frente Chile Central, estrato 0 a 40 m.

Figura 3.6. Distribución de la abundancia de larvas de peces, *excluidos* anchoveta y sardina común, frente a Chile Central, estrato 0 a 40 m.

Figura 3.7. Distribución de la abundancia de larvas de peces, *incluidos* anchoveta y sardina común, frente a Chile Central, estrato 40 a 100 m.

Figura 3.8. Distribución de la abundancia de larvas de peces, *excluidos* anchoveta y sardina común, frente a Chile Central, estrato 40 a 100 m.
Figura 3.9. Análisis de Clusters (Complete linkage/ percent disagreement) de asociación ictioplanctónica para el núcleo principal.

Figura 3.10. Análisis de Clusters (Complete linkage/ percent disagreement) de asociación ictioplanctónica para el núcleo secundario.

**Objetivo específico 4**

Figura 4.1.1. Distribución de las abundancias de Diatomeas por estrato de profundidad: (A) estrato 1 (0-40 m), (B) estrato 2 (40-100 m). Las regiones sin color corresponden a zonas con abundancias inferiores a los valores mínimos representados en las escalas respectivas.

Figura 4.1.2. Distribución de las abundancias de Dinoflagelados por estrato de profundidad: (A) estrato 1 (0-40 m), (B) estrato 2 (40-100 m). Las regiones sin color corresponden a zonas con abundancias inferiores a los valores mínimos representados en las escalas respectivas.

Figura 4.1.3. Distribución de las abundancias de Huevos de Invertebrados por estrato de profundidad: (A) estrato 1 (0-40 m), (B) estrato 2 (40-100 m). Las regiones sin color corresponden a zonas con abundancias inferiores a los valores mínimos representados en las escalas respectivas.

Figura 4.1.4. Distribución de las abundancias de Nauplios por estrato de profundidad: (A) estrato 1 (0-40 m), (B) estrato 2 (40-100 m). Las regiones sin color corresponden a zonas con abundancias inferiores a los valores mínimos representados en las escalas respectivas.

Figura 4.1.5. Distribución de las abundancias de Copepoditos por estratos de profundidad: (A) estrato 1 (0-40 m), (B) estrato 2 (40-100 m). Las regiones sin color corresponden a zonas con abundancias inferiores a los valores mínimos representados en las escalas respectivas.

Figura 4.1.6. Distribución de las Biomasas Macroplanctónicas (expresasas como biovolumen), por estrato de profundidad: (A) Estrato 1 (0-40 m), (B) Estrato 2 (0-100 m). Las regiones sin color corresponden a zonas con valores inferiores a los mínimos representados en las escalas respectivas.

Figura 4.1.7. Distribución de las abundancias de los taxa dominantes del Macroplancton, de las regiones Octava y Novena. Estrato 1 de profundidad (0-40m): (A) Copépodos; (B) Larvas de Crustáceos. Las regiones sin color corresponden a zonas con abundancias inferiores a los valores mínimos representados en las escalas respectivas.

Figura 4.1.8. Distribución de las abundancias de Quetognatos, de la Octava Región por estrato de profundidad: (A) estrato 1 (0-40 m), (B) estrato 2 (40-100 m). Las regiones sin
color corresponden a zonas con abundancias inferiores a los valores mínimos representados en las escalas respectivas.

Figura 4.1.9. Distribución de las abundancias de Hidromedusas, de la Octava Región por estrato de profundidad: (A) estrato 1 (0-40 m), (B) estrato 2 (40-100 m). Las regiones sin color corresponden a zonas con abundancias inferiores a los valores mínimos representados en las escalas respectivas.

Figura 4.1.10. Distribución de las abundancias de Eufáusidos, de la Octava Región por estrato de profundidad: (A) estrato 1 (0-40 m), (B) estrato 2 (40-100 m). Las regiones sin color corresponden a zonas con abundancias inferiores a los valores mínimos representados en las escalas respectivas.

Figura 4.1.11. Distribución de las abundancias de Sifonóforos, de la Octava Región por estrato de profundidad: (A) estrato 1 (0-40 m), (B) estrato 2 (40-100 m). Las regiones sin color corresponden a zonas con abundancias inferiores a los valores mínimos representados en las escalas respectivas.

Figura 4.1.12. Distribución de las abundancias de Ctenóforos, de la Octava Región por estrato de profundidad: (A) estrato 1 (0-40 m), (B) estrato 2 (40-100 m). Las regiones sin color corresponden a zonas con abundancias inferiores a los valores mínimos representados en las escalas respectivas.

Figura 4.1.13. Distribución de la Abundancia de Quetognatos en toda el área del estudio. Estrato 1 de profundidad (0-40m) Las regiones sin color corresponden a zonas con abundancias inferiores a los valores mínimos representados en las escalas respectivas.

Figura 4.1.14. Distribución de la Abundancia de Eufáusidos en toda el área del estudio. Estrato 1 de profundidad (0-40m) Las regiones sin color corresponden a zonas con abundancias inferiores a los valores mínimos representados en las escalas respectivas.

Figura 4.1.15. Distribución de la Abundancia de Hidromedusas en toda el área del estudio. Estrato 1 de profundidad (0-40m) Las regiones sin color corresponden a zonas con abundancias inferiores a los valores mínimos representados en las escalas respectivas.

Figura 4.1.16. Distribución de la Abundancia de Sifonóforos en toda el área del estudio. Estrato 1 de profundidad (0-40m) Las regiones sin color corresponden a zonas con abundancias inferiores a los valores mínimos representados en las escalas respectivas.

Figura 4.1.17. Distribución de la Abundancia de Ctenóforos en toda el área del estudio. Estrato 1 de profundidad (0-40m) Las regiones sin color corresponden a zonas con abundancias inferiores a los valores mínimos representados en las escalas respectivas.

Figura 4.1.18. Distribución por tamaño de las presas de las larvas de sardina y anchoveta en la VIII Región. Las clases de tamaños utilizadas son: 40-80 um, 80-150, 150-300 um, 300-
Se asume que el límite de la última clase es de 1000 um considerando la trama de red y la velocidad del arrastre vertical utilizado.

Figura 4.1.19. Distribución de las Biomasa Fitoplanctónica superficial (expresada como mg Clorofila \(a/\text{m}^3\)).

Figura 4.2.1. Datos meteorológicos horarios medidos en la L/C Kay-Kay durante el crucero.

Figura 4.2.2. Relación temperatura del aire y radiación medidas en la L/C Kay-Kay durante el crucero.

Figura 4.2.3. Tendencia y residuo de la radiación diaria medida en la L/C Kay-Kay.

Figura 4.2.4. Promedios diarios de la temperatura del aire (figura superior) y cubo de la velocidad del viento (figura inferior) observados la L/C Kay-Kay durante el crucero.

Figura 4.2.5. Componentes zonal y meridional del viento diario. Carriel Sur. 7 sept al 25 nov 1996

Figura 4.2.6. Componentes zonal y meridional del viento diario. Bellavista. 7 sept al 25 nov 1996

Figura 4.2.7. Distribución geográfica de las celdas con datos históricos de temperatura superficial del mar (TSM)

Figura 4.2.8. Evolución semanal de la anomalías de TSM en las celdas A a L. Las líneas verticales adicionales indican el período de muestreo, con respecto a promedio de 15 años.

Figura 4.2.9. Evolución semanal de las anomalías de TSM en las celdas A a L durante el periodo de muestreo (semanas 37 a 47 de 1996), con respecto a promedio de 15 años.

Figura 4.2.10a. Temperatura superficial del mar los días 15/09/96 (arriba, izquierda), 21/09/96 (arriba, derecha), 29/09/96 (abajo, izquierda) y 05/10/96 (abajo, derecha).

Figura 4.2.10b. Temperatura superficial del mar los días 12/10/96 (arriba, izquierda), 17/10/96 (arriba, derecha), 29/10/96 (abajo, izquierda) y 16/11/96 (abajo, derecha).

Figura 4.2.11a. Distribución horizontal de temperatura, salinidad, oxígeno disuelto y densidad en la superficie.

Figura 4.2.11b. Distribución horizontal de temperatura, salinidad, oxígeno disuelto y densidad a 10 m de profundidad.
Figura 4.2.11c. Distribución horizontal de temperatura, salinidad, oxígeno disuelto y densidad a 20 m de profundidad.

Figura 4.2.11d. Distribución horizontal de temperatura, salinidad, oxígeno disuelto y densidad a 30 m de profundidad.

Figura 4.2.11e. Distribución horizontal de temperatura, salinidad, oxígeno disuelto y densidad a 40 m de profundidad.

Figura 4.2.11f. Distribución horizontal de temperatura, salinidad, oxígeno disuelto y densidad a 60 m de profundidad.

Figura 4.2.11g. Distribución horizontal de temperatura, salinidad, oxígeno disuelto y densidad a 80 m de profundidad.

Figura 4.2.12a. Perfiles de temperatura, salinidad, sigma-t y oxígeno disuelto. Sección 2. 32°40’S.

Figura 4.2.12b. Perfiles de temperatura, salinidad, sigma-t y oxígeno disuelto. Sección 5. 33°40’S.

Figura 4.2.12c. Perfiles de temperatura, salinidad, sigma-t y oxígeno disuelto. Sección 8. 35°10’S.

Figura 4.2.12d. Perfiles de temperatura, salinidad, sigma-t y oxígeno disuelto. Sección 11. 36°20’S.

Figura 4.2.12e. Perfiles de temperatura, salinidad, sigma-t y oxígeno disuelto. Sección 14. 36°50’S.

Figura 4.2.12f. Perfiles de temperatura, salinidad, sigma-t y oxígeno disuelto. Sección 16. 37°10’S.

Figura 4.2.12g. Perfiles de temperatura, salinidad, sigma-t y oxígeno disuelto. Sección 20. 38°10’S.

Figura 4.2.13a. Sección hidrográfica transversal No 2. Latitud 32°40’ S.

Figura 4.2.13b. Sección hidrográfica transversal No 5. Latitud 33°40’ S.

Figura 4.2.13c. Sección hidrográfica transversal No 8. Latitud 35°10’ S.

Figura 4.2.13d. Sección hidrográfica transversal No 11. Latitud 36°19,8’ S.

Figura 4.2.13e. Sección hidrográfica transversal No 14. Latitud 36°50’ S.
Figura 4.2.13f. Sección hidrográfica transversal No 16. Latitud 37°10’ S.

Figura 4.2.13e. Sección hidrográfica transversal No 20. Latitud 38°10’ S.

Figura 4.2.14. Relación temperatura-salinidad a 10 m y a 20 m, y relación salinidad-oxígeno disuelto a 10 m y a 20 m de profundidad.

Figura 4.2.15. Distribución horizontal de gradientes verticales de temperatura, salinidad, oxígeno disuelto y densidad (ver texto).

Figura 4.3.1. Relación entre la abundancia de huevos de anchoveta y la temperatura en el núcleo principal a 10 metros de profundidad.

Figura 4.3.2. Relación entre la Abundancia de huevos de sardina común y la temperatura en el núcleo principal a 10 metros de profundidad.

Figura 4.3.3. Relación entre la abundancia de larvas de anchoveta y la temperatura en el núcleo principal a 10 metros de profundidad.

Figura 4.3.4. Relación entre la abundancia de larvas de sardina común y la temperatura en el núcleo principal a 10 metros de profundidad.

Figura 4.3.5. Relación entre la abundancia de huevos de anchoveta y la salinidad en el núcleo principal a 10 metros de profundidad.

Figura 4.3.6. Relación entre la abundancia de huevos de sardina común y la salinidad en el núcleo principal a 10 metros de profundidad.

Figura 4.3.7. Relación entre la abundancia de larvas de anchoveta y la salinidad en el núcleo principal a 10 metros de profundidad.

Figura 4.3.8. Relación entre la abundancia de larvas de sardina común y la salinidad en el núcleo principal a 10 metros de profundidad.

Figura 4.3.9. Relación entre la abundancia de huevos de anchoveta y el contenido de oxígeno disuelto en el núcleo principal a 10 metros de profundidad.

Figura 4.3.10. Relación entre la abundancia de huevos de sardina común y el contenido de oxígeno disuelto en el núcleo principal a 10 metros de profundidad.

Figura 4.3.11. Relación entre la abundancia de larvas de anchoveta y el contenido de oxígeno disuelto en el núcleo principal a 10 metros de profundidad.

Figura 4.3.12. Relación entre la abundancia de larvas de sardina común y el contenido de oxígeno disuelto en el núcleo principal a 10 metros de profundidad.
Figura 4.3.13. Relación entre la abundancia de huevos de anchoveta y Sigma-t en el núcleo principal a 10 metros de profundidad.

Figura 4.3.14. Relación entre la abundancia de huevos de sardina común y Sigma-t en el núcleo principal a 10 metros de profundidad.

Figura 4.3.15. Relación entre la abundancia de larvas de anchoveta y Sigma-t en el núcleo principal a 10 metros de profundidad.

Figura 4.3.16. Relación entre la abundancia de larvas de sardina común y Sigma-t en el núcleo principal a 10 metros de profundidad.

Figura 4.3.17. Análisis factorial de correspondencias total sin diferenciar por núcleos para el total de datos biológicos disponibles (huevos y larvas de anchoveta y sardina común; predadores y presas).

Figura 4.3.18. Análisis factorial de correspondencias total descompuesto en el núcleo principal, núcleo secundario y fuera de los núcleos (=núcleo 3)

Figura 4.3.19. Análisis factorial de correspondencias para el núcleo principal.

Figura 4.3.20. Análisis factorial de correspondencias para el núcleo secundario.

Figura 4.3.21. Análisis factorial de correspondencias para el área fuera de los núcleos (= núcleo 3)

Fig. 4.3.22. Representación gráfica de las dos primeras componentes principales con ocho variables del núcleo secundario.

Anexo

Figura 5.1. Área de desove (áreas sombreado claro) de a) anchoveta y b) sardina común, en la zona central de Chile, indicando los núcleos principales de abundancia de huevos (áreas coloreadas)
III. 2- INDICE DE TABLAS

Tabla 1. Área total cubierta durante el presente estudio, indicando la ubicación de las estaciones muestreadas.

Tabla 2. Detalle de la ubicación de las estaciones muestreadas al interior de las bahías en la Octava Región.

Objetivo específico 1

Tabla 1.1. Parámetros del modelo esférico ajustado a cada variograma experimental calculado.

Objetivo específico 3

Tabla 3.1. Lista de taxa, frecuencias totales y relativas (%) y abundancias totales y relativas (%) el área total de estudio, estrato 0 - 40 m de profundidad. Las abundancias totales son la sumaatoria de todas las estaciones positivas en que los datos están estandarizados como ind/100m².

Tabla 3.2. Lista de taxa, frecuencias totales y relativas (%) y abundancias totales y relativas (%) el área total de estudio, estrato 40 - 100 m de profundidad. Las abundancias totales son la sumaatoria de todas las estaciones positivas en que los datos están estandarizados como ind/100m².

Tabla 3.3. Resultados de la comparación de las comunidades larvales entre el núcleo principal y zona de Lavapié.

Tabla 3.4. Resultados de la comparación de las comunidades larvales entre el núcleo secundario y zona norte.

Objetivo específico 4

Tabla 4.1.1. Distribución de los taxa presas de las larvas de sardina y anchoveta en una estructura de tamaños.

Tabla 4.1.2. Composición taxonómica del microplancton colectado con red en el estrato 0-40 m en la VIII Región. Las abundancias están representadas en Ind./m³.

Tabla 4.1.3. Composición taxonómica de las diatomeas en el estrato 0-40 m en la VIII Región. Las abundancias están representadas en Ind./m³.
Tabla 4.1.4. Composición taxonómica del microplancton colectado con red en el estrato 40-100 m en la VIII Región. Las abundancias están representadas en Ind./m³.

Tabla 4.1.5. Composición taxonómica de las diatomeas en el estrato 40-100 m en la VIII Región. Las abundancias están representadas en Ind./m³.

Tabla 4.1.6. Composición taxonómica del microplancton > de 150 um en el estrato 0-40 m en la VIII Región. Las abundancias están representadas en Ind./m³.

Tabla 4.1.7. Composición taxonómica del microplancton > de 150 um en el estrato 40-100 m en la VIII Región. Las abundancias están representadas en Ind./m³.

Tabla 4.1.8. Abundancia (ind/100 m²) del macroplancton en el estrato (0-40 m) en la VIII y IX Regiones.

Tabla 4.1.9. Abundancia (ind/100 m²) de los predadores potenciales de las larvas y huevos de sardina y anchoveta en el estrato 0-40 m en la VIII Región.

Tabla 4.1.10. Abundancia (ind/100 m²) de los predadores potenciales de las larvas y huevos de sardina y anchoveta en el estrato 40-100 m en la VIII Región.

Tabla 4.1.11. Abundancia (ind/100 m²) de los predadores potenciales de las larvas y huevos de sardina y anchoveta en el estrato 0-40 m para toda la zona de estudio (transectas 2 a 23).

Tabla 4.1.12. Abundancia (ind/100 m²) de los predadores potenciales de las larvas y huevos de sardina y anchoveta en el estrato 0-40 m en el núcleo de desove principal.

Tabla 4.1.13. Test de Mann-Whitney para contrastar la hipótesis que la distribución de las presas de las larvas de sardina y anchoveta distribuidas en clases de tamaño, no difieren entre el núcleos de desove de la VIII Región y su entorno.

Tabla 4.1.14. Abundancia relativa (ind./l o ind./m²) de taxa que son presas potenciales para larvas de peces en la zona centro-sur.

Tabla 4.2.1. Asociación de las transectas del crucero y las celdas de TSM.

Tabla 4.2.2. Anomalías de la TSM para algunas semanas seleccionadas.

Tabla 4.3.1. Componentes de carga de las cuatro primeras componentes principales (CP) en el núcleo secundario.

Tabla 4.3.2. Predadores potenciales. Contraste entre Núcleo Principal (Novena Región) v/s Area Punta Lavapié
Tabla 4.3.3. Predadores potenciales. Contraste entre Núcleo Secundario (VIII Región - Golfo Arauco) v/s Area V a VII Regiones (Norte)  
Tabla 4.3.4. Predadores potenciales. Contraste entre Núcleo Secundario (VIII Región - Golfo) versus área adyacente.

Tabla 4.3.5. Características oceanográficas. Contraste entre Núcleo Principal (Novena Región) v/s Area Punta Lavapié

Tabla 4.3.6. Características oceanográficas. Contraste entre Núcleo Secundario (VIII Región - Golfo Arauco) v/s Area V a VII Regiones (Norte)

Tabla 4.3.7. Características oceanográficas. Contraste entre Núcleo Secundario (VIII Región - Golfo) versus área adyacente

Tabla 5.4.1. Abundancia relativa (ind/l o ind/m³) de taxa que son presas potenciales para larvas de peces en la zona Centro-sur de Chile. Símbolos: (*) huevos totales de invertebrados; (**) datos sin discriminación entre nauplii y copepoditos.

Anexo I

Tabla 5.1. Volumen de a agua muestreada en el estrato 0-40 m, durante los muestreos ictioplanctónicos.

Tabla 5.2. Volumen de a agua muestreada en el estrato 40-100 m, durante los muestreos ictioplanctónicos.

Tabla 5.3. Abundancias de huevos de anchoveta, sardina común y total de huevos (incluidas otras especies), expresadas por 100 m² y 100 m³. Estrato 0-40 m.

Tabla 5.4. Abundancias de huevos de anchoveta, sardina común y total de huevos (incluidas otras especies), expresadas por 100 m² y 100 m³. Estrato 40-100 m.

Tabla 5.5. Abundancias de larvas de anchoveta, sardina común y total de larvas (incluidas otras especies), expresadas por 100 m² y 100 m³. Estrato 0-40 m.

Tabla 5.6. Abundancias de larvas de anchoveta, sardina común y total de larvas (incluidas otras especies), expresadas por 100 m² y 100 m³. Estrato 40-100 m.
IV.- OBJETIVOS

OBJETIVO GENERAL

Caracterizar y analizar las principales áreas de desove de anchoveta y sardina común en el área comprendida entre el límite norte de la V Región y límite sur de la IX Región.

OBJETIVOS ESPECÍFICOS

1. Determinar la distribución espacial y cuantificar la abundancia de huevos y estadios larvales de anchoveta y sardina común en la zona centro-sur de Chile.

2. Caracterizar los principales núcleos de abundancia de huevos y larvas de anchoveta y sardina común respecto a la estructura de tallas y edad de los estadios de desarrollo.

3. Determinar la abundancia numérica de anchoveta y sardina común y caracterizar la asociación ictioplanctónica.

4. Caracterizar las condiciones bio-oceanográficas asociadas a los principales núcleos de abundancia de huevos y larvas de anchoveta y sardina común.
V.- ANTECEDENTES

Aunque ya se sabe con certeza que las poblaciones de peces pueden experimentar grandes fluctuaciones en el reclutamiento, los mecanismos causales de estas fluctuaciones no son del todo comprendidas en la actualidad (Wooster 1983). El enfoque tradicional se ha centrado en la búsqueda de relaciones entre el tamaño de la población parental y el número de reclutas en años posteriores (Ricker 1954). Sin embargo, es usual encontrar que las fluctuaciones de la población desovante no son seguidas por fluctuaciones en los reclutas. Una manera más reciente de enfocar este problema ha sido el estudio de los estadios de desarrollo temprano de los peces porque es en estos estadios cuando las más altas abundancias y las más altas tasas de mortalidad ocurren en una gran mayoría de poblaciones de peces (Rothchild 1986, Houde 1987), incluidos los elupeiformes (Castro & Cowen 1989b; Castro 1990, Castro & Cowen 1991).

La sardina común (Strangomera benticki), cuya distribución va desde Coquimbo (29°S) hasta Puerto Montt (42°S)(Cubillos & Arancibia 1993b) es un componente importante del ictioplancton costero en la zona centro sur de Chile. La anchoveta, Engraulis ringens, con una distribución desde Perú (4°30’S) hasta Chiloé (42°30’S) históricamente ha presentado dos áreas mayores de desove a lo largo de la costa chilena (Mujica & Rojas 1980, Serra 1982, Loeb & Rojas 1988): la zona norte (limite con el Perú a los 25°S) y la zona de Talcahuano (35°S a 38°S). En forma similar, y a pesar de su reproducción casi continua durante el año, dos periodos mayores de desove eran reconocidos tradicionalmente. El primero y más importante, se caracteriza por ocurrir en un periodo de vientos desfavorables a surgencia, mientras que el segundo, previamente documentado durante la temporada de primavera (Mujica & Rojas 1980, Bernal et al., 1982), parece haber cambiado su estacionalidad reproductiva para ocurrir en el periodo estival - otoñal (marzo).

Ambas especies se caracterizan por una fuerte distribución costera (Mujica & Rojas 1980), por tener un ciclo de vida corto (3-4 años), rápido crecimiento corporal, elevada tasa de mortalidad natural y por ser especies marcadamente influenciadas por factores abióticos y
bióticos (Cubillos & Arancibia 1993a, 1993b). Estas características, típicas de clupeiformes (Blaxter & Hunter 1982), son acentuadas aún más por el tipo de ambiente donde se desarrollan: la estrecha franja costera que, en Chile en particular, presenta una alta hidrodinámica. Procesos oceanográficos costeros de mediana y pequeña escala, capaces de dispersar, concentrar y/o transportar huevos y larvas de peces desde la zona costera hacia mar adentro han ya sido documentados en numerosas oportunidades en el mundo entero (Bakun & Parrish 1982, Parrish et al., 1981, Castro & Cowen 1994, Castro 1995b). La identificación de estos procesos, por ejemplo mediante imágenes satelitales (además de los medios convencionales oceanográficos, CTD, meteorológicos) puede representar una herramienta de gran utilidad para la determinación de los patrones de distribución de las especies costeras (Cowen 1985). De este modo, la utilización de múltiples técnicas de sensoriamiento (convencional y satelital) resulta indispensable para la determinación correcta de factores ambientales que afectan la distribución de huevos y larvas de peces en la franja costera.

El objetivo general del presente estudio ha sido caracterizar y analizar las principales áreas de desove de anchoveta y sardina común en el área comprendida entre el límite norte de la V Región y límite sur de la IX Región. Para ello se ha considerado la realización de un plan de muestreo en que se ha priorizado una caracterización espacial detallada de las zonas de desove tanto en el plano horizontal como vertical. El estudio involucra: i) el uso de técnicas múltiples de colección de data oceanográfica (data hidrográfica colectada in situ, data de vientos, y fotografía satelital de temperatura superficial del mar), ii) un método de muestreo estratificado en la vertical de huevos y larvas, iii) una descripción de la fauna planctónica del área que incluye, además de huevos y larvas de anchoveta y sardina común, iv) información sobre larvas de otras especies, v) información sobre zooplancton potencialmente predador de larvas de peces en las zonas de mayor abundancia de huevos y larvas, y vi) información sobre microplancton que puede representar oferta alimenticia de larvas en la zona de desove de la Octava Región.
VI.- METODOLOGIA

METODOLOGIA POR OBJETIVO

VI.1 OBJETIVO ESPECÍFICO 1.

Determinar la distribución espacial y cuantificar la abundancia de huevos y estadios larvales de anchoveta y sardina común en la zona centro-sur de Chile.

Diseño de muestreo

El plan de muestreo utilizado fue diseñado para lograr una óptima resolución de la distribución espacial de las principales zonas de desove de sardina común y anchoveta en el área de estudio. En este sentido, el plan de muestreo realizado se ajustó muy bien al plan propuesto originalmente en nuestra oferta técnica, cubriéndose sobre un 95% del área total propuesta. La única variante fue el inicio del crucero desde la segunda (en vez de la primera) transecta originalmente propuesta, correspondiendo al sector más alejado de las áreas de desove encontradas en este estudio (VIII y IX Regiones, ver resultados más adelante).

El crucero bio-oceánográfico se realizó a bordo de la embarcación oceanográfica Kay-Kay, cubriéndose en total de 440 minutos de latitud. El crucero se desarrolló durante el tercer trimestre de 1996 y comienzos del siguiente (Septiembre-Octubre, más dos transectas en Noviembre), en que se muestreó una grilla de transectas perpendiculares a la costa que van, latitudinalmente, desde el extremo norte de la V Región (32°20’S) hasta el extremo sur de la IX Región (39°40’S). El diseño consideró un muestreo más intenso (menor separación espacial entre estaciones) en la zona más costera, que es donde tradicionalmente se han determinado las mayores concentraciones de huevos y larvas de las especies objeto (Serra et al. 1970, Mujica & Rojas 1980, Castillo et al., 1991).
Las transectas perpendiculares a la costa de la grilla de muestreo estuvieron situadas cada una de ellas a distancias variables entre sí (10, 20 y 30 millas náuticas), dependiendo de las zonas y atendiendo a reportes publicados sobre distribución del ictioplancton de estas especies (Figura 1). El número de estaciones programado por transecta en las zonas más intensamente muestreadas fue 8 (principalmente en las V y VIII Regiones, salvo algunas variaciones, ver más adelante), donde desove actual o en el pasado se ha reportado (Serra et al. 1970, Mujica & Rojas 1980, Herrera & Balbontin 1983, Herrera et al. 1987, Sepúlveda 1987, Castillo et al. 1991) y 7 en las zonas restantes, salvo variaciones. Igualmente, la extensión de las transectas fue hasta 60 millas náuticas desde la costa en las zonas más intensamente muestreadas y, 40 millas náuticas en las restantes. La distancia entre estaciones fue, desde la costa: 2, 5, 10, 15, 20, 30, 40 y 60 millas náuticas (hasta 40 mn en las transectas con 7 estaciones). Se realizó, además, muestreos en estaciones situadas dentro de bahías costeras (Bahías Coliumo, Concepción y Golfo De Arauco) (Figura 2). A continuación se proporciona una descripción más detallada de las transectas y estaciones muestreadas.

**Detalle de la ubicación de las transectas y número de estaciones**

*a) Zona entre latitudes 32° 20’S y 33° 40’S (Principalmente V Región):*

Se realizaron 4 transectas separadas entre sí por 20’ de latitud. Cada transecta constó de una serie de 8 estaciones cada una. Todas las transectas de este sector llegaron hasta 60 mn de la costa, como se propuso originalmente.

*b) Zona entre latitudes 33° 40’S y 36° 10’S (Principalmente VI y VII Regiones):*

Se realizaron 5 transectas separadas entre sí por 30’ de latitud. Cada transecta (excepto una con 6 estaciones) constó de una serie de 7 estaciones. Todas las transectas de este sector llegaron hasta 40 mn de la costa, como se había propuesto originalmente.

*c) Zona entre latitudes 36° 10’S y 37° 40’S (Principalmente VIII Región):*
Se realizaron 8 transectas separadas entre sí por 10’ de latitud. Las transectas constaron de una serie de 5 a 8 estaciones cada una (variaciones debido a condiciones climático-oceanográficas). En esta zona se muestreó, además, dentro del Golfo de Arauco (9 estaciones), dentro y boca de Bahía Concepción (11 estaciones) y dentro de Bahía Colínomo (5 estaciones).

\textit{d) Zona entre latitudes 37° 40’S y 39° 40’S (Principalmente IX Región):}

Se realizaron 4 transectas separadas entre sí por 30’ de latitud, tal como se había programado en la propuesta original. Cada transecta constó de una serie de 7 o 6 estaciones cada una, llegando las más extensas hasta 40 mn de la costa.

\textbf{Colección de muestras de ictioplancton}

Las muestras de ictioplancton fueron colectadas con una red tipo Tucker Trawl que consta de un set de tres redes ensambladas que son abiertas y cerradas desde superficie a la profundidad deseada y que, de este modo, permitió muestrear múltiples estratos en un solo lance. Esta red estaba equipada con un fluajómetro tipo torpedo que permitió cuantificar el volumen de agua filtrada, y con tres redes de 250 um de trama. Dado que la abertura de su boca (más tipicamente 1\textsuperscript{m}\textsuperscript{2}) es superior al de otras redes convencionales (e.g. tipo Bongo), esta red permite disminuir la evasión de las larvas (problema típico de redes Bongo), lo que la hace una de las redes más eficientes para capturar larvas de tamaño mediano (Buttler 1992). Del mismo modo, dado que se utilizó una trama de la redes de 250 um, el riesgo de extrusión de larvas menores fue disminuido considerablemente.

Debidamente a que se propuso y realizó un muestreo estratificado para determinar si existían diferencias en abundancia de ictioplancton entre dos estratos, el número de muestras colectadas fue mayor al número de estaciones muestreadas. El número de muestras, sin embargo, no fue el doble o triple por estación (ya que la red permite tomar una muestra
extra integrada de 0-100 m) ya que las estaciones más cercanas a la costa o dentro de las bahías muchas veces tenían una profundidad menor a la de los estratos propuesto (0-40 m; 40-100 m) y debido a algunos problemas de funcionamiento de la red en el estrato profundo, especialmente en la IX Región. De este modo a lo largo del programa de muestreo se colectaron:

- a) estrato 0 - 40 m = 156 muestras
- b) estrato 40 - 100 m = 78 muestras

más las muestras correspondientes a la columna de agua integrada (0-100 m, o la profundidad máxima posible entre 40 y 100 m, si la estación tenía menos de 100 m de fondo). Debido a que tanto las muestras estratificadas como las integradas fueron subdivididas para su preservación en formalina 5% y etanol 96%, el número de muestras totales analizables se duplica.

**Submuestreo y estandarización de data de abundancia**

En laboratorio, los huevos y larvas de peces fueron separadas desde las submuestras en etanol y formalina. Para la determinación de abundancia de los huevos y larvas, se subdividió las submuestras hasta la fracción en que, al menos se encuentren 100 individuos (huevos o larvas), que es el número convencional en trabajos de ictioplancton. Luego, las densidades de los huevos y larvas fueron estandarizadas por el volumen filtrado y expresadas finalmente como número de individuos (huevos o larvas) en 100 m² (en 100 m³ de agua filtrada también se entregan en las tablas del Anexo I). Estas densidades fueron luego corregidas por evasión y extrusión, según los criterios enunciados más abajo.

**Correcciones por extrusión y evasión**

Para los cálculos de determinación de densidad larval, las abundancias contadas fueron corregidas por extrusión y por evasión. Para la estimación de extrusión (larvas demasiado
pequeñas no capturadas por la red debido a la trama de la malla), se utilizó la metodología
para larvas de anchoveta, en que se comparan las abundancias obtenidas colectando larvas
con una red de 35 micrones de trama (donde no habría extrusión) y una de 300 micrones (la
misma trama utilizada en nuestro estudio). En este caso, a las abundancias colectadas con
una red de 300 micrones se aplicó un factor de corrección que depende de la longitud larval.
Los factores de corrección para los siguientes intervalos de talla son: factor 6.7 para larvas
en intervalo de talla < 2.8 milímetros; factor 2.5 para larvas en intervalo 2.8-3.7 mm; y
factor 2.2 para intervalo 3.8-4.2 mm.

Para las correcciones por evasión (debido a escape de la red por gran movilidad de las larvas
mayores), se utilizó el criterio estándar de comparar las capturas hechas durante el día con
las capturas obtenidas durante la noche. Para la comparación de las capturas entre día y
noche se utilizó un número similar de muestras a distintas horas (día vs noche) provenientes
de un mismo sector (e.g. costero-día vs costero-noche).

Identificación de los núcleos de mayor abundancia

Análisis de la Información

Cuando el diseño de muestreo de un crucero de investigación científica es aleatorio (simple o
estratificado), es posible ignorar la estructura espacial de las observaciones al estimar la
abundancia total y relativa y las medidas de varianza asociadas (Petitgas 1993). En otras palabras,
la existencia de un muestreo probabilístico hace al análisis independiente de la localización de las
observaciones. Esto se relaciona con el hecho que los estimadores utilizados son estimadores
diseño-basados (Smith 1990). Sin embargo, en este proyecto se ha planteado un diseño regular
(no probabilístico) de muestreo, debido a la naturaleza exploratoria del crucero y a la gran
cobertura espacial del mismo. Por lo tanto, no es posible ignorar la estructura espacial de las
observaciones, y de hecho es necesario desarrollar un modelo espacial para la obtención de
estimadores modelo-basados (Smith 1990). Un modelo geoestadístico, en donde la estructura
espacial es modelada a partir de las correlaciones espaciales entre observaciones, es ampliamente recomendado para diseños regulares de muestreo (Foote y Stefánsson 1993, Petitgas 1993).

En el contexto de esta Propuesta Técnica, el objetivo principal del uso de la geoestadística en la modelación de las observaciones espaciales de densidad de huevos y larvas de sardina y anchoveta es el de mapear las iso líneas de densidad, lo que permite identificar la localización de los núcleos de abundancia de huevos y larvas. La técnica geoestadística utilizada consiste básicamente en la interpolación desde la grilla regular de transectas muestreo hacia el resto del área cubierta por el crucero, mediante la modelación de las autocorrelaciones espaciales de las observaciones. En particular, el método de interpolación es el llamado kriging, por ser ampliamente utilizado con estos fines y ser aceptable en varios contextos de aplicación (Foote y Stefánsson 1993).

El procedimiento básico del kriging consiste en la interpolación sobre el área no muestreada mediante combinaciones lineales de las observaciones provenientes del área muestreada en la grilla regular de transectas. Los coeficientes de la combinación lineal son óptimos desde el punto de vista de las desviaciones cuadráticas esperadas entre las observaciones y las interpolaciones.

Como en otros estudios (Freire et al. 1992, González-Gurriarán et al. 1993, Petitgas 1993), se presume estacionariedad de segundo orden, en que la media del proceso aleatorio que representa a la distribución espacial de los huevos y larvas \( Z(x,y) \), \( x \) y \( y \) son latitud y longitud, y \( Z \) es la densidad) es una constante

\[
E[Z(x,y)] = \mu
\]

1

y la covarianza de \( Z \) en dos puntos sólo depende de la distancia \( h \) entre esos dos puntos:

\[
E[(Z(x,y) - \mu)(Z(x',y') - \mu)] = C(h)
\]

2
que implica que la covarianza en la densidad entre cualquier par de observaciones no está relacionada con aspectos biológicos o físicos del ambiente, sino sólo con cuán lejos o cerca esté ese par de observaciones. Intrínseca a la presunción de estacionaridad de segundo orden es la presunción que observaciones más cercanas entreme si están más correlacionadas.

La herramienta estructural del kriging es el semivariograma, definido como la diferencia cuadrática esperada entre cualquier par de observaciones:

\[ \gamma (h) = \frac{1}{2} E \left[ (Z(x,y) - Z(x',y'))^2 \right] \]

cuya estimación con la evidencia muestral conduce al semivariograma experimental:

\[ \gamma (h) = \frac{1}{2n} \sum_{i=1}^{N} \left[ Z(x,y) - Z(x',y') \right]^2 \]

donde \( n \) es el número de pares de estaciones muestreadas y \( N \) es el número de estaciones. A su vez, el semivariograma experimental debe ser ajustado por un modelo para obtener una parametrización de la correlación espacial, lo cual usualmente se realiza utilizando el modelo esférico (Petitgas 1993, Freire et al. 1992, González-Gurriarán et al. 1993):

\[ \gamma (h) = C_0 + C \left( \frac{3}{2} h / \beta - 1 / 2 * h^3 / \beta^3 \right) \]

donde \( C_0 \) es el efecto nugget (error residual), y \( \beta \) es el rango, que es la distancia máxima a la cual el efecto de la estructura espacial de las observaciones es detectable. El modelo de la ec. (5) es un modelo asintótico, en que la semivarianza parte de un valor mínimo (nugget) y asciende hasta que se alcanza un valor de distancia igual a \( \beta \).

Los variogramas experimentales y los ajustes de los modelos para los huevos y larvas de anchoveta y de sardina común se realizaron con el programa de análisis geostadístico GEO-
EAS (Englund & Sparks, 1988). Los variogramas así obtenidos fueron llevados al programa de mapeo y contornos SURFER, donde se trazaron las líneas de igual densidad de huevos y larvas de ambas especies.

VI.2. OBJETIVO ESPECÍFICO 2.-

Caracterizar los principales núcleos de abundancia de huevos y larvas de anchoveta y sardina común respecto a la estructura de tallas y edad de los estadios de desarrollo.

Caracterización de los núcleos de mayor abundancia

Los métodos utilizados para la identificación de los núcleos de mayor abundancia presentados más arriba (punto 3.1.7.), permitieron caracterizar geográficamente y determinar las abundancias de huevos y larvas de anchoveta y sardina común en los centros de mayor densidad.

El resto de la caracterización se llevó a efecto determinando la estructura de tallas larvaless, edades larvales y estados de desarrollo de las larvas de las especies objeto.

Determinación de tallas larvaless y correcciones por preservación.

Las medidas larvales a considerar para la caracterización son: longitud notocordial (en larvas en estado preflexión notocordial) y longitud estándar (en larvas en estado de flexión y postflexión notocordial). Las longitudes larvales determinadas fueron corregidas por efectos de manipulación durante el muestreo y preservación. Para estos efectos se utilizaron los algoritmos propuestos por Theilacker (1980) para larvas de anchoveta del norte y probados y validados por Castro (1990) para otras especies de anchoveta, que considera el tiempo
utilizado durante la colección de las muestras (tiempo de arrastre) y el tipo de preservante utilizado. El algoritmo general es del tipo:

\[ \ln (SL) = \ln (L) + K_1 \exp (k_2 x L x t^{k_3}) \]

donde SL = longitud estandar corregida, L = longitud medida, t = tiempo de arrastre y, Kx son factores dependiendo del preservante (etanol o formalina).

**Estimación de estado de desarrollo y edad larval.**

El estado de desarrollo de larvas de peces se realizó siguiendo los criterios descritos por Moser y Ahlstrom (1985) y los descritos por Ahlstrom y Ball (1954) y Kendall et al. (1984), descritos para clupeiformes chilenos por Orellana (1981) y utilizados ya por Castro (1995a,b,c,d) para larvas de peces. Para estas últimas, las larvas fueron clasificadas de acuerdo al estado de flexión notocordial como: pre-flexión y post-flexión. Según Orellana (1981), las larvas de anchoveta comenzarían su flexión notocordial entre los 4.9 y los 5.0 mm, y las larvas de sardina común entre los 7.4 y los 7.7 mm. De este modo, las larvas de anchoveta menores a 5.0 mm fueron consideradas como preflexión y las larvas de sardina común menores a 7.5 mm fueron consideradas como preflexión.

Para la estimación de la edad larval, de las muestras preservadas en etanol, se intentó separar al menos 100 larvas correspondientes al espectro total de tallas colectadas para su medición y extracción de otolitos (sagitta). Sin embargo, la mayor parte de las larvas colectadas para ambas especies fueron de muy pequeño tamaño (menores a 10 mm, ver resultados más adelante). De este modo, para no seguir aumentando excesivamente el número de individuos analizados de las fracciones de tamaños menores que podrían inducir sesgo en la regresión, se decidió disminuir el número total de individuos analizados (entre 30 y 35 individuos) tratando de mantener una mayor equidad entre los números de individuos analizados por talla (de todos modos se entrega la estadística de las regresiones para comprobar la bondad

Los parámetros de esta relación fueron finalmente, utilizados para estimar las edades larvales de todas las larvas colectadas en las zonas de agregación larval (núcleos). Para la estimación de edad de las larvas de anchoveta se consideró que el primer anillo de crecimiento se formaba al noveno día desde el desove, el cual coincidiría con el día de finalización de absorción del vitelo en otros clupeiformes (Methot & Kramer 1979). Este mismo criterio se siguió para sardina común, es decir utilizar el día de finalización de absorción del vitelo como el día de formación del primer anillo; en esta especie, sin embargo, este día ocurriría 5 días posterior a la eclosión (Garretón y Balbontín 1982), o bien, al décimo día posterior al desove (a 12° C, Garretón y Balbontín 1982).

VI.3. OBJETIVO ESPECÍFICO 3.

Determinar la dominancia numérica de anchoveta y sardina común y caracterizar la asociación ictioplanctónica

Las abundancias de huevos y larvas de anchoveta y sardina común en los centros de mayor densidad (núcleos) ha sido ya determinada en el primer objetivo. Basados en estos resultados y conociendo las densidades de los huevos y larvas de peces objeto en el resto del área de estudio y de los demás componentes de la comunidad ictioplanctónica, se construyeron
diagramas de isóneas utilizando el método kriging de contornos del paquete estadístico Surfer.

Identificación de grupos de especies a los que más se asocia la sardina común y anchoveta.

Para la identificación de las especies o los grupos de especies a que se asocia la anchoveta y sardina común en los núcleos de abundancia, se utilizaran los datos sobre densidades de cada especies presentes en los estratos en que las especies objeto han sido más abundantes. La utilización de las muestras estratificadas (en vez de abundancia totales integradas de la columna de agua) se debe a que usar muestras integradas puede llevar a resultados erróneos al mezclarse artificialmente en las red tipo convencional (e.g. muestreos oblicuos con redes Bongo) especies que normalmente se encuentran en diferentes profundidades y que en realidad nunca conviven en una parcela de agua.

Comparación de la Asociación Ictioplantónica

Para caracterizar la asociación ictioplanctónica al interior de los núcleos de abundancia de huevos y larvas y compararla con la comunidad ictioplanctónica al exterior de estas áreas, se utilizó un algoritmo de remuestreo computacional basado en un prueba de aleatorización (Crowley 1992). Este algoritmo (TSQUISIM) ya ha sido desarrollado en el marco del proyecto FONDECYT 1950090 (Investigador responsable: R. Roa). El algoritmo TSQUISIM es una adaptación y traducción al FORTRAN 77 del algoritmo DIETTEST.BAS de Somerton (1989), o también conocido Método Multivariado Robusto de Somerton.

El algoritmo consiste en una prueba multivariada de permutación. Con las matrices de datos originales se calcula el estadístico $T^2$ de Hotelling, que tiene la forma:

$$T^2 = \frac{(b_{k-1} - b_{k-2})}{S - 1} (b_{k-1} - b_{k-2})$$
Luego las matrices originales fueron cambiadas por nuevas matrices de igual tamaño que las originales pero en que los datos (las celdas) de cada matriz fueron distribuidas al azar entre las dos matrices. Luego con las matrices revueltas se calcula otra vez el estadístico $T^2$. El proceso se repitió 1000 veces, con lo que se construyó una distribución empírica de probabilidad para el $T^2$. Si no existieran diferencias significativas entre las dos matrices originales, el $T^2$ original estaría cerca de la mediana de la distribución empírica de $T^2$. En cambio, si existen diferencias, el $T^2$ original caería en uno de los extremos de la distribución empírica. En este último caso, un estadístico $t$ de Student con una corrección de Bonferroni, permite identificar que item provoca la diferencia significativa.

3.4 OBJETIVO ESPECÍFICO 4

Caracterizar las condiciones bio-oceanográficas asociadas a los principales núcleos de abundancia de huevos y larvas de anchoveta y sardina común.

La caracterización de las condiciones bio-oceanográficas asociada a los principales núcleos de abundancia de huevos y larvas de anchoveta y sardina común se realizó a través de un análisis detallado de:

(i) Oferta alimentaria existente para las larvas de los recursos objetivo en los núcleos de abundancia de larvas y huevos de anchoveta y sardina común de la VIII Región en comparación con las zonas de baja abundancia

(ii) Composición del zooplancton en los núcleos de abundancia con especial énfasis en los predadores potenciales de las larvas y huevos de las especies objetivos.

(iii) Condiciones físicas y meteorológicas existentes en los núcleos de abundancia de huevos y larvas de anchoveta y sardina común en comparación con las zonas de baja abundancia.
4.1. Oferta ambiental de alimento, macrozooplancton y biomasa fitoplanctónica.

i) Cuantificación de la oferta ambiental de alimento.

Trabajos previos (e.g. Herrera y Balbontín 1983, Llanos 1990) indican que las principales ítems alimentarios de *Strangomera bentincki* y *Engraulis ringens* son: nauplios, copepoditos, dinoflagelados, y huevos de invertebrados.

Por lo tanto, nuestra caracterización de los principales núcleos de abundancia de huevos y larvas de sardina común y anchoveta a través de la cuantificación de la oferta alimentaria se centró principalmente en organismos entre 40 y 250 um de tamaño (grupos mayores), con especial énfasis en las presas anteriormente mencionadas.

Para los efectos del presente proyecto, el término microplancton define operativamente a todos aquellos organismos planctónicos (heterotróficos o autotróficos) que presenten un tamaño entre 20 y 250 um.

**Muestreo**

Tomando en cuenta limitaciones presupuestarias y de tiempo, el estudio de la oferta ambiental de alimento se restringió solamente a las transectas correspondientes a la VIII Región (transectas 11 a 16). La priorización de la VIII Región se debe al hecho que esta es la zona que históricamente presenta mayor abundancia de áreas de desove de sardina común y anchoveta (e.g. Mujica y Rojas 1980, Rojas *et al.*, 1983, Bernal *et al.*, 1982, Cubillos y Arancibia 1993a y b).

En cada una de las estaciones oceanográficas se procedió a muestrear el microplancton de los primeros 100 m de profundidad o desde 5 metros desde el fondo cuando la profundidad de la estación fue menor a 100 m. Para esto se utilizó una red conica simple de 30 um de trama de red provista de un flujómetro. La red se arrastró dos veces en cada estación: (i) en
forma vertical desde una profundidad de 100 metros hasta la superficie y (ii) en forma vertical desde una profundidad de 40 metros hasta la superficie. La velocidad de los arrastres fue de 0.5 m/s (BMEPC 1983). La abundancia del microplancton en el estrato 40-100 m se obtuvo a través de la diferencia de abundancias entre los estratos 0-100 m y 0-40 m. La calibración del flujómetro se realizó siguiendo la metodología descrita por Smith y Richardson (1979). La profundidad de muestreo se corrigió mediante la medición del ángulo del cable a través de un clinómetro manual (e.g. Kramer et al. 1972). No se apreció obstrucción de la trama de la red en ninguna de las estaciones muestreadas.

Las muestras de red se fijaron con formalina tamponada con borato de sodio al 5% de concentración final. Este método de fijación, aunque no es el más óptimo para algunos taxa, es el más conveniente cuando se quiere preservar la muestra como conjunto (Steedman 1976, Beers 1978). Aunque existe evidencia que los fijadores pueden alterar los restos de ciertas especies (e.g. Hewes et al. 1984, Hobro y Willen 1977, Sukhanova y Ratkova 1977, Halfors et al. 1979), en el presente proyecto no se aplicó un factor de corrección debido a que la información publicada acerca de esta materia para el microplancton es controvertial, en especial para el amplio rango de tipos de taxa que cubrirá el estudio.

Las muestras fueron almacenadas en frascos plásticos y mantenidas en un lugar oscuro y fresco (BMEPC 1983).

**Análisis de muestras en el laboratorio**

Los organismos menores a aproximadamente 150 μm fueron cuantificados a través del uso de un microscopio invertido LEITZ DM IL, de acuerdo a la metodología estándar descrita en Lund et al. (1958), Uthermöl (1958) y Hasle (1978). Este análisis incluyó la identificación y conteo de los diferentes taxa mayores componentes de la asociación microplanctónica. Cabe destacar que las cadenas de diatomeas fueron cuantificadas a nivel de células individuales. El conteo se realizó a 200 X aunque para propósitos de identificación se utilizaba una magnificación de 320 X. La elección del volumen a
sedimentar para la técnica de microscopía invertida dependió de la concentración de organismos presentes en la muestra, utilizándose cámaras de sedimentación de 10, 50 y 100 ml. Debido a la concentración de organismos encontrados en la zona de estudio, por lo general se procedió a obtener una alicuota de cada muestra. Esta submuestra se diluyó entre 1/400 a 1/2000, dependiendo de la concentración de organismos en la muestra, para facilitar el conteo de las mismas. Las columnas se dejaron sedimentar durante 24 a 48 horas, dependiendo del tamaño de las mismas, de acuerdo a la metodología propuesta por BMEPC (1983). El conteo se llevó a cabo en la forma de transectas equidistantes sobre la placa de conteo.

Por cada placa basal de las columnas de sedimentación se realizaron entre 9 y 12 transectas de conteo, lo cual permitió tener un coeficiente de variación menor a ±20%. La metodología de conteo se llevó a cabo de acuerdo a los procedimientos descritos por McCauley (1984) y Prepas (1984). El coeficiente de variación se calculó como inverso de la raíz cuadrada del número de individuos contados (CV = 1/ raíz N), de acuerdo a la metodología descrita por Cassie (1971).

Los organismos de tamaño mayor a 150 um se contabilizaron a través de una lupa estereoscópica ZEISS 9901 utilizando magnificaciones entre 20 y 50 X. Para facilitar el conteo, se procedió a obtener una submuestra de cada muestra. Aunque algunas muestras se contaron sin llevar a cabo ninguna dilución, la mayoría de las submuestras se diluyeron entre 1/10 y 1/25 veces. Alicuotas de 10 ml fueron extraídas de la submuestra y vertidas en placas petri previamente cuadrículadas, procediéndose a contar la totalidad de la placa. El procedimiento fue repetido para cada submuestra hasta completar a lo menos 25 a 40 ml de ésta.

Caracterización de la oferta alimentaria en base a grupos de tamaños de las presas

Las presas de las larvas de sardina y anchoveta fueron clasificadas en cuatro clases de tamaño: 40 - 80 um, 80-150, 150-300 um, > 300 um. Para esta clasificación se utilizó como criterio el
ancho máximo, ya que constituye la dimensión crítica para la ingestión de copépodos y otras presas por parte del ictioplancton (Hunter 1984).

Tabla 1 - Distribución de los taxa presas de las larvas de sardina y anchoveta en una estructura de tamaños

<table>
<thead>
<tr>
<th>Clase de tamaño</th>
<th>Taxa constituyente</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 -80 μm</td>
<td>Diatomeas, Dinoflagelados.</td>
</tr>
<tr>
<td>80-150 μm</td>
<td>Huevos de invertebrados, nauplii.</td>
</tr>
<tr>
<td>150-300 μm</td>
<td>Copépodos ciclopoideos y harpacteoideos, Copepoditos.</td>
</tr>
<tr>
<td>300-1000 μm</td>
<td>Copépodos calanoideos.</td>
</tr>
</tbody>
</table>

ii) Composición del macroplancton en la zona de estudio, con especial énfasis en predadores potenciales de las larvas de sardina y anchoveta.

Con el propósito de contribuir a la caracterización biológica de los principales núcleos de abundancia se procedió a describir los grupos mayores del macroplancton de la zona de estudio. Se puso especial énfasis en el análisis de la distribución de los potenciales predadores de los huevos y larvas de las especies objetivo (i.e. medusas, ctenóforos y quetognatos; Hunter 1984, Bailey y Houde 1989, Houde et al. 1994).

Colección de muestras de zooplancton

Los lances para la obtención de muestras de zooplancton corresponden a los mismos utilizados para el muestreo de ictioplanctonico ya descritos anteriormente en la sección “colección de ictioplancton” (Objetivo 1). La profundidad real de muestreo fue corregida por la medición, repetitiva y periodica, del ángulo y longitud de cable, a través de un
clinómetro manual y una patéca contámetro, respectivamente. La fracción utilizada para la cuantificación del zooplancton fue fijada con una solución de formalina al 5%.

**Análisis de muestras de macroplancton en el laboratorio.**

El análisis de muestras de zooplancton incluyó la identificación y conteo, bajo estereomicroscopio, de los grupos mayores. Los datos de abundancia por grupo fueron estandarizados a ind./100 m², atendiendo a la información de la profundidad del lance y el volumen de agua filtrada por la red.

Dependiendo de la densidad de organismos en la muestra, se analizaron fracciones de ésta, las cuales fueron obtenidas a través de un submuestreador Folson (Griffiths et al. 1984). Las fracciones analizada fueron variables y correspondieron a las fracciones en que al menos 200 individuos de cada ítem fueron contadas por fracción (típicamente ½ a 1/8).

La biomasa zooplanctónica total fue determinada a través de la medida del biovolumen total a través del método de volumen desplazado de acuerdo a Omori e Ikeda (1984).

**Estimación de la biomasa fitoplanctónica (Clorofila a)**

En cada estación oceanográfica de la VIII Región, se procedió a colectar agua desde 2 metros de profundidad con una botella Niskin. Una vez obtenida la muestra, se procedió a filtrar a bordo 500 ml de agua a través de un filtro GF/F Whatman utilizando una presión de vacío de 100 mm Hg. Los filtros fueron mantenidos a -20°C hasta su posterior análisis en el laboratorio con un Fluorómetro Turner 110. El análisis se llevó a cabo de acuerdo a Yentsch y Menzel (1963), modificado por Holm-Hansen et al. (1965).

**4.2. Colección de data meteorológica y oceanográfica**

La data oceanográfica colectada durante el crucero de investigación incluyó perfiles de temperatura, conductividad (para determinación de salinidad), profundidad y oxígeno
disuelto obtenidos en medidos mediante un CTD (Sensordata SD203) equipado con un sensor de oxígeno, y mediante la colección de muestras de agua de mar con botellas Tipo Niskin. Para estas últimas y para la calibración de los perfiles de CTD, la salinidad se determinó con un salinómetro de inducción (Beckman III) y la concentración de oxígeno disuelto por el método de Winkler (Carpenter 1965, Knapp et al. 1993). Muestras con botellas oceanográficas fueron colectadas en 15 de las 22 transectas, más las bahías las Concepción y Coliumo, correspondiendo a un total de 90 estaciones con perfiles hidrográficos con botellas. Para el cálculo de la densidad se utilizó la ecuación internacional de estado del agua de mar de 1980 (Millero y Poisson 1981 y UNESCO 1981a, 1981b) y para la determinación de la estabilidad hidrostática se utilizaron los algoritmos presentados por Pond y Pickard (1983).

En cada una de las estaciones oceanográficas y mediante el uso de una estación meteorológica automática Delta-T colocada a bordo de la embarcación, se registraron los siguientes datos meteorológicos: temperatura del aire, intensidad y dirección del viento, y radiación solar. Se utilizaron las normas, tablas y códigos del National Oceanographic Data Center (NODC, 1991). La data meteorológica obtenida durante la realización del crucero incluyó además, data de dirección e intensidad del viento, temperatura y presión barométrica desde estaciones meteorológicas a lo largo de Chile central, incluida la Estación Meteorológica de Bellavista (VIII Región, propiedad de la Universidad de Concepción). En forma paralela al crucero, y para determinar estructuras oceanográficas como frentes, giros o filamentos, etc, y para intentar un seguimiento de ellas, y para posteriormente asociarlas a las distribuciones de ictioplancton, se colectó imágenes satelitales de Temperatura Superficial del Mar en forma secuencial (8 imágenes). Estas imágenes fueron obtenidas del Programa Multidisciplinario de Percepción Remota de la Dirección de Investigación de la Universidad de Concepción.

Análisis de datos oceanográficos y meteorológicos

44
La información oceanográfica y meteorológica utilizada para explorar posibles asociaciones con los centros de alta abundancia ictioplanctónica (núcleos) incluyeron las siguientes variables:

a) temperatura (horizontal y vertical),
b) salinidad (horizontal y vertical),
c) densidad (Sigma-t)(horizontal y vertical),
d) profundidad de la termoclina,
e) profundidad de la picnoclina,
f) localización de gradientes horizontales (data oceanográfica in situ y satelital),
g) localización espacial de estructuras oceanográficas en la horizontal (data oceanográfica in situ y satelital), y
h) dirección e intensidad del viento en estaciones meteorológicas a lo largo de la costa (vectores descompuestos en ejes x e y)
i) presión barométrica.

Junto a la utilización de esta información (y para su determinación), se entregarán los resultados mencionados a continuación:

i.- Representación gráfica de T, S, Sigma-t, y Oxígeno disuelto (secciones horizontales por profundidades), mediante interpolación bidimensional
ii.- Distribución horizontal de gradientes entre profundidades mediante interpolación bidimensional (e.g. isolíneas gradientes temperatura o densidad, etc)
iii.- Distribución de gradientes horizontales y estructuras frontales, mediante análisis gráfico (interpolación bidimensional ) de data colectada in situ y mediante análisis de imagen satelital de Temperatura Superficial del Mar (TSM).
iv.- Inferencia de movimientos transversales y paralelos a la costa de parcelas de agua o zonas frontales (escala 1-7 días), a partir de la data secuencial de radiancia espectral del agua
de mar (información satelital) y análisis de anomalías de distribución diaria de radiancia respecto a promedio de escala mayor.

vi.- Representación en eje cartesiano de dirección e intensidad del viento en sus componentes norte-sur y este-oeste

vii.- Representación de serie temporal de presión barométrica en el área general de muestreo.

viii.- Diagramas T-S con la respectiva caracterización de las aguas encontradas en la zona de estudio.

4.3 Análisis integrado de las condiciones bio-oceanográficas y las larvas y huevos de sardina común y anchoyeta

Para establecer posibles asociaciones entre las variables bio-oceanográficas y las larvas de las especies objetivo se requirió en primer lugar de un trabajo de exploración de datos. Las variables bio-oceanográficas a considerar fueron: salinidad, temperatura, oxígeno, densidad, abundancia de ítems alimentarios, abundancia de predadores. Las variables oceanográfico-físicas se analizaron principalmente para 10 m de profundidad debido a que fué en el estrato somero donde se colectó las mayores abundancias de huevos y larvas de anchoyeta y sardina común.

Análisis multivariado

Análisis Factorial de Correspondencias y Análisis de Componentes Principales

Dada la gran cantidad de datos, se efectuó Análisis Factorial de Correspondencias (AFCO) para el total de los datos biológicos disponibles (huevos y larvas de anchoyeta y sardina común; predadores y presas), considerando todas las estaciones susceptibles de ser comparadas. Primero se efectuó el AFCO sin diferenciar por núcleo de abundancia. Posteriormente, se tomó como base tal diferenciación.
El AFCO es apropiado cuando los datos se encuentran disponibles en tablas de frecuencia. En el presente caso, los datos corresponden a la abundancia numérica (Cuadras, 1991), siendo el supuesto biológico básico que tanto presas como predadores, más huevos y larvas de anchojeta y sardina común son igualmente susceptibles de ser muestreados. Acá, el objetivo del AFCO es obtener una representación geométrica reducida de las estaciones de muestreo en función de las distribuciones de frecuencias de los caracteres (variables). De acuerdo con Cuadras (1981), la principal ventaja del AFCO es que posibilita la representar simultáneamente las \( n \) variables (caracteres) en función de las \( k \) estaciones (poblaciones muestreales). La interpretación del AFCO es en relación a la proximidad de las estaciones \( k \) a un determinado grupo de caracteres \( n \), lo que indica que, si están cerca, entonces estos caracteres tienen una presencia importante en tales estaciones.

Alternativamente, para el caso del núcleo secundario se efectuó Análisis de Componentes Principales (ACP) debido a que se contó con la mayor cantidad de variables oceanográficas (temperatura, salinidad, oxígeno, \( \sigma_t \)), además de presas (copepodos, nauplios, diatomeas, dinoflagelados, huecos de copépodos), predadores (hidromedusas, quetognatos, sifonóforos, cetóforos) y huevos y larvas de anchojeta y sardina común.

Método Multivariado Robusto de Somerton

Para caracterizar las condiciones bio-oceanográficas asociadas a los principales núcleos de abundancia de huevos y larvas de las especies objetivo se utilizó un segundo método, el Método Multivariado Robusto de Somerton (1989) descrito previamente. El algoritmo TSQUSIM se utilizó tanto con variables biológicas como físicas contrastando las características que se encuentran en el interior de los núcleos con aquellas de la zona externa. Las pruebas univariadas corregidas por el método de Bonferroni permitieron aislar las variables que diferencian los núcleos de desove con la zona externa a estos, en el caso en que se encontraron diferencias significativas.
VII.- RESULTADOS

Objetivo Específico 1.

Determinar la distribución espacial y cuantificar la abundancia de huevos y estadios larvales de anchoveta y sardina común en la zona centro-sur de Chile.

Distribución de huevos de anchoveta y sardina común

De las 157 estaciones muestreadas, 42 estaciones presentaron huevos de anchoveta y 34 presentaron de sardina común (Figuras 1.1 y 1.2) Estas correspondieron a las mismas estaciones del estrato entre 0 y 40 m de profundidad donde se hallaron huevos de estas especies fueron (Figuras 1.3 y 1.4). En el estrato más profundo (40-100 m), sólo 3 estaciones presentaron huevos de anchoveta y 2 de sardina común.

En 29 estaciones se encontró huevos de ambas especies, lo cual representa el 76% de estaciones con huevos de anchoveta y el 87 % de estaciones con huevos de sardina común. Los resultados aquí expuestos indicarían una posible superposición de ambas especies en las zonas de desove durante el período muestreado (ver sección núcleos de huevos y larvas, más adelante).

Para ambas especies el rango latitudinal de las estaciones positivas fue el mismo: desde los 33°41’S (frente a San Antonio) hasta los 39°40’S (frente a Corral).

Basado en abundancias en estrato 0-40 m (en orden decreciente), se presentan las regiones con mayor número de estaciones positivas de anchoveta:

a) la IX Región con 21 estaciones (de un total de 25 estaciones totales muestreadas)

b) la VIII Región con 15 estaciones (8 estaciones de transectas de un total de 41 y de bahías de un total de 25)
c) la Quinta Región con 3 estaciones con huevos (de un total de 32 estaciones muestreadas) y las Sexta y Séptima Regiones, también con tres estaciones (de un total de 32 estaciones muestreadas).

Basado en abundancias en estrato 0-40 m (en orden decreciente), se presentan las regiones con mayor número de estaciones positivas con huevos de sardina:

a) la IX Región con 13 estaciones (de un total de 25 estaciones totales muestreadas)
b) la VIII Región con 18 estaciones (8 estaciones de transectas de un total de 41 y 10 de bahías de un total de 25)
c) la Quinta Región con 2 estaciones con huevos (de un total de 32 estaciones muestreadas)
d) la Sexta y Séptima Regiones con 1 estación con huevos de sardina común.

Distribución de larvas de anchoveta y sardina común

De las 157 estaciones muestreadas, 69 presentaron larvas de anchoveta y 51 presentaron de sardina común (Figuras 1.5 y 1.6), concordando con las mismas estaciones en que se encontró larvas de estas especies en el estrato entre 0 y 40 m de profundidad (Figuras 1.7 y 1.8). En el estrato más profundo (40-100 m), sólo 17 estaciones presentaron larvas de anchoveta y 11 estaciones presentaron larvas de sardina común. (Figuras 1.9 y 1.10).

En 35 estaciones se encontró larvas de ambas especies, lo cual representa el 50% de estaciones con larvas de anchoveta y el 68% de estaciones con larvas de sardina común. Los resultados aquí expuestos indicarían una posible superposición de ambas especies en las zonas de desarrollo larval durante el periodo muestreado (ver sección núcleos de huevos y larvas, más adelante).

El rango latitudinal de las estaciones con larvas de anchoveta fue desde los 33°31'S (frente a Valparaíso) hasta los 39°40'S (frente a Corral). El rango latitudinal de las estaciones con
larvas de sardina común fue desde los 35°10'S (frente a Constitución) hasta los 39°40'S (frente a Corral).

Basado en abundancias en estrato 0-40 m (en orden decreciente), se presentan las regiones con mayor número de estaciones positivas con larvas de anchoveta:

a) la VIII Región con 32 estaciones (26 estaciones de transectas de un total de 41 y 6 de bahías de un total de 25)
b) la IX Región con 21 estaciones (de un total de 25 estaciones totales muestreadas)
c) las Sexta y Séptima Regiones, con 12 estaciones (de un total de 32 estaciones muestreadas), y
d) la Quinta Región con 4 estaciones con larvas (de un total de 32 estaciones muestreadas) y

Basado en abundancias en estrato 0-40 m (en orden decreciente), se presentan las regiones con mayor número de estaciones positivas con larvas de sardina:

a) la VIII Región con 34 estaciones (18 estaciones de transectas de un total de 41 y 16 de bahías de un total de 25)
b) la IX Región con 11 estaciones (de un total de 25 estaciones totales muestreadas)
c) la Sexta y Séptima Regiones con 6 estaciones con larvas de sardina común.
d) la Quinta Región sin estaciones con larvas de sardina común (de un total de 32 estaciones muestreadas).

**Identificación de los Núcleos de Densidad de Huevos y Larvas de Sardina y Anchoveta**

Procedimientos Sugeridos por los Resultados del Muestreo Regular

En primer lugar, se debe destacar el hecho que se encontraron abundancias casi nulas de huevos y larvas de sardina y anchoveta en el estrato profundo (40-100 m), de tal manera que
el siguiente análisis geoestadístico se refiere al estrato superficial (0 a 40 m), que es donde se encuentran los núcleos de huevos y larvas de sardina y anchoveta.

Para los cuatro grupos analizados (i.e. huevos y larvas de sardina y anchoveta) se realizó un análisis estructural considerando sólo estaciones con presencia del item bajo análisis. Dada la alta variabilidad observada en los datos de abundancia, se aplicó una transformación logarítmica que en los cuatro casos permitió normalizar la distribución de los datos y mejorar el variograma obtenido. Un estimador insesgado para la transformación hacia atrás, hacia las unidades originales una vez concluido el análisis espacial, tiene la forma (Land 1975):

\[ D_N = e^{(D_{inN} + \frac{1}{2}s^2_{inN})} \]

7) donde \( D_N \) es la densidad en unidades originales, \( D_{inN} \) es la densidad media en unidades logarítmicas y \( s^2_{inN} \) es la varianza muestral en unidades logarítmicas.

En una primera instancia, se incluyeron todas las observaciones al norte de los 36°S, pero esto resultó en variogramas fuertemente influenciados por esos datos, y patrones anómalos de dispersión. Sólo en el caso de las larvas de sardina se pudo incluir todas las observaciones en un solo análisis, pero en este caso no se registraron observaciones al norte de los 35°S (Figura 1.11). En una segunda instancia, se intentó un análisis por separado para las observaciones de larvas de anchoveta al norte de los 36°S (Figura 1.12) pero no se apreció correlación espacial en ese grupo de estaciones (10 entre los 33°S y 36°S). En el caso de los huevos de ambas especies, el número de observaciones al norte de los 36°S fue simplemente demasiado bajo (3 en sardina y 5 en anchoveta) para cualquier análisis de agregación espacial. Por lo tanto, los análisis comprenden las observaciones realizadas entre los 36° y 40°S para huevos de ambas especies y larvas de anchoveta, y entre los 35°S y los 40°S para larvas de sardina.
En los cuatro casos se construyó un variograma de tipo isotrópico, y se eligió una distancia máxima de comparación entre pares de observaciones igual a la mitad de la distancia máxima observada en cada conjunto de datos. Posteriormente se ajustó un modelo esférico, cuyos parámetros para los cuatro casos se indican en la Tabla 1.1.

<table>
<thead>
<tr>
<th></th>
<th>Anchoveta</th>
<th>Sardina</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Huevos</td>
<td>Larvas</td>
</tr>
<tr>
<td><strong>n</strong></td>
<td>35</td>
<td>59</td>
</tr>
<tr>
<td>Nugget</td>
<td>1.5</td>
<td>0.4</td>
</tr>
<tr>
<td>Sill</td>
<td>3.8</td>
<td>0.7</td>
</tr>
<tr>
<td>Rango</td>
<td>0.15</td>
<td>0.25</td>
</tr>
</tbody>
</table>

**Tabla 1.1. Parámetros del modelo esférico ajustado a cada variograma experimental calculado. n: número de estaciones utilizadas.**

**Núcleos de Huevos y Larvas de Sardina**

El núcleo principal de huevos y larvas de sardina se encuentra al sur de Pta. Lavapié (Figura 1.11 a, b). Este núcleo principal tiene su centro frente a los 39°S, y se extiende más de un grado de latitud, a juzgar por la distribución espacial de huevos (Figura 1.11 a). Las larvas han pasado varios días más en el plancton, y su núcleo de abundancia se encuentra más al norte (Figura 1.11 b), con centro en los 38°S, lo que indica que los huevos fueron transportados hacia el norte por la corriente superficial dominante durante el muestreo. Un núcleo mucho menor de huevos y larvas se observa entre los 37° y los 36°S, y también en este caso el centro del núcleo de larvas se encuentra más al norte que el de huevos (Figura 1.11 a, b). Los núcleos ocupan la zona inmediatamente vecina a la línea de costa. Las densidades de huevos en el centro del núcleo principal alcanzan valores tan altos como ca. 7.300 huevos/m², para decaer a ca. 1.200 y ca. 500 huevos/m² en los bordes del núcleo. En el núcleo menor de huevos las densidades máximas sólo alcanzan a ca. 2.700 huevos/m². Por
otro lado, las densidades de larvas en el centro del núcleo principal son de ca. 3 200 larvas/m², y de sólo ca. 750 larvas/m² en el núcleo secundario.

Núcleos de Huevos y Larvas de Anchoveta

El núcleo principal de huevos de anchoveta está incluso más al sur que el de huevos de sardina, y de hecho una gran parte de ese núcleo de huevos quedó sin ser muestrada hacia el sur de la última transecta (Figura 1.12 a). La extensión de este núcleo es similar o mayor que la del núcleo de huevos de sardina. Asimismo, el centro del núcleo de larvas de anchoveta está a más de 1° de latitud hacia el norte del centro de huevos (Figura 1.12 b). Se aprecia un núcleo menor de huevos entre los 37°S y los 36°S, como en el caso de la sardina, pero no se aprecia ningún núcleo secundario de larvas (Figura 1.12 a y b). Las densidades de huevos en el centro del núcleo principal son menores que las de sardina alcanzando a ca. 4.000 huevos/m², aunque las densidades de larvas de anchoveta son mayores que las larvas de sardina y que de huevos de anchoveta en el centro del núcleo, alcanzando a ca. 5.000 larvas/m².

OBJETIVO ESPECIFICO 2.

Caracterizar los principales núcleos de abundancia de huevos y larvas de anchoveta y sardina común respecto a la estructura de tallas y edad de los estadios de desarrollo.

El rango de tallas de larvas de anchoveta colectadas en el núcleo principal, en la Novena Región, varió desde 3 mm a 21 mm de longitud estándar (Figura 2.1). La moda ocurrió a los 7 mm (intervalo 7.0 a 7.99 mm), correspondiendo al 32 % de las larvas colectadas en el núcleo. El rango de tallas de las larvas de sardina común en el núcleo principal varió entre 3 y 15 mm, ubicándose la moda en el intervalo de tallas entre 6.0 y 6.99 mm con alrededor de 32% de las larvas del núcleo, el cual corresponde a larvas preflexión (Figura 2.2 a). En el núcleo secundario, en la Octava Región, las larvas de sardina común variaron entre 5 y 27
mm de longitud estándar, estando su moda ubicada a los 12 mm, la cual corresponde aproximadamente a un 13% de las larvas del núcleo y que se encontraban en estado postflexión (Figura 2.2 b).

Para describir la relación entre talla larval y edad determinada a partir de anillos diarios de otolitos de ambas especies, se utilizó un modelo lineal simple, dadas las bajas tallas encontradas. Para anchoveta, el rango de tallas utilizadas fue estrecho (hasta menos de 11 mm) debido a la ausencia de observaciones de larvas de tallas mayores, correspondiendo a larvas con otolitos con hasta 6 anillos de crecimiento diario. El modelo ajustado fue altamente significativo pero explicó sólo un 60% de la varianza (P<0.001; R²= 0.60; n= 31) (Figura 2.3 a). Para ajustar el modelo de larvas de sardina común, se utilizó un rango de tallas larvales mayor al de anchoveta. El modelo para sardina común obtuvo un mejor ajuste, siendo altamente significativo (P<0.001) y explicando una gran fracción de la variabilidad (R²= 0.97, n=32) (Figura 2.3 b). Las tasas de crecimiento diarias obtenidas a partir de estos modelos para cada especie correspondieron a 0.60 mm d⁻¹ para anchoveta entre 6.0 y 10.2 mm, y de 0.38 mm d⁻¹ para sardina común entre 4.6 y 18.3 mm. Los modelos que representarían el crecimiento larval serían:

\[
\text{anchovetas: } y = 5.34 + 0.60x \\
\text{sardina común: } y = 4.93 + 0.38x
\]

donde: \(y = \text{longitud larval (notocordial o standard), } x = \text{número de anillos diarios.}\)

A partir de estas regresiones y las tallas larvales del resto de las larvas colectadas en los núcleos de mayor abundancia, se calculó la distribución de frecuencias de edades larvales (a partir del desove) de ambas especies en los núcleos respectivos. En el núcleo principal ubicado en la Novena Región, la edad de las larvas de anchoveta varió entre 4 y 36 días desde el desove, presentando un peak de máxima frecuencia para larvas con 12 y 13 días (Figura 2.4). Sobre el 95% del total de las larvas presentó edades inferiores a 15 días en este núcleo. La distribución de las frecuencias de edades de sardina común varió entre los dos núcleos determinados en la Novena y Octava Regiones (Kolmogorov-Smirnov,
P<0.001). En el núcleo principal, la edad de las larvas varió entre los 5 y 37 días de edad (Figura 2.5 a) mientras que en el núcleo secundario, éstas variaron entre los 9 y los 67 días de edad (Figura 2.5 b). La moda en edad para el peak principal ocurrió a los 10 días de edad mientras que en el núcleo secundario esta fue más difusa ente los 25 y 27 días de edad. De este modo, tanto las modas como el rango de edades fueron mayores en el núcleo secundario, resultando la edad máxima colectada en este segundo núcleo casi el doble del núcleo primario (37 vs 67 días).

En cuanto a la fracción de larvas por estado de desarrollo (Figura 2.6), el núcleo principal de anchoveta ubicado en la Novena Región presentó larvas mayoritariamente en estado postflexión (66.6 % postflexión en comparación con 33.3 % preflexión). Los núcleos de sardina común ubicados en cada región mostraron diferencias en sus proporciones de larvas clasificadas por estadio de desarrollo. En el núcleo principal de sardina común, ubicado en la Novena Región, la proporción de larvas en estado preflexión correspondieron a más del 80% de las larvas colectadas en ese núcleo (81.3%). En el núcleo secundario de esa misma especie, en la VIII Región, las proporciones se invierten alcanzando en esta área las larvas en estado postflexión el mayor porcentaje (87 % del total de larvas de sardina común). Como se indicó anteriormente, y de acuerdo con estos resultados, en este último núcleo se habrían encontrado las larvas de mayor talla y de mayor edad.

De la inspección gráfica de las distribuciones de ambas especies por estado de desarrollo y estrato se determinó que ambos estados, pre- y post flexión, tanto de larvas de anchoveta como de sardina común se encontraron mayoritariamente en el estrato más somero (0-40 m) (Figura 2.7 - 2.10) y que, en el estrato más profundo (40-100 m) (Figura 2.11 - 2.14) las larvas de ambas especies en estado postflexión tienden a aumentar, lo cual permite postular que el rango de distribución vertical aumentaría (se profundizaría) en la medida que las larvas se van desarrollando.
Tanto para anchoyeta como para larvas de sardina común se procedió a calcular una relación entre diámetro de los otolitos y longitud larval (Figura 2.15 a y b). Para ambas especies se utilizó un modelo potencial. Para anchoyeta, el modelo ajustado fue:

\[ y = 2.6454 x^{0.3389} \quad R^2 = 0.989; \quad \text{MSE} = 1.081 \]

\[
\text{Model } \text{VAR}(1) = a \cdot \text{VAR}(3)^2
\]

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>SUM OF SQUARES</th>
<th>DF</th>
<th>MEAN SQUARE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>2763.900</td>
<td>2</td>
<td>1381.950</td>
</tr>
<tr>
<td>Residual</td>
<td>19.462</td>
<td>18</td>
<td>1.081</td>
</tr>
<tr>
<td>Total</td>
<td>2783.361</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Corrected</td>
<td>487.19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

donde \( y \) es la longitud larval (mm) y \( x \) corresponde al diámetro del otolito (um). Para la sardina común, el modelo ajustado correspondió a:

\[ y = 1.1291 x^{0.5452} \quad R^2 = 0.9955; \quad \text{MSE} = 0.801 \]

\[
\text{Model } \text{VAR}(1) = a \cdot \text{VAR}(3)^2
\]

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>SUM OF SQUARES</th>
<th>DF</th>
<th>MEAN SQUARE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>1555.541</td>
<td>2</td>
<td>777.771</td>
</tr>
<tr>
<td>Residual</td>
<td>16.817</td>
<td>21</td>
<td>0.801</td>
</tr>
<tr>
<td>Total</td>
<td>1572.333</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Corrected</td>
<td>111.370</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>
OBJETIVO ESPECIFICO 3.

Determinar la dominancia numérica de anchoveta y sardina común y caracterizar la asociación ictioplanctónica

Del análisis de las muestras de ictioplancton, se determinaron 45 posibles taxa de larvas, de las cuales 15 fueron identificados hasta especie, 8 hasta género, 7 hasta familia y 15 hasta tipo. En el estrato somero (0-40 m) hubo más taxa (37 taxa) que en el profundo (28 taxa) (Tablas 3.1 y 3.2). Los taxa que ocurrieron sólo en el estrato somero (ausentes en el profundo) fueron: Ethmidium maculatum, Stromateus stellatus, Tripterygion chilensis, Prolatilus jugularis, Sardinops sagax, Syngnathis saurus, Agonopsis chiloensis, Scopelosaurus sp, y otros 8 tipos no identificados. Los que ocurrieron sólo en el estrato profundo (ausentes en el somero) fueron: Bathylagus sp, Lampanyctus sp. y otros 6 tipos no identificados.

En el estrato más somero (0-40 m), el taxón más frecuente fue Higophum brunii (56 % de las estaciones) (Tabla 3.1), seguido de la anchoveta (34%) y sardina común (34%) junto a Sebastes capensis (34%). Los taxa más abundantes fueron las dos especies objetivo, sardina común y anchoveta, representando en conjunto el 45 % del total de larvas colectadas (estandarizadas a 100 m³).

En el estrato más profundo (40-100 m) (Tabla 3.2), el taxon más frecuente fue también Higophum brunii (77 % de las estaciones), seguido de tres taxa pertenecientes a la familia Mictophidae (Mycophidae sp1, sp2 y Maurolicus sp), y luego Merluccius gayi (33%). Los taxa más abundantes fueron Higophum brunii, representando un 50% de las larvas colectadas (estandarizadas a 100 m³), seguido de Maurolicus sp. y Merluccius Gayii.
Debido a la relativa importancia de ambas especies sobre el total de huevos y larvas colectadas, al comparar la distribución de huevos y larvas totales con y sin anchoveta y sardina, las distribuciones resultan muy similares, esto es, las distribuciones estarían determinadas en parte por las abundancias del resto de la comunidad de huevos y larvas, esto tanto para huevos en el estrato 0-40 m (Figuras 3.1 y 3.2), para huevos en el estrato más profundo (Figuras 3.3 y 3.4), en menor grado para larvas en el estrato somero (Figuras 3.5 y 3.6), pero en forma similar para larvas en el estrato profundo (Figuras 3.7 y 3.8).

En general, las áreas de mayor abundancia de ictioplancton coinciden con las de anchoveta y sardina común en el estrato más somero en las Octava y Novena Regiones (ver Figuras 1.1 - 1.10) pero no en las regiones más al norte o en el estrato más profundo, donde huevos y larvas de otros ictioplancteres tienden a ser también relativamente abundantes en sectores más alejados de la costa (Figuras 3.1 - 3.8).
<table>
<thead>
<tr>
<th>TAXA</th>
<th>Frecuencia Estaciones Positivas (N= 155)</th>
<th>Porcentaje Estaciones Positivas (%)</th>
<th>Abundancia (Ind/100m2)</th>
<th>Porcentaje Abundancia (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huevos Anchoveta</td>
<td>40</td>
<td>25.81</td>
<td>451499</td>
<td>32.27</td>
</tr>
<tr>
<td>Huevos Sardina</td>
<td>34</td>
<td>21.94</td>
<td>36056</td>
<td>2.58</td>
</tr>
<tr>
<td>Otros huevos</td>
<td>152</td>
<td>98.06</td>
<td>911708</td>
<td>65.16</td>
</tr>
<tr>
<td><em>Strangomera bentincki</em></td>
<td>54</td>
<td>34.84</td>
<td>40447.4</td>
<td>23.34</td>
</tr>
<tr>
<td><em>Engraulis ringens</em></td>
<td>71</td>
<td>45.81</td>
<td>37633.8</td>
<td>21.72</td>
</tr>
<tr>
<td><em>Hygoophum bruni</em></td>
<td>88</td>
<td>56.77</td>
<td>31884.8</td>
<td>18.40</td>
</tr>
<tr>
<td><em>Normanichthys crockeri</em></td>
<td>39</td>
<td>25.16</td>
<td>10653.7</td>
<td>6.15</td>
</tr>
<tr>
<td><em>Sebastes capensis</em></td>
<td>53</td>
<td>34.19</td>
<td>9473.0</td>
<td>5.47</td>
</tr>
<tr>
<td><em>Maurolicus sp</em></td>
<td>36</td>
<td>23.23</td>
<td>6087.1</td>
<td>3.51</td>
</tr>
<tr>
<td><em>Mictophidae sp1</em></td>
<td>52</td>
<td>33.55</td>
<td>6012.3</td>
<td>3.47</td>
</tr>
<tr>
<td><em>Mictophidae sp2</em></td>
<td>37</td>
<td>23.87</td>
<td>3850.2</td>
<td>2.22</td>
</tr>
<tr>
<td><em>Mictophidae sp3</em></td>
<td>5</td>
<td>3.23</td>
<td>3350.7</td>
<td>1.93</td>
</tr>
<tr>
<td><em>Merluccius gayi</em></td>
<td>35</td>
<td>22.58</td>
<td>3292.2</td>
<td>1.90</td>
</tr>
<tr>
<td><em>Ethmidium maculatum</em></td>
<td>19</td>
<td>12.26</td>
<td>1855.3</td>
<td>1.07</td>
</tr>
<tr>
<td><em>Paralichthys sp</em></td>
<td>29</td>
<td>18.71</td>
<td>1772.9</td>
<td>1.02</td>
</tr>
<tr>
<td><em>Hypsolemmus sordidus</em></td>
<td>34</td>
<td>21.94</td>
<td>1247.6</td>
<td>0.72</td>
</tr>
<tr>
<td><em>Stromateus stellatus</em></td>
<td>23</td>
<td>14.84</td>
<td>1180.7</td>
<td>0.68</td>
</tr>
<tr>
<td><em>Tripterygion chilensis</em></td>
<td>13</td>
<td>8.39</td>
<td>1087.1</td>
<td>0.63</td>
</tr>
<tr>
<td>GOBIESOCIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Odontesthes sp</em></td>
<td>12</td>
<td>7.74</td>
<td>429.9</td>
<td>0.25</td>
</tr>
<tr>
<td><em>Diogenichthys sp</em></td>
<td>9</td>
<td>5.81</td>
<td>409.9</td>
<td>0.24</td>
</tr>
<tr>
<td><em>Mictophidae sp4</em></td>
<td>10</td>
<td>6.45</td>
<td>370.7</td>
<td>0.21</td>
</tr>
<tr>
<td><em>Symbolophorus sp</em></td>
<td>6</td>
<td>3.87</td>
<td>240.2</td>
<td>0.14</td>
</tr>
<tr>
<td>type 62</td>
<td>5</td>
<td>3.23</td>
<td>163.1</td>
<td>0.09</td>
</tr>
<tr>
<td>type 67</td>
<td>3</td>
<td>1.94</td>
<td>157.2</td>
<td>0.09</td>
</tr>
<tr>
<td><em>Prolatilus jugularis</em></td>
<td>12</td>
<td>7.80</td>
<td>432.5</td>
<td>0.30</td>
</tr>
<tr>
<td><em>Sardinops sagax</em></td>
<td>4</td>
<td>2.58</td>
<td>131.1</td>
<td>0.08</td>
</tr>
<tr>
<td>type 61</td>
<td>3</td>
<td>1.94</td>
<td>103.6</td>
<td>0.06</td>
</tr>
<tr>
<td>type 64</td>
<td>5</td>
<td>3.23</td>
<td>94.7</td>
<td>0.05</td>
</tr>
<tr>
<td>type 66</td>
<td>3</td>
<td>1.94</td>
<td>67.6</td>
<td>0.04</td>
</tr>
<tr>
<td><em>Synagathus saurus</em></td>
<td>4</td>
<td>2.58</td>
<td>62.4</td>
<td>0.04</td>
</tr>
<tr>
<td><em>Agonopsis chiloensis</em></td>
<td>2</td>
<td>1.29</td>
<td>54.8</td>
<td>0.03</td>
</tr>
<tr>
<td><em>Mictophidae sp5</em></td>
<td>2</td>
<td>1.29</td>
<td>41.9</td>
<td>0.02</td>
</tr>
<tr>
<td><em>Congiopodus peruvianus</em></td>
<td>2</td>
<td>1.29</td>
<td>38.4</td>
<td>0.02</td>
</tr>
<tr>
<td>type 11</td>
<td>1</td>
<td>0.65</td>
<td>37.5</td>
<td>0.02</td>
</tr>
<tr>
<td>type 41</td>
<td>2</td>
<td>1.29</td>
<td>36.9</td>
<td>0.02</td>
</tr>
<tr>
<td><em>Scopelosaurus sp</em></td>
<td>2</td>
<td>1.29</td>
<td>36.1</td>
<td>0.02</td>
</tr>
<tr>
<td><em>Mictophidae sp6</em></td>
<td>1</td>
<td>0.65</td>
<td>25.3</td>
<td>0.01</td>
</tr>
<tr>
<td>type 65</td>
<td>1</td>
<td>0.65</td>
<td>23.0</td>
<td>0.01</td>
</tr>
<tr>
<td>type 30</td>
<td>2</td>
<td>1.29</td>
<td>19.0</td>
<td>0.01</td>
</tr>
<tr>
<td>N.I</td>
<td>19</td>
<td>12.26</td>
<td>9423.5</td>
<td>5.44</td>
</tr>
</tbody>
</table>
Tabla 3.2. Lista de taxa, frecuencias totales y relativas (%) y abundancias totales y relativas (%) en el área total de estudio, estrato 40 - 100 m de profundidad. Las abundancias totales son la sumatoria de todas las estaciones positivas en que los datos están estandarizados como individuos/100m².

<table>
<thead>
<tr>
<th>TAXA</th>
<th>Frecuencia Estaciones Positivas (N= 89)</th>
<th>Porcentaje Estaciones Positivas (%)</th>
<th>Abundancia (nd/100m²)</th>
<th>Porcentaje Abundancia (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huevos Anchoveta</td>
<td>3</td>
<td>3.37</td>
<td>1589</td>
<td>1.30</td>
</tr>
<tr>
<td>Huevos Sardina</td>
<td>2</td>
<td>2.25</td>
<td>47</td>
<td>0.04</td>
</tr>
<tr>
<td>Otros huevos</td>
<td>80</td>
<td>89.89</td>
<td>120399</td>
<td>98.66</td>
</tr>
<tr>
<td>Hygophum brunii</td>
<td>69</td>
<td>77.53</td>
<td>50778</td>
<td>50.96</td>
</tr>
<tr>
<td>Maurolicus sp</td>
<td>33</td>
<td>37.08</td>
<td>14835</td>
<td>14.89</td>
</tr>
<tr>
<td>Merluccius gayi</td>
<td>30</td>
<td>33.71</td>
<td>6860</td>
<td>6.89</td>
</tr>
<tr>
<td>Strangomera bentincki</td>
<td>11</td>
<td>12.36</td>
<td>3919</td>
<td>3.93</td>
</tr>
<tr>
<td>Mictophidae sp1</td>
<td>37</td>
<td>41.57</td>
<td>3131</td>
<td>3.14</td>
</tr>
<tr>
<td>Mictophidae sp2</td>
<td>33</td>
<td>37.08</td>
<td>3087</td>
<td>3.10</td>
</tr>
<tr>
<td>Mictophidae sp3</td>
<td>10</td>
<td>11.24</td>
<td>2519</td>
<td>2.53</td>
</tr>
<tr>
<td>Normanichthys crockeri</td>
<td>20</td>
<td>22.47</td>
<td>2133</td>
<td>2.14</td>
</tr>
<tr>
<td>Engraulis ringens</td>
<td>17</td>
<td>19.10</td>
<td>1580</td>
<td>1.59</td>
</tr>
<tr>
<td>Paralichthys sp</td>
<td>13</td>
<td>14.61</td>
<td>1347</td>
<td>1.35</td>
</tr>
<tr>
<td>Mictophidae sp4</td>
<td>25</td>
<td>28.09</td>
<td>1243</td>
<td>1.25</td>
</tr>
<tr>
<td>Sebastes capensis</td>
<td>14</td>
<td>15.73</td>
<td>988</td>
<td>0.99</td>
</tr>
<tr>
<td>Diogenichthys sp</td>
<td>15</td>
<td>16.85</td>
<td>865</td>
<td>0.87</td>
</tr>
<tr>
<td>Mictophidae sp6</td>
<td>3</td>
<td>3.37</td>
<td>425</td>
<td>0.43</td>
</tr>
<tr>
<td>type 73</td>
<td>2</td>
<td>2.25</td>
<td>182</td>
<td>0.18</td>
</tr>
<tr>
<td>Symbolophorus sp</td>
<td>6</td>
<td>6.74</td>
<td>179</td>
<td>0.18</td>
</tr>
<tr>
<td>Bathylagus sp</td>
<td>3</td>
<td>3.37</td>
<td>169</td>
<td>0.17</td>
</tr>
<tr>
<td>type 71</td>
<td>5</td>
<td>5.62</td>
<td>159</td>
<td>0.16</td>
</tr>
<tr>
<td>type 74</td>
<td>5</td>
<td>5.62</td>
<td>156</td>
<td>0.16</td>
</tr>
<tr>
<td>Hypsobleni assign sordidus</td>
<td>4</td>
<td>4.49</td>
<td>136</td>
<td>0.14</td>
</tr>
<tr>
<td>Gobiesocidae</td>
<td>2</td>
<td>2.25</td>
<td>118</td>
<td>0.12</td>
</tr>
<tr>
<td>Odontesthes sp</td>
<td>1</td>
<td>1.12</td>
<td>86</td>
<td>0.09</td>
</tr>
<tr>
<td>type 64</td>
<td>1</td>
<td>1.12</td>
<td>75</td>
<td>0.08</td>
</tr>
<tr>
<td>type 70</td>
<td>1</td>
<td>1.12</td>
<td>37</td>
<td>0.04</td>
</tr>
<tr>
<td>type 76</td>
<td>1</td>
<td>1.12</td>
<td>31</td>
<td>0.03</td>
</tr>
<tr>
<td>type 51</td>
<td>1</td>
<td>1.12</td>
<td>28</td>
<td>0.03</td>
</tr>
<tr>
<td>Lampanyctus</td>
<td>1</td>
<td>1.12</td>
<td>27</td>
<td>0.03</td>
</tr>
<tr>
<td>Congiopodus peruvianus</td>
<td>1</td>
<td>1.12</td>
<td>20</td>
<td>0.02</td>
</tr>
<tr>
<td>N.L</td>
<td>44</td>
<td>49.44</td>
<td>4523.67</td>
<td>4.54</td>
</tr>
</tbody>
</table>
Comparación de la Comunidad Larval Dentro versus Fuera de los Núcleos

Como resultado de la identificación de núcleos de huevos y larvas se distinguen 4 zonas a lo largo de la grilla de muestreo: un núcleo mayor de abundancia del sur (Valdivia), una zona de menor o nula abundancia frente a Punta Lavapié, otro núcleo menor de abundancia en el Golfo de Arauco y Bahía de Concepción, y una última zona de muy baja abundancia en todo el sector norte (V a VII Regiones). Esto fue válido para huevos y larvas de sardina y anchoveta. Por lo tanto, para comparar las comunidades dentro y fuera de los núcleos de abundancia se utilizó el algoritmo TSQUSIM (ver Metodología) para comparar los siguientes pares de zonas:

Primer Contraste: Núcleo sur versus Punta Lavapié
Segundo Contraste: Núcleo del Golfo de Arauco versus V-VII Regiones

No es conveniente comparar otros pares posibles debido a que en ese caso la probabilidad de rechazar la hipótesis nula es diferente al valor nominal ($\alpha=0.05$). Sin embargo, esta comparación de a pares permitirá discernir entre la hipótesis nula de no diferencia versus la alternativa en un sentido latitudinal.

Para el primer contraste se utilizaron 10 grupos taxonómicos (principalmente especies) que estuvieron presente en ambas zonas, mientras que para el segundo contraste se utilizaron 14 grupos taxonómicos (Tabla 3.3).
Tabla - 3.3. Resultados de la comparación de las comunidades larvales entre núcleo principal y zona de Lavapié.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Especie</strong></td>
<td><strong>Sebastes sp.</strong></td>
<td>-7.6111</td>
<td>999</td>
<td>0.001</td>
</tr>
<tr>
<td><strong>Hygophum sp.</strong></td>
<td>2.8995</td>
<td>30</td>
<td>0.970</td>
<td></td>
</tr>
<tr>
<td><strong>H. sordidus</strong></td>
<td>-1.4315</td>
<td>808</td>
<td>0.192</td>
<td></td>
</tr>
<tr>
<td><strong>E. maculatum</strong></td>
<td>-2.2732</td>
<td>4805</td>
<td>0.120</td>
<td></td>
</tr>
<tr>
<td><strong>S. sagax</strong></td>
<td>-0.0940</td>
<td>444</td>
<td>0.556</td>
<td></td>
</tr>
<tr>
<td><strong>S. stellatus</strong></td>
<td>-2.1865</td>
<td>877</td>
<td>0.123</td>
<td></td>
</tr>
<tr>
<td><strong>M. gayi</strong></td>
<td>0.8583</td>
<td>298</td>
<td>0.702</td>
<td></td>
</tr>
<tr>
<td><strong>T. chilensis</strong></td>
<td>1.4064</td>
<td>192</td>
<td>0.808</td>
<td></td>
</tr>
<tr>
<td><strong>Maurolicus sp.</strong></td>
<td>0.5668</td>
<td>352</td>
<td>0.648</td>
<td></td>
</tr>
<tr>
<td><strong>Mictophidae sp1</strong></td>
<td>2.3950</td>
<td>82</td>
<td>0.918</td>
<td></td>
</tr>
</tbody>
</table>

Los resultados indican que no existe diferencia significativa entre las comunidades de larvas de peces del núcleo sur y de Punta Lavapié, pero sí entre el núcleo del Golfo de Arauco y la de la zona de la V a VII Regiones (Tabla 3.4). Las diferencias significativas observadas hacia el norte se deben a 8 grupos taxonómicos (en negritas en la Tabla 3.4).

Tabla 3.4. Resultados de la comparación de las comunidades larvales entre núcleo secundario y zona norte.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Especie</strong></td>
<td><strong>Sebastes sp.</strong></td>
<td>-0.1461</td>
<td>539</td>
<td>0.461</td>
</tr>
<tr>
<td><strong>Hygophum sp.</strong></td>
<td>11.6813</td>
<td>0</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td><strong>H. sordidus</strong></td>
<td>-2.9015</td>
<td>984</td>
<td>0.016</td>
<td></td>
</tr>
<tr>
<td><strong>Normaniichthys sp.</strong></td>
<td>-11.4118</td>
<td>1000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td><strong>Odontesthes sp.</strong></td>
<td>-3.5069</td>
<td>996</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td><strong>Paralichthys sp.</strong></td>
<td>-3.2572</td>
<td>985</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td><strong>S. stellatus</strong></td>
<td>-8.0953</td>
<td>1000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td><strong>Gobiesocidae</strong></td>
<td>1.4856</td>
<td>410</td>
<td>0.590</td>
<td></td>
</tr>
<tr>
<td><strong>M. gayi</strong></td>
<td>-5.7426</td>
<td>1000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td><strong>S. saurus</strong></td>
<td>0.1383</td>
<td>446</td>
<td>0.554</td>
<td></td>
</tr>
<tr>
<td><strong>T. chilensis</strong></td>
<td>2.0630</td>
<td>330</td>
<td>0.670</td>
<td></td>
</tr>
<tr>
<td><strong>A. chilensis</strong></td>
<td>-0.6055</td>
<td>707</td>
<td>0.293</td>
<td></td>
</tr>
<tr>
<td><strong>Maurolicus sp.</strong></td>
<td>-7.0107</td>
<td>1000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td><strong>Mictophidae sp1</strong></td>
<td>-2.9015</td>
<td>967</td>
<td>0.033</td>
<td></td>
</tr>
</tbody>
</table>

62
Este resultado indica que la comunidad larval de los núcleos de huevos y larvas de sardina y anchoveta no se distinguen de la existente al exterior de los núcleos entre la VIII a la IX Regiones, pero que se distinguen de las comunidades de más al norte, donde la presencia de huevos y larvas de sardina y anchoveta es muy escasa.

Al analizar las posibles asociaciones de especies dentro de los núcleos principales y secundarios (Método extra no propuesto en oferta técnica, Complete linkage method, utilizando porcentaje de discordancia, paquete estadístico STATISTICA Inc.), se determinó que en el núcleo principal, ubicado en la Novena región, ambas especies objetivo, la anchoveta y sardina común, tienden a formar un solo cluster fácilmente identifiable de los demás grupos de especies (valor de corte: linkage distance 0.8) (Figura 3.9). Sin embargo, al inspeccionar el dendrograma correspondiente al núcleo secundario, donde las abundancias de larvas de anchoveta fueron mucho menores, se observa que ambas especies se encontrarian en clusters separados, hallándose la sardina común más asociada esta vez a otras especies costeras como *Normanchthys crockeri* e *Hypsoblennius sordidus* (Figura 3.10) (valor de corte: linkage distance 0.8).

**OBJETIVO ESPECIFICO 4.**

Caracterizar las condiciones bio-oceanográficas asociadas a los principales núcleos de abundancia de huevos y larvas de anchoveta y sardina común.

**4.1.1 Composición del microplancton**

**Composición del microplancton < a 150 um en la VIII Región**

La abundancia del microplancton de menor tamaño (i.e. medido con microscopía invertida) presente en el estrato 0-40 m de profundidad en la VIII Región, reportó un total de 7 taxa mayoritarios (Tabla 4.1.1). En la descripción gráfica del microplancton de la VIII Región hemos enfatizado las diatomeas, dinoflagelados y huevos de invertebrados, por su relevancia.

Las diatomeas fueron el grupo mayoritario en número en el estrato 0-40 m, seguido por los dinoflagelados (Tabla 4.1.1).

Tabla 4.1.1. Composición taxonómica del microplancton colectado con red en el estrato 0-40 m en la VIII Región. Las abundancias están representadas en Ind./m³.

<table>
<thead>
<tr>
<th>Taxa</th>
<th>N</th>
<th>Estac. posit</th>
<th>Media</th>
<th>Std.Dev.</th>
<th>Media</th>
<th>Std.Dev.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diatomeas tot.</td>
<td>56</td>
<td>56</td>
<td>155914816,8</td>
<td>240793506,9</td>
<td>155914816,8</td>
<td>240793506,9</td>
<td>99.767</td>
</tr>
<tr>
<td>Dinoflagelados</td>
<td>56</td>
<td>55</td>
<td>259456,5</td>
<td>237553,3</td>
<td>264173,9</td>
<td>237080,8</td>
<td>0.166</td>
</tr>
<tr>
<td>Tintinido</td>
<td>56</td>
<td>44</td>
<td>47800,4</td>
<td>79137,0</td>
<td>63733,9</td>
<td>85795,5</td>
<td>0.0306</td>
</tr>
<tr>
<td>Huevos</td>
<td>56</td>
<td>42</td>
<td>39579,6</td>
<td>46982,2</td>
<td>50374,1</td>
<td>47612,1</td>
<td>0.0253</td>
</tr>
<tr>
<td>Ciliados</td>
<td>56</td>
<td>16</td>
<td>11036,6</td>
<td>30815,7</td>
<td>38628,1</td>
<td>48425,6</td>
<td>0.00706</td>
</tr>
<tr>
<td>Silicoflagelado</td>
<td>56</td>
<td>11</td>
<td>2818,2</td>
<td>7099,3</td>
<td>14347,0</td>
<td>9760,0</td>
<td>0.00180</td>
</tr>
<tr>
<td>Radiolario</td>
<td>56</td>
<td>7</td>
<td>1010,0</td>
<td>2991,8</td>
<td>8079,7</td>
<td>3925,5</td>
<td>0.00064</td>
</tr>
<tr>
<td>Otros</td>
<td>56</td>
<td>11</td>
<td>322,4</td>
<td>-</td>
<td>12586,8</td>
<td>-</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Entre las diatomeas Chaetoceros y Skeletonema fueron los géneros dominantes (Tabla 4.1.2) en el estrato superficial, aunque también había una importante presencia de los géneros Schröderea y Thalassiosira.

En el estrato superficial de la VIII Región, se distinguen tres áreas de alta concentración de diatomeas: Golfo de Arauco, a la cuadra de la Península de Tumbes y a la cuadra del Río Itata (Figura 4.1.1 a); con abundancias entre 1,2 * 10⁸ y 1,6 * 10⁸. Por otra parte, la Bahía Concepción y las zonas más oceánicas presentaron valores menores a 2*10⁷ diatom./100 m².

Una zona de alta concentración de dinoflagelados estaba localizada en la zona de influencia de la desembocadura del Río Biobío con valores superiores a 2.2 *10⁵ ind/100 m² (Figura 4.1.2a). Por otra parte, los huevos de invertebrados estaban presentes en altas concentraciones en la boca de Bahía Concepción, en las cercanías de la Isla Quiriquina (Figura 4.1.3 a).
Tabla 4.1.2. Composición taxonómica de las diatomeas en el estrato 0-40 m en la VIII Región. Las abundancias están representadas en Ind./m$^3$.

<table>
<thead>
<tr>
<th>Taxa</th>
<th>N</th>
<th>Estac.</th>
<th>Media</th>
<th>Std.Dev.</th>
<th>Media Estac.</th>
<th>Std.Dev.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chaetoceros</td>
<td>56</td>
<td>56</td>
<td>93655709,0</td>
<td>161389862,3</td>
<td>93655709,0</td>
<td>161389862,3</td>
<td>60,100</td>
</tr>
<tr>
<td>Skeletonema</td>
<td>56</td>
<td>55</td>
<td>29559982,4</td>
<td>44855544,2</td>
<td>30097436,6</td>
<td>45086626,9</td>
<td>19,000</td>
</tr>
<tr>
<td>Schröderella</td>
<td>56</td>
<td>44</td>
<td>12700075,2</td>
<td>27199613,8</td>
<td>16163732,0</td>
<td>29815977,1</td>
<td>8,150</td>
</tr>
<tr>
<td>Thalassiosira</td>
<td>56</td>
<td>56</td>
<td>10315740,8</td>
<td>15548866,1</td>
<td>10315740,8</td>
<td>15548866,1</td>
<td>6,620</td>
</tr>
<tr>
<td>Asterionella</td>
<td>56</td>
<td>53</td>
<td>4980789,7</td>
<td>13300192,2</td>
<td>5262721,2</td>
<td>13623081,2</td>
<td>3,190</td>
</tr>
<tr>
<td>Pseudonitzschia</td>
<td>56</td>
<td>51</td>
<td>2226876,3</td>
<td>2770816,0</td>
<td>2445197,5</td>
<td>2810809,2</td>
<td>1,430</td>
</tr>
<tr>
<td>Cylindrotheca</td>
<td>56</td>
<td>42</td>
<td>585682</td>
<td>1208793,4</td>
<td>780909,3</td>
<td>1343111,5</td>
<td>0,376</td>
</tr>
<tr>
<td>Melosira</td>
<td>56</td>
<td>40</td>
<td>403747,2</td>
<td>715460,8</td>
<td>565246,0</td>
<td>792629</td>
<td>0,259</td>
</tr>
<tr>
<td>Rhizosolenia</td>
<td>56</td>
<td>22</td>
<td>256077,1</td>
<td>406190,1</td>
<td>349763,9</td>
<td>439629,8</td>
<td>0,164</td>
</tr>
<tr>
<td>Climacodium</td>
<td>56</td>
<td>41</td>
<td>240456,8</td>
<td>1121026,5</td>
<td>434373,5</td>
<td>1488929,4</td>
<td>0,154</td>
</tr>
<tr>
<td>Coscinosira</td>
<td>56</td>
<td>40</td>
<td>223507,7</td>
<td>659516,4</td>
<td>568928,6</td>
<td>966078,7</td>
<td>0,143</td>
</tr>
<tr>
<td>Eucampia</td>
<td>56</td>
<td>31</td>
<td>193548,8</td>
<td>278877,3</td>
<td>270968,4</td>
<td>296922,6</td>
<td>0,124</td>
</tr>
<tr>
<td>Otros taxa</td>
<td>1008</td>
<td>231</td>
<td>31812,4</td>
<td>---</td>
<td>165356,1</td>
<td>---</td>
<td>0,367</td>
</tr>
</tbody>
</table>

En el estrato más profundo (i.e. 40-100 m), las diatomeas también predominaron en número con una abundancia relativa numérica de 99,8 % (Tabla 4.1.3). La zona de mayor concentración de éstas estaba localizada a la cuadra del Río Itata (Figura 4.1.1 b). Los dinoflagelados y los tintinídeos incrementaron su abundancia relativa en comparación con el estrato más superficial, aunque sus concentraciones proporcionales siguen siendo bajas (Tabla 4.1.3).

Los dinoflagelados, en ambos estratos de profundidad, presentaron una distribución más bien costera. En el estrato más profundo las mayores concentraciones de dinoflagelados se encontraron en la zona norte del área de estudio y sus menores concentraciones en el Golfo de Arauco y zona oceánica (Figura 4.1.2b).

Una zona de alta concentración de huevos de invertebrados (app. 1,8 *10$^5$ ind/100 m$^2$) fue detectada entre 40-100 m de profundidad en la VIII Región, la cual estaba localizada a aproximadamente 20 mn de la costa, a la cuadra del Itata (Figura 4.1.3b).
Tabla 4.1.3. Composición taxonómica del microplancton colectado con red en el estrato 40-100 m en la VIII Región. Las abundancias están representadas en Ind./m$^3$.

<table>
<thead>
<tr>
<th>Taxa</th>
<th>N</th>
<th>Estac.posi</th>
<th>Media</th>
<th>Std.Dev.</th>
<th>Media Estac. pos.</th>
<th>Std.Dev.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diatomeas tot.</td>
<td>32</td>
<td>16</td>
<td>34506537,6</td>
<td>102790334,0</td>
<td>69013075,3</td>
<td>138909802,0</td>
<td>99,800</td>
</tr>
<tr>
<td>Dinoflagelados</td>
<td>32</td>
<td>9</td>
<td>21321,0</td>
<td>61647,7</td>
<td>75808,2</td>
<td>100398,2</td>
<td>0,062</td>
</tr>
<tr>
<td>Tintinido</td>
<td>32</td>
<td>16</td>
<td>14937,8</td>
<td>43927,8</td>
<td>29875,6</td>
<td>59261,4</td>
<td>0,043</td>
</tr>
<tr>
<td>Huevo</td>
<td>32</td>
<td>8</td>
<td>10163,3</td>
<td>35178,8</td>
<td>40700,0</td>
<td>63749,4</td>
<td>0,029</td>
</tr>
<tr>
<td>Silicoflageado</td>
<td>32</td>
<td>8</td>
<td>5201,6</td>
<td>24051,6</td>
<td>20806,2</td>
<td>46805,7</td>
<td>0,015</td>
</tr>
<tr>
<td>Ciliados</td>
<td>32</td>
<td>7</td>
<td>2606,0</td>
<td>7540,1</td>
<td>11913,1</td>
<td>12821,2</td>
<td>0,008</td>
</tr>
<tr>
<td>Otros taxa</td>
<td>192</td>
<td>14</td>
<td>391,4</td>
<td>8018,3</td>
<td></td>
<td></td>
<td>0,007</td>
</tr>
</tbody>
</table>

Los géneros de diatomeas más abundantes en el estrato 40-100 m fueron *Chaetoceros*, *Skeletonema* y *Asterionella* (Tabla 4.1.4). Por otra parte, los géneros *Thalassionema* y *Leptocylindrus*, que estaban ausentes en el estrato superficial, se presentaban en concentraciones moderadas en el más profundo.

Tabla 4.1.4. Composición taxonómica de las diatomeas en el estrato 40-100 m en la VIII Región. Las abundancias están representadas en Ind./m$^3$.

<table>
<thead>
<tr>
<th>Taxa</th>
<th>N</th>
<th>Estac.posi</th>
<th>Media</th>
<th>Std.Dev.</th>
<th>Media Estac. pos.</th>
<th>Std.Dev.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chaetoceros</td>
<td>32</td>
<td>17</td>
<td>21162809,7</td>
<td>60892007,7</td>
<td>39800000,0</td>
<td>79959891,7</td>
<td>59,500</td>
</tr>
<tr>
<td>Skeletonema</td>
<td>32</td>
<td>13</td>
<td>6310975,1</td>
<td>19874744,0</td>
<td>15500000,0</td>
<td>29414317,5</td>
<td>17,700</td>
</tr>
<tr>
<td>Asterionella</td>
<td>32</td>
<td>15</td>
<td>4614950,9</td>
<td>19417359,0</td>
<td>9850000,0</td>
<td>27922916,3</td>
<td>13,000</td>
</tr>
<tr>
<td>Thalassiosira</td>
<td>32</td>
<td>17</td>
<td>1574854,7</td>
<td>4918191,8</td>
<td>2960000,0</td>
<td>6518333,1</td>
<td>4,430</td>
</tr>
<tr>
<td>Pseudonitzschia</td>
<td>32</td>
<td>18</td>
<td>678205,4</td>
<td>2055135,8</td>
<td>1210000,0</td>
<td>2651116,5</td>
<td>1,910</td>
</tr>
<tr>
<td>Schröderella</td>
<td>32</td>
<td>17</td>
<td>483347,6</td>
<td>1175937,9</td>
<td>910000,0</td>
<td>1505640,6</td>
<td>1,360</td>
</tr>
<tr>
<td>Cylindrotheca</td>
<td>32</td>
<td>16</td>
<td>139665,7</td>
<td>400160,8</td>
<td>279000,0</td>
<td>537883,5</td>
<td>0,393</td>
</tr>
<tr>
<td>Thalassionema</td>
<td>32</td>
<td>12</td>
<td>103935,2</td>
<td>249266,8</td>
<td>277000,0</td>
<td>350326,8</td>
<td>0,292</td>
</tr>
<tr>
<td>Climacodium</td>
<td>32</td>
<td>8</td>
<td>84216,7</td>
<td>364970,0</td>
<td>337000,0</td>
<td>701877,3</td>
<td>0,237</td>
</tr>
<tr>
<td>Coscinosira</td>
<td>32</td>
<td>7</td>
<td>82099,1</td>
<td>370582,7</td>
<td>375000,0</td>
<td>762338,9</td>
<td>0,231</td>
</tr>
<tr>
<td>Leptocylindrus</td>
<td>32</td>
<td>9</td>
<td>55991,0</td>
<td>204823,8</td>
<td>199000,0</td>
<td>361276,1</td>
<td>0,157</td>
</tr>
<tr>
<td>Rhizosolenia</td>
<td>32</td>
<td>15</td>
<td>51367,6</td>
<td>135201,7</td>
<td>110000,0</td>
<td>183414,1</td>
<td>0,144</td>
</tr>
<tr>
<td>Eucampia</td>
<td>32</td>
<td>14</td>
<td>50923,5</td>
<td>128885,4</td>
<td>116000,0</td>
<td>177214,2</td>
<td>0,143</td>
</tr>
<tr>
<td>Melosira</td>
<td>32</td>
<td>12</td>
<td>39357,8</td>
<td>97680,7</td>
<td>105000,0</td>
<td>139209,3</td>
<td>0,111</td>
</tr>
<tr>
<td>Otros Taxa</td>
<td>448</td>
<td>81</td>
<td>9102,5</td>
<td>-----</td>
<td>35357,9</td>
<td>-----</td>
<td>0,358</td>
</tr>
</tbody>
</table>
Composición del microplancton > a 150 um en la VIII Región

Entre los grupos taxonómicos de mayor tamaño corporal del microplancton, los nauplios, los copepoditos y las larvas de poliquetos fueron los más abundantes en el rango de profundidad 0-40 m (Tabla 4.1.5). Es importante enfatizar que tanto los nauplios como los copepoditos se encuentran entre los items presas más importantes de las larvas de sardina y anchoveta (Bernal et al. 1990, Llanos 1990, Llanos et al. 1996). Altas concentraciones de nauplios se detectaron en el Golfo de Arauco y en la Boca de la Bahía Concepción (zona adyacente a la Isla Quiriquina-Peninsula de Tumbes; Figura 4.1.5a). Las mayores concentraciones de copepoditos se encontraron en el límite norte de la VIII Región (transecta 11; Figura 4.1.5b).

Tabla 4.1.5. Composición taxonómica del microplancton > de 150 um en el estrato 0-40 m en la VIII Región. Las abundancias están representadas en Ind./m³.

<table>
<thead>
<tr>
<th>Taxa</th>
<th>N</th>
<th>Estac.</th>
<th>Media</th>
<th>Std. Dev.</th>
<th>Media</th>
<th>Estac.</th>
<th>Std. Dev.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nauplius</td>
<td>56</td>
<td>56</td>
<td>15482,4</td>
<td>14281,6</td>
<td>15482,4</td>
<td>14281,6</td>
<td>55,800</td>
<td></td>
</tr>
<tr>
<td>Copepodito</td>
<td>56</td>
<td>52</td>
<td>2285,0</td>
<td>3030,0</td>
<td>2543,6</td>
<td>3070,8</td>
<td>8,520</td>
<td></td>
</tr>
<tr>
<td>Larva poliqueto</td>
<td>56</td>
<td>46</td>
<td>1575,5</td>
<td>4170,1</td>
<td>3529,1</td>
<td>5715,7</td>
<td>5,680</td>
<td></td>
</tr>
<tr>
<td>Larva Trocófora</td>
<td>56</td>
<td>25</td>
<td>1071,6</td>
<td>1417,1</td>
<td>1276,8</td>
<td>1460,6</td>
<td>3,860</td>
<td></td>
</tr>
<tr>
<td>Ciclopoidea</td>
<td>56</td>
<td>47</td>
<td>1035,4</td>
<td>1238,6</td>
<td>1183,3</td>
<td>1256,7</td>
<td>3,730</td>
<td></td>
</tr>
<tr>
<td>Larvácea</td>
<td>56</td>
<td>49</td>
<td>670,9</td>
<td>1658,2</td>
<td>1015,4</td>
<td>1959,9</td>
<td>2,420</td>
<td></td>
</tr>
<tr>
<td>Sacos ovígeros</td>
<td>56</td>
<td>37</td>
<td>635,0</td>
<td>695,6</td>
<td>740,8</td>
<td>697,2</td>
<td>2,290</td>
<td></td>
</tr>
<tr>
<td>Harpacticoidea</td>
<td>56</td>
<td>48</td>
<td>625,2</td>
<td>662,2</td>
<td>700,2</td>
<td>662,3</td>
<td>2,250</td>
<td></td>
</tr>
<tr>
<td>Calanoidea</td>
<td>56</td>
<td>50</td>
<td>431,4</td>
<td>600,3</td>
<td>671,0</td>
<td>633,2</td>
<td>1,560</td>
<td></td>
</tr>
<tr>
<td>Juv bivalvo</td>
<td>56</td>
<td>36</td>
<td>378,8</td>
<td>1034,1</td>
<td>1631,8</td>
<td>1638,9</td>
<td>1,370</td>
<td></td>
</tr>
<tr>
<td>Indeterminado 6</td>
<td>56</td>
<td>30</td>
<td>163,2</td>
<td>338,9</td>
<td>315,1</td>
<td>419,5</td>
<td>0,588</td>
<td></td>
</tr>
<tr>
<td>Siphonophora</td>
<td>56</td>
<td>13</td>
<td>119,8</td>
<td>439,9</td>
<td>670,6</td>
<td>878,8</td>
<td>0,432</td>
<td></td>
</tr>
<tr>
<td>Radiolaria</td>
<td>56</td>
<td>29</td>
<td>73,5</td>
<td>134,9</td>
<td>171,4</td>
<td>161,2</td>
<td>0,265</td>
<td></td>
</tr>
<tr>
<td>Crustáceo Indet.</td>
<td>56</td>
<td>10</td>
<td>50,0</td>
<td>138,0</td>
<td>233,2</td>
<td>220,5</td>
<td>0,180</td>
<td></td>
</tr>
<tr>
<td>Poliheca</td>
<td>56</td>
<td>24</td>
<td>37,8</td>
<td>109,9</td>
<td>192,3</td>
<td>183,6</td>
<td>0,136</td>
<td></td>
</tr>
<tr>
<td>Foraminífera</td>
<td>56</td>
<td>17</td>
<td>36,3</td>
<td>103,4</td>
<td>119,4</td>
<td>161,8</td>
<td>0,131</td>
<td></td>
</tr>
<tr>
<td>Zoea</td>
<td>952</td>
<td>43</td>
<td>5,1</td>
<td>-----</td>
<td>98,6</td>
<td>-----</td>
<td>0,314</td>
<td></td>
</tr>
</tbody>
</table>
En el caso del estrato más profundo (40-100 m), los nauplios también fueron el grupo más numeroso (Tabla 4.1.6), aunque sus concentraciones eran, en general, menores que en el estrato superficial. La zona de mayor concentración (> $2\times10^4$ ind/100 m$^2$) se encontraba en la zona costera, a la cuadra del Río Itata (Figura 4.1.4b). En contraste, las mayores concentraciones de copepoditos (2900 ind/100 m$^2$) se encuentran en la zona más oceánica asociados a la transecta 12 (Figura 4.1.5b), observándose, además, un pequeño núcleo costero en la transecta 11.

Tabla 4.1.6. Composición taxonómica del microplancton > de 150 um en el estrato 40 - 100 m en la VIII Región. Las abundancias están representadas en Ind./m$^3$.

<table>
<thead>
<tr>
<th>Taxa</th>
<th>N</th>
<th>Estac. posit</th>
<th>Media</th>
<th>Std.Dev.</th>
<th>Media Estac. posit.</th>
<th>Std.Dev.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nauplius</td>
<td>32</td>
<td>16</td>
<td>2736,8</td>
<td>6193,6</td>
<td>5473,6</td>
<td>7956,1</td>
<td>49,600</td>
</tr>
<tr>
<td>Indeterminado 6</td>
<td>32</td>
<td>18</td>
<td>470,4</td>
<td>945,9</td>
<td>836,3</td>
<td>1143,5</td>
<td>8,520</td>
</tr>
<tr>
<td>Ciclopoidea</td>
<td>32</td>
<td>20</td>
<td>424,4</td>
<td>699,3</td>
<td>679,0</td>
<td>784,7</td>
<td>7,680</td>
</tr>
<tr>
<td>Copepodito</td>
<td>32</td>
<td>16</td>
<td>317,0</td>
<td>567,1</td>
<td>634,0</td>
<td>671,0</td>
<td>5,740</td>
</tr>
<tr>
<td>Indeterminado 3</td>
<td>32</td>
<td>18</td>
<td>268,7</td>
<td>585,8</td>
<td>477,7</td>
<td>721,1</td>
<td>4,870</td>
</tr>
<tr>
<td>Sacos ovígeros</td>
<td>32</td>
<td>20</td>
<td>222,5</td>
<td>309,2</td>
<td>356,0</td>
<td>325,4</td>
<td>4,030</td>
</tr>
<tr>
<td>Larvácea</td>
<td>32</td>
<td>13</td>
<td>185,1</td>
<td>810,6</td>
<td>455,6</td>
<td>1250,6</td>
<td>3,350</td>
</tr>
<tr>
<td>Harpacticoidea</td>
<td>32</td>
<td>16</td>
<td>179,7</td>
<td>317,8</td>
<td>359,4</td>
<td>373,9</td>
<td>3,250</td>
</tr>
<tr>
<td>Calanoidea</td>
<td>32</td>
<td>15</td>
<td>166,5</td>
<td>390,4</td>
<td>355,1</td>
<td>515,5</td>
<td>3,010</td>
</tr>
<tr>
<td>Larva Trocófora</td>
<td>32</td>
<td>7</td>
<td>136,6</td>
<td>620,2</td>
<td>624,4</td>
<td>1277,4</td>
<td>2,470</td>
</tr>
<tr>
<td>Larva poliqueto</td>
<td>32</td>
<td>17</td>
<td>104,6</td>
<td>196,5</td>
<td>196,8</td>
<td>235,7</td>
<td>1,890</td>
</tr>
<tr>
<td>Foraminifera</td>
<td>32</td>
<td>17</td>
<td>60,5</td>
<td>117,5</td>
<td>113,9</td>
<td>142,5</td>
<td>1,100</td>
</tr>
<tr>
<td>Crustáceo Indet.</td>
<td>32</td>
<td>9</td>
<td>58,1</td>
<td>227,8</td>
<td>206,7</td>
<td>408,1</td>
<td>1,050</td>
</tr>
<tr>
<td>Radiolaria</td>
<td>32</td>
<td>18</td>
<td>48,7</td>
<td>69,1</td>
<td>86,5</td>
<td>72,3</td>
<td>0,881</td>
</tr>
<tr>
<td>Siphonophora</td>
<td>32</td>
<td>2</td>
<td>30,0</td>
<td>160,4</td>
<td>479,3</td>
<td>605,3</td>
<td>0,542</td>
</tr>
<tr>
<td>Juv bivalvo</td>
<td>32</td>
<td>9</td>
<td>29,5</td>
<td>62,0</td>
<td>105,0</td>
<td>77,5</td>
<td>0,535</td>
</tr>
<tr>
<td>Polihecta</td>
<td>32</td>
<td>9</td>
<td>14,6</td>
<td>39,3</td>
<td>51,8</td>
<td>61,7</td>
<td>0,264</td>
</tr>
<tr>
<td>Pterópodo</td>
<td>32</td>
<td>12</td>
<td>13,5</td>
<td>26,3</td>
<td>35,9</td>
<td>32,6</td>
<td>0,244</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>32</td>
<td>6</td>
<td>11,6</td>
<td>36,0</td>
<td>61,6</td>
<td>65,7</td>
<td>0,209</td>
</tr>
<tr>
<td>Rotífero</td>
<td>32</td>
<td>1</td>
<td>10,7</td>
<td>60,6</td>
<td>342,9</td>
<td>35,6</td>
<td>0,194</td>
</tr>
<tr>
<td>Otros taxa</td>
<td>704</td>
<td>31</td>
<td>2,2</td>
<td></td>
<td>35,6</td>
<td></td>
<td>0,605</td>
</tr>
</tbody>
</table>
4.1.2. Distribución espacial del macroplancton y de los predadores de las larvas y huevos de sardina común y anchoveta.

La biomasa total de macroplancton en el estrato superficial (i.e. 0-40 m) de la zona de estudio (transectas 2 a 23), varió entre 2 y 3254 ml/100m² con un valor promedio de 336 ml/100m². Las mayores biomasas se localizaron en la zona costera al sur de Pichilemu (Figura 4.1.6a). Por otra parte, en el estrato 40-100 m de profundidad se encontraron rangos de biomasa entre 34 y 1633 ml/100m² (media = 421,49 ml/100 m²), con los mayores valores en el Golfo de Arauco (Figura 4.1.6b).

El taxón del macroplancton más abundante en número de la VIII y IX Región fueron los copépodos representando el 93.5% de la comunidad (Tabla 4.1.7). Otros grupos relativamente numerosos eran las larvas de crustáceos y los cladóceros. El núcleo de mayor concentración de copépodos (> 3.10⁷ ind/100 m²) estaba localizado en las estaciones más oceánicas de la transecta 20 (sur de Lebu; Figura 4.1.7a). Las larvas de crustáceos presentaron sus mayores concentraciones en la zona costera de la transecta 21 con valores alrededor de 2.7.10⁵ ind/100 m² (Figura 4.1.7b).

Tabla 4.1.7 Abundancia del macroplancton (ind/100 m²) en el estrato (0-40 m) en la VIII y IX Regiones.

<table>
<thead>
<tr>
<th>Taxa</th>
<th>N</th>
<th>Estac. positiva</th>
<th>Media</th>
<th>Std.Dev.</th>
<th>Media</th>
<th>Estac. positiva</th>
<th>Std.Dev.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copepoda</td>
<td>86</td>
<td>86</td>
<td>2209216.9</td>
<td>4308588.6</td>
<td>2209216.9</td>
<td>4308588.6</td>
<td>93,500</td>
<td></td>
</tr>
<tr>
<td>Larv. Crustac.</td>
<td>86</td>
<td>86</td>
<td>79468.0</td>
<td>243117.2</td>
<td>79468.0</td>
<td>243117.2</td>
<td>3,360</td>
<td></td>
</tr>
<tr>
<td>Cladocera</td>
<td>86</td>
<td>46</td>
<td>33283.3</td>
<td>217112.4</td>
<td>62225.2</td>
<td>295291.6</td>
<td>1,410</td>
<td></td>
</tr>
<tr>
<td>Larvaea</td>
<td>86</td>
<td>84</td>
<td>25923.4</td>
<td>105574.9</td>
<td>26540.6</td>
<td>106761.7</td>
<td>1,100</td>
<td></td>
</tr>
<tr>
<td>Mysidacea</td>
<td>86</td>
<td>59</td>
<td>5973.7</td>
<td>27830.2</td>
<td>8707.4</td>
<td>33329.6</td>
<td>0.253</td>
<td></td>
</tr>
<tr>
<td>Polychaeta</td>
<td>86</td>
<td>80</td>
<td>4684.9</td>
<td>26520.0</td>
<td>5036.2</td>
<td>27476.0</td>
<td>0.198</td>
<td></td>
</tr>
<tr>
<td>Salp/Doliol.</td>
<td>86</td>
<td>54</td>
<td>2128.5</td>
<td>7311.5</td>
<td>3389.8</td>
<td>9021.1</td>
<td>0.090</td>
<td></td>
</tr>
<tr>
<td>Siphonuata</td>
<td>86</td>
<td>74</td>
<td>657.4</td>
<td>970.0</td>
<td>764.0</td>
<td>1006.5</td>
<td>0.028</td>
<td></td>
</tr>
<tr>
<td>Amphipoda</td>
<td>86</td>
<td>78</td>
<td>587.7</td>
<td>1007.4</td>
<td>648.0</td>
<td>1039.5</td>
<td>0.025</td>
<td></td>
</tr>
<tr>
<td>Pteropoda</td>
<td>86</td>
<td>47</td>
<td>449.4</td>
<td>1618.3</td>
<td>822.2</td>
<td>2127.4</td>
<td>0.019</td>
<td></td>
</tr>
<tr>
<td>Ostracoda</td>
<td>86</td>
<td>64</td>
<td>407.1</td>
<td>664.9</td>
<td>547.0</td>
<td>720.2</td>
<td>0.017</td>
<td></td>
</tr>
<tr>
<td>Isopoda</td>
<td>86</td>
<td>71</td>
<td>311.6</td>
<td>425.9</td>
<td>377.5</td>
<td>441.7</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>P.L. Cefalpo.</td>
<td>86</td>
<td>15</td>
<td>20.2</td>
<td>60.5</td>
<td>115.5</td>
<td>102.1</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>Cumacea</td>
<td>86</td>
<td>6</td>
<td>11.2</td>
<td>45.2</td>
<td>160.3</td>
<td>77.6</td>
<td>4.73E-04</td>
<td></td>
</tr>
<tr>
<td>Stomatópolo</td>
<td>86</td>
<td>1</td>
<td>0.4</td>
<td>3.3</td>
<td>30.5</td>
<td>1.50E-05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

69
En la VIII Región, en el estrato 0-40 m, los sifonóforos, quetognatos, e hidromedusas presentaron las mayores abundancias entre los potenciales predadores de larvas y huevos de sardina y anchoveta (Tabla 4.1.8).

Tabla 4.1.8. Abundancia (ind/100 m²) de los predadores potenciales de las larvas y huevos de sardina y anchoveta en el estrato 0-40 m en la VIII Región.

<table>
<thead>
<tr>
<th>Taxa</th>
<th>N</th>
<th>Estac. positivas</th>
<th>Media</th>
<th>Std.Dev.</th>
<th>Media Estac. positivas</th>
<th>Std.Dev.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siphonophora</td>
<td>62</td>
<td>45</td>
<td>4898,12</td>
<td>27877,13</td>
<td>6748,52</td>
<td>32628,51</td>
<td>35,65</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>62</td>
<td>55</td>
<td>3577,76</td>
<td>5671,87</td>
<td>4033,11</td>
<td>5871,10</td>
<td>26,04</td>
</tr>
<tr>
<td>Hidromedusa</td>
<td>62</td>
<td>61</td>
<td>3074,19</td>
<td>7529,43</td>
<td>3124,59</td>
<td>7581,36</td>
<td>22,37</td>
</tr>
<tr>
<td>Euphausiacea</td>
<td>62</td>
<td>42</td>
<td>1466,05</td>
<td>2654,96</td>
<td>2164,17</td>
<td>2989,91</td>
<td>10,67</td>
</tr>
<tr>
<td>Ctenophora</td>
<td>62</td>
<td>45</td>
<td>723,34</td>
<td>2502,69</td>
<td>996,60</td>
<td>2899,12</td>
<td>5,26</td>
</tr>
</tbody>
</table>

Los predadores, en general, eran más abundantes en el estrato más profundo. En éste los quetognatos se presentan como el grupo más abundante y los sifonóforos disminuyen su presencia relativa a 15 % (Tabla 4.1.9).

Tabla 4.1.9. Abundancia (ind/100 m²) de los predadores potenciales de las larvas y huevos de sardina y anchoveta en el estrato 40-100 m en la VIII Región.

<table>
<thead>
<tr>
<th>Taxa</th>
<th>N</th>
<th>Estac. positivas</th>
<th>Media</th>
<th>Std.Dev.</th>
<th>Media Estac. positivas</th>
<th>Std.Dev.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chaetognatha</td>
<td>37</td>
<td>37</td>
<td>21670,88</td>
<td>22086,63</td>
<td>21670,88</td>
<td>22086,63</td>
<td>55,80</td>
</tr>
<tr>
<td>Euphausiacea</td>
<td>37</td>
<td>37</td>
<td>6581,35</td>
<td>4531,01</td>
<td>6581,35</td>
<td>4531,01</td>
<td>16,95</td>
</tr>
<tr>
<td>Siphonophora</td>
<td>37</td>
<td>29</td>
<td>5820,68</td>
<td>9948,78</td>
<td>7426,39</td>
<td>10719,48</td>
<td>14,99</td>
</tr>
<tr>
<td>Hidromedusa</td>
<td>37</td>
<td>37</td>
<td>3769,88</td>
<td>2946,32</td>
<td>3769,88</td>
<td>2946,32</td>
<td>9,71</td>
</tr>
<tr>
<td>Ctenophora</td>
<td>37</td>
<td>36</td>
<td>996,48</td>
<td>1208,24</td>
<td>1024,16</td>
<td>1213,42</td>
<td>2,57</td>
</tr>
</tbody>
</table>

La distribución espacial de los predadores potenciales de las larvas y huevos de sardina y anchoveta para la VIII Región, se muestran en las figuras 4.1.8 a 4.1.12. En general, varios de los grupos de predadores presentaron abundancias importantes en el límite norte de la
VIII Región, tales como los quetognatos, hidromedusas (Figura 4.1.9 b), eufausidos (Figura 4.1.10 a) y ctenóforos (Figura 4.1.12 b).

En el estrato superficial de toda la zona de estudio, los predadores más abundantes fueron los quetognatos seguidos de eufausidos e hidromedusas (Tabla 4.1.10). El foco de mayor concentración de quetognatos estaba localizado en la zona costera de la transecta 7 (al sur de Pichilemu, Figura 4.1.13) y los eufausidos en la transecta 9, a aproximadamente unas 15 mn de la costa (Figura 4.1.14). Las hidromedusas presentaron sus mayores concentraciones en la VIII Región (Figura 4.1.15) y los sifonóforos a la cuadra de Punta Lavapié (Figura 4.1.16). Las mayores concentraciones de ctenóforos estaban localizadas en la zona norte del área de estudio, en especial de la transecta 2 a 9 (Figura 4.1.17).

Tabla 4.1.10. Abundancia (ind/100 m²) de los predadores potenciales de las larvas y huevos de sardina y anchoveta en el estrato 0-40 m para toda la zona de estudio (transectas 2 a 23).

<table>
<thead>
<tr>
<th>Taxa</th>
<th>N</th>
<th>Estac.</th>
<th>Media</th>
<th>Std.Dev.</th>
<th>Media</th>
<th>Std.Dev.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>posit</td>
<td></td>
<td></td>
<td>Estac.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>156</td>
<td>148</td>
<td>21748,75</td>
<td>40112,27</td>
<td>22924,35</td>
<td>40858,60</td>
<td>65,04</td>
</tr>
<tr>
<td>Euphausiacea</td>
<td>155</td>
<td>128</td>
<td>4397,76</td>
<td>16804,67</td>
<td>5247,29</td>
<td>18413,98</td>
<td>13,15</td>
</tr>
<tr>
<td>Hidromedusa</td>
<td>156</td>
<td>154</td>
<td>3787,84</td>
<td>6674,06</td>
<td>3837,03</td>
<td>6703,39</td>
<td>11,33</td>
</tr>
<tr>
<td>Siphonophora</td>
<td>156</td>
<td>119</td>
<td>2985,28</td>
<td>17797,24</td>
<td>3913,48</td>
<td>20307,53</td>
<td>8,93</td>
</tr>
<tr>
<td>Ctenophora</td>
<td>156</td>
<td>114</td>
<td>518,89</td>
<td>1662,18</td>
<td>710,07</td>
<td>1911,22</td>
<td>1,55</td>
</tr>
</tbody>
</table>

En el caso del núcleo de desove principal (IX Región), los predadores más abundantes eran los quetognatos e hidromedusas (Tabla 4.1.11), presentando densidades similares a las encontradas para toda la zona de estudio.
Tabla 4.1.11. Abundancia (ind/100 m²) de los predadores potenciales de las larvas y huevos de sardina y anchoveta en el estrato 0-40 m en el núcleo de desove principal (IX Región).

<table>
<thead>
<tr>
<th>Taxa</th>
<th>N</th>
<th>Estac. positiva</th>
<th>Media</th>
<th>Std. Dev.</th>
<th>Media Estac. positiva</th>
<th>Std. Dev.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chaetognatha</td>
<td>25</td>
<td>24</td>
<td>17608,74</td>
<td>21645,48</td>
<td>18342,44</td>
<td>21791,16</td>
<td>51,14</td>
</tr>
<tr>
<td>Hidromedusa</td>
<td>25</td>
<td>25</td>
<td>10061,94</td>
<td>8094,75</td>
<td>10061,94</td>
<td>8094,75</td>
<td>29,22</td>
</tr>
<tr>
<td>Euphausiacea</td>
<td>25</td>
<td>19</td>
<td>3646,42</td>
<td>5977,58</td>
<td>4797,92</td>
<td>6466,08</td>
<td>10,59</td>
</tr>
<tr>
<td>Siphonophora</td>
<td>25</td>
<td>20</td>
<td>2885,81</td>
<td>5625,32</td>
<td>3607,26</td>
<td>6101,82</td>
<td>8,38</td>
</tr>
<tr>
<td>Ctenophora</td>
<td>25</td>
<td>13</td>
<td>229,17</td>
<td>475,31</td>
<td>440,71</td>
<td>592,33</td>
<td>0,67</td>
</tr>
</tbody>
</table>

Distribución de las presas de las larvas de anchoveta y sardinas por tallas, al interior y exterior del núcleo de desove de la VIII Región

Al analizar la distribución por tamaños de las presas de las larvas de sardina y anchoveta queda de manifiesto que en todas las clases de tamaño la abundancia de presas es mayor al interior que al exterior del núcleo de desove de la VIII Región (Figura 4.1.18). Estas diferencias son estadísticamente significativas tanto para el conjunto de presas como para cada una de las clases de tamaños por separado (Tabla 4.1.12).

Tabla 4.1.12. Test de Mann-Whitney para contrastar la hipótesis que la distribución de las presas de las larvas de sardina y anchoveta distribuidas en clases de tamaño, no difieren entre el núcleo de desove de la VIII Región y su entorno.
Distribución superficial de la clorofila \( a \) en la VIII Región

La distribución superficial de la clorofila (Figura 4.1.19) indica la existencia de un núcleo de alta concentración en el límite norte de la VIII Región, al frente de la desembocadura del Río Itata, con valores máximos de 9.16 (mg Chl a/m\(^3\)). Otros focos de alta concentración de clorofila se encontraron en la zona costera al norte de Talcahuano. En la zona comprendida entre la desembocadura del Río Bío-Bío y la Bahía de San Vicente, se encontraron valores relativamente altos de clorofila con un máximo de 6.18 (mg Chl a/m\(^3\)). Los estaciones más oceánicas presentaron valores entre 1.36 y 5.02 mg Chl a/m\(^3\).

4.2.- Análisis de información oceanográfica y meteorológica.

4.2.1 Condiciones atmosféricas

Las condiciones atmosféricas durante el crucero fueron caracterizadas mediante mediciones efectuadas tanto en la L/C Kay-Kay como en estaciones en tierra.

A bordo fueron medidas cada una hora las variables meteorológicas intensidad y dirección del viento, temperatura del aire y radiación, mediante una estación meteorológica automática Delta T Device. Estas mediciones horarias están mostradas en la Figura 4.2.1.

La temperatura del aire superficial, con un promedio de 12.4\(^\circ\)C durante el crucero, muestra una clara tendencia a aumentar de acuerdo al ciclo estacional, pasando de promedios diarios de 10.8\(^\circ\)C a comienzos del crucero a 14.0\(^\circ\)C a fines de éste. Una tendencia semejante se puede apreciar en los valores de la radiación.

Un comparación de los datos meteorológicos medidos en la L/C Kay-Kay (Fig. 4.2.1) con su respectiva evolución estacional muestra que se registraron temperaturas del aire relativamente altas (más de 2\(^\circ\)C sobre la temperatura promedio correspondiente a la fecha) durante las transectas \( T_2, T_3, T_4, T_5, T_8 \), y \( T_9 \), y temperaturas del aire moderadamente más altas que la temperatura promedio correspondiente a la fecha durante las transectas \( T_{17}, T_{18}, \)
y $T_{20}$. Durante las transectas $T_6$, $T_{12}$ y $T_{15}$ las temperaturas no se desviaron más de $0,5^\circ\text{C}$ de la temperatura promedio correspondiente a la fecha. Las temperaturas del aire fueron comparativamente frías durante las transectas $T_7$, $T_{10}$, $T_{11}$, $T_{23}$, Co, Ba y Go. Finalmente, las temperaturas del aire fueron significativamente más frías que lo correspondiente a la fecha, a lo menos un par de grados más fría, durante las transectas $T_{13}$ y $T_{14}$.

En cuanto al comportamiento general de los vientos medidos en la L/C Kay-Kay, su promedio diario superó los 8 m/s durante las transectas $T_6$, $T_{20}$, $T_9$, $T_{13}$, y $T_{17}$.

La variación estacional de las variables meteorológicas se ve confirmada en la Figura 4.2.2, donde se relaciona la temperatura del aire superficial y la radiación. La Figura 4.2.3 muestra, a través de valores diarios, la tendencia de la radiación y su residuo.

La Figura 4.2.4 muestra la variación diaria de la temperatura del aire superficial y del cubo de la intensidad del viento durante el crucero, observados en la L/C Kay-Kay durante el crucero. No se observa alguna relación entre la intensidad de viento y la temperatura medida en el buque. Por otra parte, los vientos observados a bordo fueron moderados durante el período de muestreo, sobrepasando en sólo tres ocasiones el valor de 400 m$^3$/s. Desde este punto de vista, no se espera mezcla significativa inducida por el viento.

La Figura 4.2.5 muestra mediciones de la intensidad del viento hechas en tierra, en la Estación Carriel Sur, utilizando valores promedios diarios. En el diagrama superior se muestra la componente zonal del viento, considerándose ésta positiva cuando los vientos van hacia el este. En el diagrama inferior se tiene la componente meridional, positiva hacia el norte. En general se tuvo predominio de vientos de regular intensidad hacia el norte (desde el sur), asociados a buen tiempo y condiciones de surgencia. Sólo aparecen dos o tres eventos de mal tiempo.

La Figura 4.2.6 muestra promedios diarios de velocidad del viento en una segunda estación meteorológica en tierra, la Estación Bellavista. Aunque muestra un patrón de vientos
semejante al de Carriel Sur, las componentes meridionales son más intensas, y los episodios de mal tiempo (viento desde el norte) aparecen mucho más marcados.

4.2.2 Descripción general de la zona de estudio en base a TSM

En esta sección se desea caracterizar la zona de estudio comparando la temperatura superficial del mar (TSM) con promedios de 15 años. Para ello se definió 12 celdas de 1° de latitud por 1° de longitud, para las cuales se dispone de información histórica. La Figura 4.2.7 muestra las doce celdas y la distribución de estaciones de muestreo de este proyecto. Las celdas están marcadas desde la A (zona sur costera) hasta la L (zona norte, oceánica). La Tabla 4.2.1 muestra cómo están asociadas las transectas del crucero y las celdas de TSM.

Tabla 4.2.1. Asociación de las transectas del crucero (T1 a T23) con las celdas de TSM (letras de A a L).

<table>
<thead>
<tr>
<th>Semana de 1996</th>
<th>Fecha inicio</th>
<th>Fecha término</th>
<th>Transectas y celdas asociadas</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>08 sep</td>
<td>14 sep</td>
<td>T20(B)-T20(B)-T22(A)-T22(A)</td>
</tr>
<tr>
<td>38</td>
<td>15 sep</td>
<td>21 sep</td>
<td>T28(E)-T28(E)</td>
</tr>
<tr>
<td>39</td>
<td>22 sep</td>
<td>28 sep</td>
<td>T20(K)-T20(K)-T64(IJ)-T65(IJ)</td>
</tr>
<tr>
<td>40</td>
<td>29 sep</td>
<td>05 oct</td>
<td>T66(G)-T66(G)</td>
</tr>
<tr>
<td>41</td>
<td>06 oct</td>
<td>12 oct</td>
<td>T66(G)-T66(G)</td>
</tr>
<tr>
<td>42</td>
<td>13 oct</td>
<td>19 oct</td>
<td>T16(D)-T16(D)-T16(D)</td>
</tr>
<tr>
<td>43</td>
<td>20 oct</td>
<td>26 oct</td>
<td>T16(D)-T16(D)-T16(D)-Ba(D)</td>
</tr>
<tr>
<td>44</td>
<td>27 oct</td>
<td>02 nov</td>
<td>T16(C)-Co(D)-Go(C)</td>
</tr>
<tr>
<td>45</td>
<td>03 nov</td>
<td>09 nov</td>
<td>T16(C)-Co(D)-Go(C)</td>
</tr>
<tr>
<td>46</td>
<td>10 nov</td>
<td>16 nov</td>
<td>T16(C)-Co(D)-Go(C)</td>
</tr>
<tr>
<td>47</td>
<td>17 nov</td>
<td>23 nov</td>
<td>T17(C)-T18(C)</td>
</tr>
</tbody>
</table>

La figura 4.2.8 muestra la evolución temporal de las anomalías de TSM en las celdas A a L durante el año 1996, en relación a un promedio de 15 años de datos en cada celda.

En base a la información de la evolución temporal de las TSM, se puede identificar tres periodos o eventos muy marcados en la zona de estudio durante el invierno y la primavera de 1996:
(a) La primera parte del invierno de 1996 se caracterizó por mostrar temperaturas superficiales del mar notablemente más bajas que el promedio histórico en la zona de estudio. Este periodo frío abarcó desde mediados de mayo hasta fines de julio de 1996. Las mayores anomalías frías en ese período ocurrieron en la zona costera de la parte norte de la zona de estudio, particularmente desde 36°S hacia el norte, donde las anomalías alcanzaron valores tan bajos como -1,4°C a fines de junio. Por el contrario, la parte sur de la zona de estudio no sufrió este evento frío en invierno, manteniéndose las temperaturas cercanas al promedio histórico entre las latitudes 37°S y 38°S, e incluso observándose anomalías positivas en todo ese periodo desde 38°S hacia el sur. De hecho, de toda la zona de estudio, solamente la región al sur de 38°S no registró anomalías negativas significativas durante todo el invierno de 1996.

(b) Desde fines de julio hasta comienzos de septiembre, es decir, prácticamente hasta unas dos semanas antes de la fecha del comienzo del crucero, toda la zona de estudio tuvo temperaturas particularmente altas, en especial su extremo sur, desde 38°S hacia el sur. A comienzos de agosto ese extremo sur estaba 1°C más caliente de lo que corresponde a su promedio histórico. Por el contrario, a fines de julio era el extremo norte de la zona de estudio el que mostraba las mayores anomalías en la TSM, unos 0,8°C.

(c) Durante la época del crucero, las TSM en el área de estudio mostraron una tendencia hacia valores algo más fríos que el promedio histórico, pero sin ocurrir grandes anomalías (los valores estuvieron entre unos -0,5°C y unos +0,5°C, aproximadamente). Como muestra la figura 4.2.9, desde 37°S hacia el sur y desde 34°S hacia el norte, es decir, en los dos extremos de la zona de estudio, las TSM mostraron valores relativamente normales, entre 34°S y 37°S, en cambio, las temperaturas superficiales del mar fueron más bajas que el promedio de 15 años. Destaca las temperaturas de comienzos de noviembre, en que toda el área de estudio estuvo más fría que su promedio histórico.

Las anomalías de la TSM para algunas semanas seleccionadas son mostradas en la siguiente tabla.

76
Tabla 4.2.2. Anomalías de la TSM (15 años de datos) durante algunos periodos de tiempo relevantes para este estudio. A, B, C..., etc. representan subdivisiones del área de estudio (véase la Figura 4.2.7).

<table>
<thead>
<tr>
<th>Sem</th>
<th>Intervalo</th>
<th>( \Delta T(A) )</th>
<th>( \Delta T(B) )</th>
<th>( \Delta T(C) )</th>
<th>( \Delta T(D) )</th>
<th>( \Delta T(E) )</th>
<th>( \Delta T(F) )</th>
<th>( \Delta T(G) )</th>
<th>( \Delta T(H) )</th>
<th>( \Delta T(I) )</th>
<th>( \Delta T(J) )</th>
<th>( \Delta T(K) )</th>
<th>( \Delta T(L) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>09/06 - 15/06</td>
<td>0.57</td>
<td>0.47</td>
<td>0.17</td>
<td>-0.29</td>
<td>-0.73</td>
<td>-0.47</td>
<td>-0.88</td>
<td>-0.64</td>
<td>-0.90</td>
<td>-0.70</td>
<td>-0.76</td>
<td>-0.54</td>
</tr>
<tr>
<td>26</td>
<td>23/06 - 29/06</td>
<td>-0.05</td>
<td>-0.09</td>
<td>-0.33</td>
<td>-0.71</td>
<td>-1.09</td>
<td>-0.84</td>
<td>-1.29</td>
<td>-1.07</td>
<td>-1.38</td>
<td>-1.18</td>
<td>-1.28</td>
<td>-1.06</td>
</tr>
<tr>
<td>31</td>
<td>28/07 - 03/08</td>
<td>1.04</td>
<td>1.09</td>
<td>0.95</td>
<td>0.67</td>
<td>0.35</td>
<td>0.58</td>
<td>0.25</td>
<td>0.46</td>
<td>0.34</td>
<td>0.44</td>
<td>0.39</td>
<td>0.49</td>
</tr>
<tr>
<td>35</td>
<td>25/08 - 31/08</td>
<td>0.38</td>
<td>0.57</td>
<td>0.70</td>
<td>0.70</td>
<td>0.62</td>
<td>0.72</td>
<td>0.65</td>
<td>0.69</td>
<td>0.77</td>
<td>0.78</td>
<td>0.79</td>
<td>0.82</td>
</tr>
<tr>
<td>37</td>
<td>08/09 - 14/09</td>
<td>0.03</td>
<td>0.02</td>
<td>-0.07</td>
<td>-0.21</td>
<td>-0.27</td>
<td>-0.29</td>
<td>-0.28</td>
<td>-0.33</td>
<td>-0.20</td>
<td>-0.27</td>
<td>-0.25</td>
<td>-0.27</td>
</tr>
<tr>
<td>43</td>
<td>20/10 - 26/10</td>
<td>-0.09</td>
<td>0.01</td>
<td>-0.01</td>
<td>-0.11</td>
<td>-0.10</td>
<td>-0.06</td>
<td>-0.08</td>
<td>0.09</td>
<td>0.25</td>
<td>0.28</td>
<td>0.36</td>
<td>0.42</td>
</tr>
<tr>
<td>45</td>
<td>03/11 - 09/11</td>
<td>-0.31</td>
<td>-0.27</td>
<td>-0.37</td>
<td>-0.61</td>
<td>-0.69</td>
<td>-0.54</td>
<td>-0.57</td>
<td>-0.45</td>
<td>-0.44</td>
<td>-0.30</td>
<td>-0.32</td>
<td>-0.18</td>
</tr>
</tbody>
</table>

2.4.3. Utilización de TSM obtenidas de imágenes satelitales

Durante el desarrollo de este proyecto se analizó ocho imágenes satelitales NOAA de TSM, obtenidas en la estación receptora de la Universidad de Concepción. La zona de análisis abarcó desde 30°S hasta 42°S, con resolución de 1 km². La figura 4.2.10a muestra temperatura superficial del mar los días 15/09/96 (arriba, izquierda), 21/09/96 (arriba, derecha), 29/09/96 (abajo, izquierda) y 05/10/96 (abajo, derecha), es decir, durante la primera parte del crucero. Analizando la figura 4.2.5 se observa que en estos 4 días se tuvo vientos con componente desde el sur, lo que favorece la surgencia, particularmente los días 15 y 21 de septiembre de ese año. Como se observa en la figura, al comienzo del periodo de muestreo (15/09/96) se estaba en un evento de surgencia muy intenso, a tal extremo que gran parte de la superficie del mar frente a Concepción estaba dominada por aguas frías, al mismo tiempo que se observaba existencia de surgencia frente a Punta Curaumilla, y en prácticamente toda el área de estudio el agua estaba más fría en la costa que en la parte sur. El agua está ligeramente menos fría en la parte norte del área de estudio que en la parte sur.

La figura 4.2.10b muestra la temperatura superficial del mar los días 12/10/96 (arriba, izquierda), 17/10/96 (arriba, derecha), 29/10/96 (abajo, izquierda) y 16/11/96 (abajo, derecha). Lamentablemente la presencia de nubes impide determinar la TSM sobre una zona
importante del área de estudio, en estos 4 días. El día 12 de octubre se observa un evento de surgencia frente a Concepción, asociado con vientos desde el sur (ver figura 4.2.5). El 17 de octubre la zona frente a Concepción venía saliendo de un par de días con mal tiempo, y no se observa surgencia significativa en esa área. A fines del periodo del crucero el agua superficial no costera alcanzaba ya unos 15°C.

2.4.4. Distribuciones horizontales de variables hidrográficas

Las figuras 4.2.11a hasta 4.2.11g muestran la distribución horizontal de las variables hidrográficas temperatura, salinidad, oxígeno disuelto y densidad a 0, 10, 20, 30, 40, 60 y 80 metros de profundidad. A continuación se analiza brevemente cada una de estas distribuciones.

Si bien las distribuciones en la superficie (figura 4.2.11a) muestran valores que están dentro de los rangos esperables para la época, existen también varias peculiaridades. En primer lugar, en la distribución horizontal de temperaturas se observa claramente la presencia de surgencia tanto frente a Punta Lavapié, al sur de Concepción, y frente a Punta Curumilla, cerca de Valparaíso. Este hecho es consistente con la existencia de vientos favorables a surgencia durante el crucero. Por otra parte, conviene aclarar que tanto el mínimo de temperatura que aparece entre 35°S y 36°S, como el máximo de temperatura que aparece frente a Lebu, corresponden mas bien a la no-sinoptidad del muestreo que a anomalías del campo de temperaturas, puesto que las transectas que muestran aparentes máximos y mínimos de la temperatura, fueron en realidad las primeras y las últimas realizadas durante el periodo de estudio, respectivamente. Esta misma observación podría ser válida para los máximos de salinidad y densidad y el mínimo de oxígeno disuelto que aparecen entre 35°S y 36°S. Por último, conviene llamar la atención sobre el gran efecto que la entrada de agua dulce del río Biobío produce en la salinidad y en la densidad del agua tanto en el Golfo de Arauco como en la zona aledaña.
La figura 4.2.11b muestra las distribuciones de variables hidrográficas a 10 m de profundidad. En general, siguen siendo válidas las mismas observaciones hechas para el caso del agua superficial. A esta profundidad el Golfo de Arauco tiene valores altos de oxígeno disuelto. De hecho, si por la causa ya aducida pudiera descartarse el máximo de oxígeno frente a Lebu, el Golfo de Arauco sería la región de la zona de estudio en que hay más oxígeno disuelto a 10 m de profundidad. Nótese también que ya a esta profundidad los valores de salinidad en el Golfo de Arauco no son los menores de la zona de estudio.

Las figuras 4.2.11c y 4.2.11d muestran las distribuciones horizontales de variables hidrográficas a 20 y a 30 m, respectivamente. A estas profundidades Punta Lavapié sigue mostrando la influencia de la surgencia. Es también notable el efecto de la surgencia en Punta Curaumilla, particularmente para el oxígeno disuelto.

Las figuras 4.2.11e, 4.2.11f y 4.2.11g muestran las distribuciones horizontales de las variables hidrográficas a 40, 60 y 80 m de profundidad, respectivamente. En los tres casos las temperaturas más bajas están asociadas a Punta Lavapié/Golfo de Arauco y a Punta Curaumilla. A 60 y 80 m el comportamiento de la salinidad en la zona del Golfo de Arauco es inverso al que tiene en aguas más superficiales. En efecto, como se observa de las figuras, a esas profundidades la salinidad es mayor cerca del Golfo.

### 2.4.5. Perfiles verticales de variables hidrográficas

Las figuras 4.2.12a a 4.2.12g muestran las distribuciones verticales de las variables temperatura, salinidad, densidad (sigma-t) y oxígeno disuelto a las profundidades 0, 10, 20, 30, 40, 60 y 80 m, por transectas. En general se puede afirmar que en la parte norte de la zona de estudio las aguas están bastante mezcladas verticalmente, y que la estratificación aumenta hacia el sur, con la excepción de la zona costera frente a Punta Lavapié. Existen casos notables de variación de estratificación a lo largo de una transecta, como por ejemplo en la transecta que corresponde a la latitud de Punta Lavapié (figura 4.2.12f). En ese caso
las estaciones más costeras están más mezcladas que las oceánicas, debido a la surgencia, como se observa en los perfiles de temperatura, salinidad y densidad.

2.4.6. Secciones verticales de variables hidrográficas

Las figuras 4.2.13a a 4.2.13g muestran cortes verticales de variables hidrográficas a lo largo de las mismas transectas mostradas en las figuras de la sección anterior. En cada caso se muestra profundidad en el eje vertical, en metros, y distancia a la costa, en kilómetros. En la zona norte, hasta la latitud de Punta Lavapié, aproximadamente, se observa que cada sección muestra una zona costera que alcanza típicamente hasta unos 50-80 kilómetros de la costa, y una zona oceánica, separadas por una zona que tiene casi las características de un frente. Desde Punta Lavapié al sur esa estructura desaparece.

Es interesante analizar la variabilidad norte-sur de algunas variables relevantes, como por ejemplo el comportamiento de la minima de oxígeno disuelto. Esta mínima se observa en todos las secciones, ubicándose en la transecta 2 a una profundidad de unos 80 m, pegada a la costa. Sigue en la misma forma en las transectas 5, 8 y 11, pero en la transecta 14, a 36°50', justo al sur de la plataforma del Itata, se separa de la costa. No aparece claramente en la sección 16 (frente a Punta Lavapié), pero en la siguiente transecta mostrada, la 20 a 38°10'S, sigue separada de la costa.

2.4.7. Sobre posibles zonas de características hidrográficas comunes

El análisis de la data hidrográficas sugiere la existencia de ciertas zonas con características hidrográficas comunes. Las zonas están definidas de la siguiente manera: La zona 1 consiste de las transectas 20 a 23, la zona 2 de las transectas 15 a 18, la zona 3 de las transectas 10 a 14, más los datos del Golfo de Arauco y las bahías de Concepción y C güeto; la zona 4 consiste en la zona que comprende las transectas 2 a la 9.
A fin de analizar esta posibilidad, se muestra en la figura 4.2.14 la relación entre temperatura y salinidad, y entre salinidad y oxígeno disuelto, tanto a 10 como a 20 m de profundidad. En esa figura se representan con cruces, diamantes, triángulos y cuadrados a puntos de las zonas 1, 2, 3 y 4, respectivamente. Se observa que la zona 4 muestra sistemáticamente mayores temperaturas y salinidades. La zona 2 muestra valores altos de oxígeno disuelto. La zona 1 tiende también a tener valores altos de oxígeno disuelto, aunque menores que en la zona 2. En general, sin embargo, si bien se observa algunas tendencias, no es posible establecer separaciones concluyentes de las zonas a partir de los datos hidrográficos.

2.4.8. Distribución horizontal de gradientes verticales

Es conocido la importancia que tiene la estructura vertical de las variables hidrográficas para procesos como la mezcla vertical, la estabilidad de la columna de agua o el gatillamiento de la surgencia. En el caso de este Informe, dada la característica de los datos hidrográficos (una proporción significativa de ellos fue obtenido mediante botellas), se ha preferido cuantificar la variabilidad vertical de la columna de agua mediante el gradiente de las variables hidrográficas entre 10 y 20 m de profundidad.

La figura 4.2.15 muestra los gradientes verticales de temperatura (arriba, izquierda), salinidad (arriba, derecha), oxígeno disuelto (abajo, izquierda) y sigma-t (abajo, derecha). Los gradientes que se muestra fueron calculados entre 10 y 20 metros de profundidad, y están expresados en centésimas de grado, de psu, de ml/l y de kg/m³, respectivamente.

Se observa que los mayores gradientes verticales están entre 36°S y 38°S, correspondiente a la región ubicada frente al Golfo de Arauco, aproximadamente. Es conocido que en esta región es frecuente encontrar frentes horizontales, frentes submarinos, inversiones térmicas, y mucha estructuración en las variables hidrográficas (Quiñones 1994, Proyecto FIP Jurel 1994).
4.3.- Análisis integrado de la información bio-oceanográfica

Abundancia de huevos y larvas de anchoveta y sardina común, y distribución de variables oceanográficas (temperatura, salinidad, oxígeno, $\sigma_t$)

Las abundancias de huevos de anchoveta (Fig. 4.3.1) y sardina común (Fig. 4.3.2) no presentan relaciones o tendencias claras con los registros de temperatura a 10 m de profundidad. En efecto, para un estrecho rango de valores de temperatura (2 a 3°C), los valores de abundancia son extraordinariamente variables. De igual forma, tampoco se aprecia algún patrón claro, ni siquiera difuso, entre la abundancia de larvas de anchoveta y la temperatura (Fig. 4.3.3) o entre la abundancia de larvas de sardina común y la temperatura (Fig. 4.3.4).

Análogamente, en cuanto a la salinidad a 10 m de profundidad, no se aprecia ninguna relación o tendencia clara de la abundancia de huevos de anchoveta (Fig. 4.3.5) o de sardina común (Fig. 4.3.6), ni tampoco con la abundancia de larvas de anchoveta (Fig. 4.3.7) o de sardina común (Fig. 4.3.8).

En cuanto al oxígeno disuelto a 10 m de profundidad, igualmente no se observa ninguna tendencia o relación clara de esta variable oceanográfica con la abundancia de huevos de anchoveta (Fig. 4.3.9) o de sardina común (Fig. 4.3.10), ni tampoco con las larvas de estas especies (Figs. 4.3.11 y 4.3.12).

Finalmente, en cuanto a la variable $\sigma_t$ a 10 m de profundidad, se confirma la falta de relaciones o tendencias de esta variable con la abundancia de huevos de anchoveta (Fig. 25) o de sardina común (Fig. 4.3.14), y también con la abundancia de larvas de estas especies (Figs. 4.3.15 y 4.3.16).
Análisis Multivariado

Dada la gran cantidad de datos, se efectuó Análisis Factorial de Correspondencias (AFCO) para el total de los datos biológicos disponibles (huevos y larvas de anchoyeta y sardina común; predadores y presas), considerando todas las estaciones susceptibles de ser comparadas. Primero se efectuó el AFCO sin diferenciar por núcleo de abundancia. Posteriormente, se tomó como base tal diferenciación.

El primer AFCO revela alta sobreposición de las estaciones entre sí y de las variables entre sí, destacando solamente lo siguiente (Fig. 4.3.17): algunas estaciones se segregan en función de la mayor frecuencia de larvas de sardina común (casos de estación 1 en el transecto 14; estación 3 en el transecto 20; estación 8 en el Golfo de Arauco), mientras que otras pocas estaciones se segregan en función de los huevos de anchoyeta (casos de las estaciones 1 y 2 en la transecta 20; estación 3 en la transecta 21; estación 4 en el transecto 22; estación 4 en el transecto 23). El porcentaje de la varianza acumulada, que corresponde a los valores propios en cada componente es de 30%, 69%, 85% y 94% en el primer, segundo, tercero y cuarto gradiente composicional, respectivamente. Para mayor claridad en la representación, la Fig. 29a ha sido descompuesta en el núcleo principal, núcleo secundario y fuera de los núcleos (=núcleo 3) (Fig. 4.3.18).

Para un análisis multivariado en el núcleo principal se consideraron 25 estaciones de los transectos 20 al 23, con las variables huevos y larvas de anchoyeta y sardina común, predadores (hidromedusas, quelognatos, sifonóforos, ctenóforos) y la variable oceanográfica temperatura. Un AFCO efectuado al interior de este núcleo revela que la estación 3 del transecto 20 se segrega largamente del resto de las estaciones debido a la alta presencia de larvas de sardina común, en los dos primeros ejes (Fig. 4.3.19). El segundo gradiente composicional aporta escasamente a la segregación, siendo las excepciones la estación 3 del transecto 21 y la estación 4 del transecto 22, ambas muy costeras, lo que se debe a la alta frecuencia de huevos de anchoyeta. El porcentaje de la varianza acumulada es de 44%, 81%,

83
94% y 97% en el primer, segundo, tercero y cuarto gradiente composicional, respectivamente.

Para un análisis multivariado en el núcleo secundario se consideró 26 estaciones de los transectos 10, 11, 12 y 14, y las del Golfo de Arauco, con las variables huevos y larvas de anchoveta y sardina común, predadores (hidromedusas, quetognatos, sifonóforos, ctenóforos) y la variable oceanográfica temperatura. Un AFCO efectuado al interior de este núcleo revela que las estaciones no tienden a sobreponerse en función de una o unas pocas variables más frecuentes (Fig. 4.3.20). El porcentaje de la varianza acumulada es de 57%, 84%, 98% y 99% en el primer, segundo, tercero y cuarto gradiente composicional, respectivamente.

Para un análisis multivariado fuera de los núcleos principal o secundario se consideró 13 estaciones de los transectos 15, 16 y 18, con las variables huevos y larvas de anchoveta y sardina común y predadores (hidromedusas, quetognatos, sifonóforos, ctenóforos). Un AFCO efectuado al interior de conglomerado revela una situación más parecida al núcleo secundario, en el sentido que no existe una o algunas variables claves en función de las cuales se segreguen las estaciones, pudiendo ser, entonces, debido al conjunto (Fig. 4.3.21). Aparentemente, los sifonóforos juegan cierto rol en la segregación de la estación 5 del transecto 18. El porcentaje de la varianza acumulada es de 69%, 92%, 96% y 99% en el primer, segundo, tercero y cuarto gradiente composicional, respectivamente.

Confirma las escasas asociaciones entre las variables los bajos valores de Correlación de Pearson ($r_p$). En efecto, al considerar las variables huevos de anchoveta, larvas de anchoveta, huevos de sardina común, larvas de sardina común, hidromedusas, quetognatos, celenterados y ctenóforos, además de la variable ambiental temperatura, incorporando en el análisis las observaciones en los núcleos principal y secundario, destacan solamente la alta correlación entre huevos de anchoveta y huevos de sardina ($r_p=0.99$), levemente la correlación entre larvas de anchoveta y larvas de sardina común ($r_p=0.40$), y la correlación entre quetognatos y sifonóforos ($r_p=0.71$). El resto son todos de correlación de Pearson
bajos o muy bajos. Sin embargo, a pesar de ello, los valores de correlación de cada variable biológica son negativos con la temperatura, con la excepción de los ctenóforos, que es casi cero (r = 0,05).

Finalmente, para el caso del núcleo secundario se efectuó Análisis de Componentes Principales (ACP) debido a que se contó con la mayor cantidad de variables oceanográficas (temperatura, salinidad, oxígeno, η), además de presas (copepoditos, nauplios, diatomeas, dinoflagelados, huevos de copépodos), predadores (hidromedusas, quetognatos, sifonóforos, ctenóforos) y huevos y larvas de anchoveta y sardina común.

A partir de 17 variables originales (temperatura, salinidad, oxígeno, sigma-t, huevos1 (1 = anchoveta; 2 = sardina común), larvas1, huevos2, larvas2, hidromedusas, quetognatos, sifonóforos, ctenóforos, copepoditos, nauplios, diatomeas, dinoflagelados y huevos de copépodos) se efectuó 6 selecciones para reducir su número y, en consecuencia el número de componentes principales, aumentándose entonces los valores propios de cada componente principal, que es equivalente a la varianza explicada por cada componente. En el último ACP se trabajó solamente con 8 variables (salinidad, oxígeno, huevos de anchoveta, huevos de sardina común, larvas de sardina común, nauplios, diatomeas y dinoflagelados). Los componentes de carga (=component loading) de cada variable en cada componente principal son presentados en la tabla 4.3.1. La interpretación es la siguiente: la primera componente principal (43% de la varianza total) se puede denominar como “la componente de los huevos de anchoveta y sardina común”, presentándose ambos componentes de carga con signo positivo. Análogamente, la segunda componente principal (24% de la varianza total) se puede denominar “la componente trófica”, constituida por nauplios y diatomeas, presentándose ambos componentes de carga con signo positivo. Seguidamente, la tercera componente principal (9% de la varianza total) se puede denominar la “componente del inverso del oxígeno”, pues, aunque la componente de carga presenta el mayor valor absoluto, su signo es negativo. Finalmente, la cuarta componente principal (8% de la varianza total) se puede denominar “la componente del inverso de la salinidad”, pues,
aunque la componente de carga presenta el mayor valor absoluto, su signo es negativo. Una representación gráfica de las dos primeras componentes se presenta en la Figura 4.3.22.

Tabla 4.3.1. Componentes de carga de las cuatro primeras componentes principales (CP) en el núcleo secundario.

<table>
<thead>
<tr>
<th>Variable</th>
<th>CP-1</th>
<th>CP-2</th>
<th>CP-3</th>
<th>CP-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salinidad</td>
<td>0,710</td>
<td>0,030</td>
<td>0,298</td>
<td>-0,557</td>
</tr>
<tr>
<td>Oxígeno</td>
<td>0,643</td>
<td>0,378</td>
<td>-0,467</td>
<td>-0,302</td>
</tr>
<tr>
<td>Huevos anchoveta</td>
<td>0,772</td>
<td>-0,541</td>
<td>-0,162</td>
<td>0,037</td>
</tr>
<tr>
<td>Huevos sardina común</td>
<td>0,796</td>
<td>-0,510</td>
<td>-0,197</td>
<td>0,093</td>
</tr>
<tr>
<td>Larvas sardina común</td>
<td>0,561</td>
<td>-0,575</td>
<td>0,274</td>
<td>0,276</td>
</tr>
<tr>
<td>Nauplios</td>
<td>0,525</td>
<td>0,579</td>
<td>-0,258</td>
<td>0,375</td>
</tr>
<tr>
<td>Diatomeas</td>
<td>0,476</td>
<td>0,608</td>
<td>0,263</td>
<td>0,187</td>
</tr>
<tr>
<td>Dinoflagelados</td>
<td>0,718</td>
<td>0,402</td>
<td>0,316</td>
<td>0,065</td>
</tr>
</tbody>
</table>

Método Multivariado Robusto de Somerton

Se utilizó un segundo método para caracterizar las condiciones bio-oceanográficas asociadas a los principales núcleos de abundancia de huevos y larvas de las especies objetivo, el Método Multivariado Robusto de Somerton (1989). El algoritmo TSQUSIM se utilizó tanto con variables biológicas como físicas contrastando las características que se encuentran en el interior de los núcleos con aquellas de la zona externa. Las áreas contrastadas fueron las mismas utilizadas para contrastar la composición inctioplanctónica dentro y fuera de los núcleos (Objetivo específico 3) (Núcleo principal vs área Pta. Lavapié, Nucleo secundario vs V a VII Regiones), más un contraste entre las áreas correspondientes al núcleo secundario (costa VIII Región, especialmente el Golfo de Arauco) y la zona adyacente más alejada de la costa frente a la Octava Región. Para todos los contrastes, la información analizada correspondió a cinco potenciales predadores de huevos y larvas de peces (hidromedusas, chaetognatos, sifonoforos, ctenoforos y eufausidos), la información oceanográfica de cada estación a 10 m de profundidad (temperatura, salinidad, oxígeno disuelto y densidad) y, para los contrastes dentro de la VIII Región, además, los items alimentarios más comunes de
larvas de peces (nauplius, copepoditos, dinoflagelados, huevos de invertebrados y diatomeas).

Tabla 4.3.2. Predadores potenciales. Contraste entre Núcleo Principal (Novena Región) v/s Area Punta Lavapié

<table>
<thead>
<tr>
<th>Matrices</th>
<th>$T^2$ Hot.</th>
<th>No.Cuantil</th>
<th>Signif.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidromedusa</td>
<td>3.3533</td>
<td>22</td>
<td>0.978</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>8.6524</td>
<td>1</td>
<td>1.000</td>
</tr>
<tr>
<td>Siphonophora</td>
<td>-6.0793</td>
<td>1000</td>
<td>0.000</td>
</tr>
<tr>
<td>Ctenophora</td>
<td>-0.1556</td>
<td>536</td>
<td>0.464</td>
</tr>
<tr>
<td>Euphausiacea</td>
<td>-0.0644</td>
<td>520</td>
<td>0.480</td>
</tr>
</tbody>
</table>

Tabla 4.3.3. Predadores potenciales. Contraste entre Núcleo Segundario(VIII Región - Golfo Arauco) v/s Area V a VII Regiones (Norte)

<table>
<thead>
<tr>
<th>Matrices</th>
<th>$T^2$ Hot.</th>
<th>No.Cuantil</th>
<th>Signif.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidromedusa</td>
<td>12.4718</td>
<td>1</td>
<td>1.000</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>4.7673</td>
<td>996</td>
<td>0.004</td>
</tr>
<tr>
<td>Siphonophora</td>
<td>3.2665</td>
<td>30</td>
<td>0.970</td>
</tr>
<tr>
<td>Ctenophora</td>
<td>4.9091</td>
<td>1</td>
<td>1.000</td>
</tr>
<tr>
<td>Euphausiacea</td>
<td>-1.3997</td>
<td>722</td>
<td>0.278</td>
</tr>
</tbody>
</table>

Tabla 4.3.4. Predadores potenciales. Contraste entre Núcleo Segundario (VIII Región -Golfo) vs área adyacente.

<table>
<thead>
<tr>
<th>Matrices</th>
<th>$T^2$ Hot.</th>
<th>No.Cuantil</th>
<th>Signif.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidromedusa</td>
<td>-2.0138</td>
<td>861</td>
<td>0.139</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>-4.1940</td>
<td>998</td>
<td>0.002</td>
</tr>
<tr>
<td>Siphonophora</td>
<td>-3.6214</td>
<td>996</td>
<td>0.004</td>
</tr>
<tr>
<td>Ctenophora</td>
<td>-1.4614</td>
<td>735</td>
<td>0.265</td>
</tr>
<tr>
<td>Euphausiacea</td>
<td>-3.1590</td>
<td>977</td>
<td>0.023</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Copepodito</td>
<td>-0.4847</td>
<td>631</td>
<td>0.369</td>
</tr>
<tr>
<td>Nauplius</td>
<td>0.9846</td>
<td>269</td>
<td>0.731</td>
</tr>
<tr>
<td>Diatom sum</td>
<td>-0.5068</td>
<td>618</td>
<td>0.382</td>
</tr>
<tr>
<td>Dinoflagelados</td>
<td>1.0652</td>
<td>240</td>
<td>0.760</td>
</tr>
<tr>
<td>Huevos</td>
<td>1.8172</td>
<td>127</td>
<td>0.873</td>
</tr>
</tbody>
</table>

Los resultados de los contrastes señalan que no habrían diferencias entre ningún par de áreas analizadas en cuanto a potenciales predadores ni que tampoco habría diferencias (en conjunto) entre predadores y alimento potencial de larvas al comparar las dos áreas de la VIII Región.

Los resultados de la comparación de la data oceanográfica (temperatura, salinidad, oxígeno y sigma-t), sin embargo, permiten diferenciar algunas de las áreas de estudio. En particular, las áreas correspondientes al núcleo secundario y área correspondiente a las Regiones V a VII, resultaron diferentes significativamente, siendo la variables más importantes en su diferenciación, la salinidad (secundariamente la temperatura y la variable derivada sigma-t).

Entre las zonas Núcleo principal y Punta Lavapié no se encontró diferencias significativas, así como tampoco entre la zona costera de la Octava región (núcleo secundario) y la zona adyacente más alejada de la costa.
Tabla 4.3.5. Características oceanográficas. Contraste entre Núcleo Principal (Novena Región) v/s Área Punta Lavapie

<table>
<thead>
<tr>
<th>Matrices</th>
<th>$T^2$ Hot.</th>
<th>No.Cuantil</th>
<th>Signif.</th>
</tr>
</thead>
<tbody>
<tr>
<td>V. Ocean.</td>
<td>-0.4830</td>
<td>471</td>
<td>0.529</td>
</tr>
<tr>
<td>t Student</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperatura</td>
<td>-1.0974</td>
<td>759</td>
<td>0.241</td>
</tr>
<tr>
<td>Salinidad</td>
<td>1.4338</td>
<td>164</td>
<td>0.836</td>
</tr>
<tr>
<td>Oxígeno</td>
<td>0.0634</td>
<td>497</td>
<td>0.503</td>
</tr>
<tr>
<td>Sigma $t$</td>
<td>-0.2108</td>
<td>564</td>
<td>0.436</td>
</tr>
</tbody>
</table>

Tabla 4.3.6. Características oceanográficas. Contraste entre Núcleo Secundario (VIII Región - Golfo Arauco) v/s Área V a VII Regiones (Norte)

<table>
<thead>
<tr>
<th>Matrices</th>
<th>$T^2$ Hot.</th>
<th>No.Cuantil</th>
<th>Signif.</th>
</tr>
</thead>
<tbody>
<tr>
<td>V. Ocean.</td>
<td>-24.0846</td>
<td>996</td>
<td>0.004</td>
</tr>
<tr>
<td>t Student</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperatura</td>
<td>-1.3942</td>
<td>812</td>
<td>0.188</td>
</tr>
<tr>
<td>Salinidad</td>
<td>-2.4905</td>
<td>921</td>
<td>0.079</td>
</tr>
<tr>
<td>Oxígeno</td>
<td>3.5481</td>
<td>11</td>
<td>0.989</td>
</tr>
<tr>
<td>Sigma $t$</td>
<td>-1.8970</td>
<td>864</td>
<td>0.136</td>
</tr>
</tbody>
</table>

Tabla 4.3.7. Características oceanográficas. Contraste entre Núcleo Secundario (VIII Región - Golfo) vs área adyacente

<table>
<thead>
<tr>
<th>Matrices</th>
<th>$T^2$ Hot.</th>
<th>No.Cuantil</th>
<th>Signif.</th>
</tr>
</thead>
<tbody>
<tr>
<td>V. Ocean.</td>
<td>-0.0957</td>
<td>222</td>
<td>0.778</td>
</tr>
<tr>
<td>t Student</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperatura</td>
<td>0.3753</td>
<td>407</td>
<td>0.593</td>
</tr>
<tr>
<td>Salinidad</td>
<td>-0.5566</td>
<td>646</td>
<td>0.354</td>
</tr>
<tr>
<td>Oxígeno</td>
<td>0.6883</td>
<td>323</td>
<td>0.677</td>
</tr>
<tr>
<td>Sigma $t$</td>
<td>-1.1386</td>
<td>790</td>
<td>0.210</td>
</tr>
</tbody>
</table>

89
VIII.- ANALISIS Y DISCUSION DE RESULTADOS

Objetivo Específico 1.

Determinar la distribución espacial y cuantificar la abundancia de huevos y estadios larvales de anchoyeta y sardina común en la zona centro-sur de Chile.

Distribución de huevos de anchoyeta y sardina común

Los patrones generales de distribución huevos de anchoyeta y sardina común colectados en el presente estudio tienden a coincidir espacialmente con información previa sobre la distribución de los adultos y, en algunos casos, con información sobre ictioplancton de la región. Los patrones de distribución a que se hace referencia corresponden a: i) el sentido latitudinal (33º41'S frente a San Antonio, hasta los 39º40'S frente a Corral), ii) en referencia a su distribución espacial frente a la costa (áreas costeras y a media distancia de la costa en la Novena región) así como en sentido vertical (principalmente en el estrato superior, 0-40m de profundidad). Al menos dos de estos tres modos de distribución de huevos habían ya sido reportados para al menos una de estas especies (eg. distribución latitudinal ambas especies, distribución de huevos y larvas frente a la costa para anchoyeta, distribución batimétrica de huevos de anchoyeta). Sin embargo, la presencia de altas concentraciones de huevos formando un gran núcleo en la Novena Región ha sido un resultado inesperado (ver más adelante, discusión sobre posición de los núcleos).

Ubicación de los núcleos de Huevos y Larvas de Anchoyeta y Sardina común

El núcleo principal de huevos de anchoyeta está ubicado alrededor (o incluso más al sur) de los 39º30' S, esto es, cercano al límite sur de la Novena Región, siendo este núcleo similar o mayor en extensión que el núcleo de huevos de sardina (Figura 1.12 a y b). El núcleo principal de huevos de sardina se encuentra al sur de Pta. Lavapié, teniendo su centro aproximadamente frente a los 39ºS, y se extiende más de un grado de latitud hacia el norte,
a juzgar por la distribución espacial de huevos. El centro del núcleo de larvas de anchoveta estaría a más de 1° de latitud hacia el norte del centro de huevos de la misma especie. El centro del núcleo de larvas de sardina común estaría a aproximadamente medio grado de latitud hacia el norte del centro de huevos de la misma especie. Un núcleo menor (secundario) de huevos y larvas de sardina común, entre los 37°S y los 36°S, se aprecia al igual que para huevos de anchoveta, en la zona inmediatamente vecina a la línea de costa de la Octava Región. No se apreció ningún núcleo secundario de larvas de anchoveta frente a la Octava Región.

La distribución de los núcleos de huevos y larvas de anchoveta y sardina común tienden, en general, a sobreponerse. Algunas diferencias importantes, sin embargo, ocurrieron y cabe mencionarlas explícitamente en el presente informe.

- Primero, la distribución de huevos de anchoveta tiende a ocurrir hasta más al sur que la de sardina común, quedado probablemente, una zona en que podría representar una zona de desove de anchoveta aún más al sur de la Novena Región.

- Segundo, si bien existe sobreposición de las larvas de anchoveta y sardina común frente a la Novena Región, las zonas de mayor abundancia de larvas de ambas especies está desplazada en dirección norte respecto a la zona de mayor abundancia de huevos de ambas especies, lo que insinúa cierto desplazamiento de las larvas con las corrientes predominantes (i.e. rama costera de la Corriente de Humboldt).

- Tercero, se observó la ausencia de altas concentraciones de larvas de anchoveta dentro del Golfo de Arauco, área señalada en este informe como de abundancia tanto de huevos de anchoveta como de huevos y larvas de sardina común.

- Cuarto, la distribución de larvas de sardina frente a la Octava Región tiende a ser relativamente más amplia que la de huevos de esta misma especie, insinuando una expansión espacial de la distribución de las larvas en el plancton.
Los resultados sobre distribución y abundancia de huevos y larvas de sardina común entregados en el presente estudio podrían estar afectados por el periodo de muestreo llevado a cabo (principalmente Septiembre y Octubre). Sin embargo, evidencias reportadas en la literatura así como datos propios del grupo de investigación proveniente de otros proyectos, señalan que los resultados presentados aquí, en términos de abundancia del ictioplancton en la Octava Región al menos (sobre el cual existe mayor información disponible), corresponden a abundancias normales durante las épocas de desove de ambas especies. En el presente estudio se colectó huevos de anchoveta desde estaciones de la Octava Región que alcanzaron concentraciones (estaciones positivas) que variaban desde 20 h/100m$^2$ (1.0 h/100m$^3$) hasta 12.379 h/100m$^2$ (309 h/100m$^3$, Golfo de Arauco). Reportes de abundancia de huevos de anchoveta obtenidos por el Instituto de Fomento Pesquero (Mujica y Rojas 1980) en esta región señalan abundancias de hasta 64 h/100m$^3$ (julio), de hasta 327 h/100m$^3$ (Septiembre) y 2126 h/100m$^3$ (Noviembre-Diciembre). Resultados obtenidos por nuestro grupo de trabajo frente Talcahuano entre fines de Julio y comienzos de Septiembre de 1995 (Castro 1996, Proyecto FONDECYT 3950024) indican abundancias máximas de hasta 250 h/100m$^3$ y, abundancias de hasta 515 h/100m$^3$ durante Agosto de 1996 (mismo año del presente proyecto FIP 96-11). Las abundancias de huevos de sardina común frente a la Octava Región en el presente proyecto fluctuaron entre menos de 1 h/100m$^3$ hasta un máximo de 5232 h/100m$^2$ (290 h/100m$^3$, Golfo de Arauco). Los reportes de abundancia de huevos de sardina común obtenidos por Mujica y Rojas (1980) en esta región señalan abundancias de hasta 40 h/100m$^3$ (julio), de hasta 21 h/100m$^3$ (Septiembre) y 2 h/100m$^3$ (Noviembre-Diciembre). En la actualidad no disponemos de datos obtenidos por nuestro grupo de trabajo frente Talcahuano en 1995 (Proyecto FONDECYT 3950024), pero sí de huevos colectados durante Agosto de 1996 (mismo año del presente proyecto FIP 96-11), observándose abundancias de hasta 479 h/100m$^3$ (Proyecto FONDECYT 3950024). En otras palabras, las abundancias encontradas en la Octava Región se ajustan bien a las reportadas para estas especies en la misma zona durante los periodos considerados de desove de las especies objetivo.
Respecto a la distribución de huevos y larvas de anchoveta y sardina común, nuestros resultados sobre la Octava Región señalan similitudes y diferencias respecto a otros estudios reportados en la zona. Las zonas núcleo de huevos de anchoveta y sardina común y de larvas de sardina común, coinciden con resultados reportados para estas especies (Mujica y Rojas 1980, Castro et al in review, Castro 1996): los desoves para ambas especies serían costeros y altas abundancias se encontrarían en el Golfo de Arauco y entre Bahía Concepción y frente al Río Itata. Sin embargo, la ausencia de larvas de anchoveta en el interior del Golfo de Arauco resultó sorprendente. Finalmente, información previa sobre la zona de altas abundancias correspondientes a los núcleo principales en la Novena Región, no hay disponible o son de circulación restringida, por lo cual, no se puede asegurar si este patrón de distribución es reciente (últimos años) o si es normal para la época y zona de estudio.

**OBJETIVO ESPECIFICO 2.**

Caracterizar los principales núcleos de abundancia de huevos y larvas de anchoveta y sardina común respecto a la estructura de tallas y edad de los estadíos de desarrollo.

De la inspección de los resultados obtenidos tanto en relación a la estructura de tallas, estructura de edades y relación entre estados de desarrollo larval (pre- y postflexión) se desprende que habría similitudes entre las estructuras de talla y edad de larvas de sardina y anchoveta en los núcleos principales pero habría diferencias al comparar entre los núcleos primario y secundario de larvas de sardina común. Para ambas especies, la estructura de tallas habría sido similar en los núcleos la Novena Región (alrededor de 7 mm en anchoveta y alrededor de 6 mm en sardina común) y así también habría sido la estructura de edades (sobre el 80% de las larvas en edades entre 7 y 15 días postdesove). Estos resultados insinúan que el periodo de desove del cual provendrían mayoritariamente habría ocurrido en aproximadamente las mismas semanas (última semana de Agosto, primera y segunda semanas de Septiembre). La gran abundancia de huevos de ambas especies durante las
semana de muestreo en esta zona (segunda semana de Septiembre) insinúa que el desove se habría prolongado durante la primera quincena de septiembre.

La distribución de tallas y edad de las larvas de sardina común colectadas en el núcleo secundario ubicado en la Octava Región (cuyo muestreo correspondió principalmente a la segunda quincena de Octubre) indican que, por un lado son diferentes a las distribuciones de las larvas del núcleo principal de la Novena Región, así como señalan que se trataría de larvas que habían sido desovadas durante un largo periodo de tiempo (septiembre y octubre). En este núcleo secundario la distribución tanto de tallas como de edades fue mucho más amplia que en el núcleo principal, llegándose a larvas sobre 27 mm de longitud estándar y de edades sobre 50 días postdesove. De hecho, la mayor cantidad de larvas se ubicó en las edades entre 10 y 40 días postdesove, lo que indicaría que esta gran fracción de larvas colectadas habría sido desovada principalmente entre la segunda quincena de septiembre y la segunda quincena de Octubre. Esta información sobre edades larvales, más la presencia de huevos de sardina en este núcleo secundario y las abundancias de larvas y huevos comparables las colectadas en otros estudio en la zona, reafirmarían la tesis que la época de muestreo habría correspondido a una fracción del periodo normal de desove de esta especie en el área de estudio, el cual se habría extendido (según la información combinada de huevos y larvas sobrevivientes) al menos desde fines de Agosto hasta fines de Octubre.

El ajuste de los modelos de crecimiento lineal simple para las larvas de anchoveta y sardina común resultaron altamente significativos y están en el rango de estimaciones de tasas de crecimiento larval reportadas para estas especies en la zona central de Chile. Las tasas diarias de crecimiento larval reportadas para anchoveta en la Octava Región para larvas del rango de tallas utilizadas en este estudio (0.60 mm d⁻¹ para larvas entre 5 y 10 mm) varían entre 0.35 mm d⁻¹ (Hernández 1997) y de 0.66 mm d⁻¹ (Herrera et al. 1985). Estimaciones de tasas de crecimiento larval de sardina común no hay disponibles en literatura y las determinadas en este estudio serían las primeras hasta ahora reportadas. Las tasas de crecimiento para esta última especie aquí determinadas (0.38 mm d⁻¹), sin embargo, caería
dentro de las estimaciones llevadas a cabo para otras especies de clupeiformes. Por ejemplo, para Sardinops sagax se han determinado tasas de crecimiento entre 0.65 y 0.40 mm d\(^{-1}\) para larvas entre 5 y 10 mm y entre 10 y 15 mm, respectivamente (Castillo et al 1985). Para larvas de anchoveta entre 8 y 20 mm, tasas de crecimiento promedio de 0.47 mm d\(^{-1}\) fueron determinadas para el periodo invernal de 1995 (Hernández 1997). Finalmente, para Engraulis mordax, tasas de crecimiento larval de 0.39 mm d\(^{-1}\) han sido reportadas en el hemisferio norte (Methot y Kramer 1979).

Finalmente, y como resultado extra de este objetivo, se determinó que la distribución vertical de las larvas de ambas, anchoveta y sardina común, podría variar de acuerdo al estado de desarrollo. En el estrato más somero (0 - 40 m), se encontró tanto larvas en estado pre- como postflexión. Sin embargo, en el estrato más profundo, las abundancias de larvas postflexión pasaron a ser mayoritarias insinuando posibles cambios ontogenéticos en distribución vertical. Este último punto, sin embargo, es solo presentado aquí como una posible hipótesis de trabajo futuro ya que se requeriría información más detallada de la distribución vertical de las larvas (muestreos estratificados a escala fina) para probar estas proposiciones.

**OBJETIVO ESPECIFICO 3.**

**Determinar la dominancia numérica de anchoveta y sardina común y caracterizar la asociación ictioplanctónica**

La comunidad ictioplanctónica de la zona central de Chile determinada en el presente estudio estuvo formada por más de 45 potenciales taxa. De estos, 14 taxa no pudieron ser identificados ni al nivel de familia, lo que revela la extremadamente pobre información existente sobre los estadios de desarrollo temprano de peces chilenos. De los 31 taxa restantes, al menos 24 pudieron llegar a ser identificados al nivel de género o especie.

Hubo diferencias en el número de taxonómicas colectadas en cada estrato: en el estrato somero (0-40 m) hubo 37 taxonómicas y en el profundo solo 28, presentándose algunos taxonómicas sólo en el estrato somero (Ethmidium maculatum, Stromateus stellatus, Tripterygion chilensis, Prolatilus juglaris, Sardinops sagax, Syngnathis saurus, Agonopsis chiloensis, Scolpelosaurus sp, y otros 8 tipos no identificados), y otros sólo en el estrato profundo (Bathyagrus sp, Lampanicthys sp. y los otros 6 tipos no identificados). Del mismo modo, si bien muchos taxonómicas ocurrieron en ambos estratos, sus abundancias variaron entre ellos. Por ejemplo, las dos especies objetivas fueron abundantes en el estrato somero pero no en el más profundo. Por el contrario, Higophum brunii, Maurolicus sp. y Merluccius Gayi fueron dominantes en el estrato profundo. Estos resultados, si bien aún descriptivos y extras a lo solicitado en el proyecto, representarían una de las primeras contribuciones que señalan una posible diferenciación taxonómica de la comunidad ictioplanctónica por profundidad.

En general, las áreas de mayor abundancia de ictioplanctón total (zonas cercanas y a media distancia de la costa) coincidieron con áreas de gran abundancia de anchoveta y sardina común en el estrato más somero en las Octava y Novena Regiones. Sin embargo, esto no ocurrió en las regiones más al norte (V a VII Regiones) ni en el estrato más profundo, donde huevos y larvas de otros ictioplanctóneres tienden a ser abundantes, por ejemplo, en sectores más alejados de la costa.
Los resultados de la comparación de la comunidad larval dentro versus fuera de los núcleos reveló que no existe diferencia significativa entre las comunidades de larvas de peces del núcleo principal y de la zona de Punta Lavapié (área intermedia entre los dos núcleos principal y secundario), pero sí entre las comunidades del núcleo del Golfo de Arauco (y zona costera de la VIII Región) y la zona de la V a VII Regiones. Las diferencias significativas observadas hacia el norte se deberían a 8 especies con marcadas diferencias en abundancia entre las regiones, lo cual insinúa que factores de tipo variación latitudinal podrían estar tomando parte en esta diferenciación.

Dentro del núcleo principal ubicado en la Novena Región, por otro lado, se determinó que ambas especies objetivo, la anchoveta y sardina común, tienden a formar un solo cluster fácilmente identificable de los demás grupos de especies. Esto no coincidió en la Octava Región, donde la escasa abundancia de larvas de anchoveta habría determinado que esta especie estuviera más asociada a otras especies de distribución somera que normalmente ocurren en menor abundancia. La baja asociación entre anchoveta y sardina común en este periodo de reducida abundancia larval de anchoveta había sido ya reportada para la zona durante periodos estivales (Castillo et al. 1985).

**OBJETIVO ESPECIFICO 4.**

**Caracterizar las condiciones bio-oceanográficas asociadas a los principales núcleos de abundancia de huevos y larvas de anchoveta y sardina común.**

**Alimento potencial de larvas de peces**

La abundancia de los principales items presas de las larvas de sardina común y anchoveta observados durante el presente estudio se encuentran dentro de los rangos que han sido previamente reportados para la VIII Región (ver Tabla 5.4.1).
En la Tabla 5.4.1 se puede apreciar un alto grado de consistencia en los niveles de abundancia de huevos de invertebrados encontrados en este estudio con los reportados por Quiñones et al. (1997) para la misma zona y periodo de estudio. Por otro lado, al comparar ambos estudios se puede observar: (i) menores abundancias de copépodos y dinoflagelados, y (ii) mayores abundancias de nauplios y copepoditos durante el presente estudio (Tabla 5.4.1).

Los niveles de clorofila encontrados en la VIII Región están dentro de los rangos que han sido descritos para esta Región y zonas adyacentes (e.g. Serra et al. 1994, Osses et al. 1995).

Para el caso de la Bahía Concepción nuestros valores son más bien bajos en comparación con otros estudios (e.g. Arcos & Wilson 1984, Ahumada 1989), aunque dentro del rango de valores que han sido reportados para la Bahía (Ahumada et al. 1991). De hecho, durante periodos de surgencia se han encontrado valores de clorofila de hasta 309 mg/m³ en la Bahía de Concepción (Ahumada 1989), es decir un orden de magnitud superiores a los que encontramos en el presente estudio. Cabe destacar que la Bahía Concepción es una de las áreas de desove de peces pelágicos pequeños más importantes de la zona centro-sur de Chile (Mujica y Rojas 1980) y, por lo tanto, la variabilidad de la biomasa fitoplanctonica puede ser de gran importancia para la dinámica de las tramas tróficas en que están insertas las larvas de sardina común y anchoveta.

La presencia de mayores abundancias en las densidad de presas (Tabla 13), total y por tamaños, en las zonas de desove que en las zonas externas a éstas, sugiere que la componente trófica es de importancia en la selección de zonas de desove por ambas especies.
<table>
<thead>
<tr>
<th>GRUPOS</th>
<th>ABDUNCIA</th>
<th>LUGAR</th>
<th>REFERENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10-70/l</td>
<td>Golfo de Arauco (1989)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3,4-4,0/l</td>
<td>Bahía Concepción</td>
<td>Llanos 1990</td>
</tr>
<tr>
<td></td>
<td>30,3/l(*)</td>
<td>Estrato 0-40</td>
<td>Este estudio</td>
</tr>
<tr>
<td></td>
<td>10,3/l(*)</td>
<td>Estrato 40-100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>805/l (*)</td>
<td>Golfo de Arauco, Feb/Mar 1996</td>
<td>Quiñones et al. 1997</td>
</tr>
<tr>
<td></td>
<td>20 (*)</td>
<td>Golfo de Arauco, Ago/Sep 1996</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10-60/l</td>
<td>Golfo de Arauco (1989)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,5-3,2/l</td>
<td>Bahía Concepción</td>
<td>Llanos 1990</td>
</tr>
<tr>
<td></td>
<td>283-2,800/m²</td>
<td>Chile centro-sur (con surgencia)</td>
<td>Arcos et al. 1996</td>
</tr>
<tr>
<td></td>
<td>200-967/m²</td>
<td>Chile centro-sur (con relajación)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-1,150/m²</td>
<td>Chile centro-sur (post-surgencia)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15,4/l</td>
<td>Estrato 0-40 m</td>
<td>Este estudio</td>
</tr>
<tr>
<td></td>
<td>2,7/l</td>
<td>Estrato 40-100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,4/l</td>
<td>Golfo de Arauco, Feb/Mar 1996</td>
<td>Quiñones et al. 1997</td>
</tr>
<tr>
<td></td>
<td>2,7/l</td>
<td>Golfo de Arauco, Ago/Sep 1996</td>
<td></td>
</tr>
<tr>
<td></td>
<td>&lt;10/l</td>
<td>Golfo de Arauco (1989)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,0-1,2/l</td>
<td>Bahía Concepción</td>
<td>Llanos 1990</td>
</tr>
<tr>
<td></td>
<td>0-1,200/m²</td>
<td>Chile centro-sur (con surgencia)</td>
<td>Arcos et al. 1996</td>
</tr>
<tr>
<td></td>
<td>0-900/m²</td>
<td>Chile centro-sur (con relajación)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-325/m²</td>
<td>Chile centro-sur (post-surgencia)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,3/l</td>
<td>Estrato 0-40 m</td>
<td>Este estudio</td>
</tr>
<tr>
<td></td>
<td>0,3</td>
<td>Estrato 40-100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,2/l</td>
<td>Golfo de Arauco, Feb/Mar 1996</td>
<td>Quiñones et al. 1997</td>
</tr>
<tr>
<td></td>
<td>0,2/l</td>
<td>Golfo de Arauco, Ago/Sep 1996</td>
<td></td>
</tr>
<tr>
<td>COPEPÓDOS</td>
<td>1,3/l</td>
<td>Golfo de Arauco, Feb/Mar 1996</td>
<td>Quiñones et al. 1997</td>
</tr>
<tr>
<td></td>
<td>5,0/l</td>
<td>Golfo de Arauco, Ago/Sep 1996</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,78/l</td>
<td>Estrato 0-40m</td>
<td>Este estudio</td>
</tr>
<tr>
<td></td>
<td>0,25/l</td>
<td>Estrato 400-100</td>
<td></td>
</tr>
<tr>
<td>DINOFLAGELADOS</td>
<td>50-60,000/l</td>
<td>Golfo de Arauco (1988)</td>
<td>Bernal et al. 1990</td>
</tr>
<tr>
<td></td>
<td>&lt;300/l</td>
<td>Golfo de Arauco (1989)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6-44/l</td>
<td>Bahía Concepción</td>
<td>Llanos 1990</td>
</tr>
<tr>
<td></td>
<td>259,4/l</td>
<td>Estrato 0-40 m</td>
<td>Este estudio</td>
</tr>
<tr>
<td></td>
<td>21,3/l</td>
<td>Estrato 40-100 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17,400/l</td>
<td>Golfo de Arauco, Feb/Mar 1996</td>
<td>Quiñones et al. 1997</td>
</tr>
<tr>
<td></td>
<td>780/l</td>
<td>Golfo de Arauco, Ago/Sep 1996</td>
<td></td>
</tr>
</tbody>
</table>
Analisis integrado de la informacion bio-oceanografica.

El analisis de las distribuciones horizontales de variables hidrograficas señalan, además de valores dentro de los rangos esperables para la época, una serie de peculiaridades especialmente asociadas a la zona costera. En primer lugar, en la distribucion horizontal de temperaturas se observa claramente la presencia de surgencia tanto frente a Punta Lavapié, al sur de Concepcion, y frente a Punta Curaumilla, cerca de Valparaiso. Este hecho es consistente con la existencia de vientos favorables a surgencia durante el crucero. Estos lugares han ya sido reportados como centros de surgencia con anterioridad. Segundo, la presencia de aguas dulces es especialmente evidente en algunos sectores, especialmente en los sectores sur, producto del ingreso de aguas provenientes de rios como el BioBio, que afectaria tanto el Golfo de Arauco como la zona aledaña. Tercero, la presencia de valores altos de oxigeno disuelto en zonas costeras como el Golfo de Arauco, el cual seria la region de la zona de estudio en que hay mas oxigeno disuelto a 10 m de profundidad. Estas caracteristicas de la zona costera, si bien no pueden asociarse directamente con las distribuciones de huevos y larvas de anchoveta y sardina a lo largo de la zona central del pais, podrian revestir cierta importancia ya que es en la zona costera donde normalmente se encuentran los huevos y larvas de estas especies.

El analisis de la data hidrograficas sugiere la existencia de ciertas zonas mas extensas con caracteristicas hidrograficas comunes. Las zonas estan definidas de la siguiente manera: La zona 1 consiste de las transectas 20 a 23; la zona 2 de las transectas 15 a 18; la zona 3 de las transectas 10 a 14, mas los datos del Golfo de Arauco y las bahias de Concepcion y Coliumo; la zona 4 consiste en la zona que comprende las transectas 2 a la 9. Se observa que la zona 4 (norte), por ejemplo, muestra sistematicamente mayores temperaturas y salinidades. La zona 1 y 2, por otro lado, muestran valores altos de oxigeno disuelto. En estas zonas, entre 36°S y 38°S, correspondiente a la region ubicada frente al Golfo de Arauco, aproximadamente, tambien ocurren marcados gradientes verticales. Es conocido que en esta region es frecuente encontrar frentes horizontales, frentes submarinos,
inversiones térmicas, y mucha estructuración en las variables hidrográficas (Quiñones 1994, Proyecto FIP Jurel 1994). Finalmente, si bien esta caracterización insinúa zonas posiblemente distinguibles y concordantes con otras variables biológicas (zonas de mayores abundancias de huevos y larvas de anchoveta, zonas de diferencias taxonómicas en comunidad ictioplanctónica), debe considerarse solo como tentativa y, probablemente sería la zona 1 (zona norte) la que diferiría más de las demás aquí expuestas, tal como lo revelaron los análisis estadísticos de agrupación de variables oceanográficas y de la comunidad ictioplanctónica (Resultados de Método Multivariado Robusto de Somerton).

Al analizar algunos de los componentes biológicos considerados en el presente estudio (potenciales predadores), se determinó que los análisis de escala espacial mayor (latitudinal entre zonas) no entregarían resultados que indicaran diferencias entre ningún par de áreas analizadas. Los análisis comparativos entre zonas de la Octava Región que incluyeron tanto predadores como ítems alimenticios, tampoco evidenciaron diferencias al analizarlos desde el punto de vista taxonómico (grupos de predadores). En esta escala espacial, sin embargo, al analizar las distribuciones de ítems alimentarios por talla entre la zona costera (núcleo) y zona adyacente, sin embargo, sí se encontró diferencias (ver sección microzooplancton). Estos resultados, si bien no permiten asociar variaciones de distribución de zonas de desove en el sentido latitudinal (a diferencia de lo encontrado para variables oceanográficas), podrían relacionarse con variaciones en zonas de abundancias de huevos y larvas de las especies objetivo en escalas espaciales menores (por ejemplo, mesoescala). Finalmente, al analizar el conjunto de variables tanto biológicas como oceanográficas en los análisis multivariados (Análisis Factorial de Correspondencias y de Componentes Principales) dentro de los núcleos de huevos y larvas, no se pudo distinguir variables ambientales que explicaran la variabilidad de la data de abundancia de las especies objetivo dentro de los núcleos. Estos últimos resultados probablemente reflejarían que los procesos de menor escala (microescala) probablemente no determinarían la variabilidad observada en los patrones de distribución de huevos y larvas de anchoveta y sardina común dentro de los núcleos.
Los resultados hasta aquí analizados (del conjunto completo de variables biológicas y oceanográficas) señalarían que serían las escalas espaciales mayores (latitudinal) y medianas (mesoescala) donde podrían encontrarse asociaciones de algunas de estas variables ambientales con las zonas de mayores abundancias de huevos y larvas de las especies objetivo. Existiría, sin embargo, alguna evidencia aún incompleta, que indicaría que otras hipótesis alternativas podrían plantearse para explicar las distribuciones de los núcleos de huevos y larvas de anchoveta y sardina común que, como se indicó inicialmente, resultó especialmente inesperada en la Novena Región (ver más abajo).

Un análisis comparativo de las temperaturas superficiales del mar durante el presente estudio y las determinadas por imágenes satelitales de los últimos 15 años, señala que las condiciones oceanográficas en algunas partes del área de estudio habrían presentado anomalías térmicas importantes previo al crucero, mientras que otras áreas habrían presentado condiciones normales. En la zona costera norte del área de estudio (desde 36°S hacia el norte) habrían ocurrido las mayores anomalías térmicas negativas, especialmente al inicio del invierno (-1,4°C a fines de junio). La región al sur de 38°S no registró anomalías negativas significativas durante todo el invierno de 1996, incluso se presentó anomalías positivas en Agosto. Finalmente, entre 34°S y 37°S, durante el desarrollo del presente estudio, las temperaturas superficiales del mar habrían sido levemente más bajas que el promedio de 15 años. Estos resultados, en su conjunto aunque no concluyentes, son interesantes en cuanto insinúan que las condiciones oceanográficas previas al crucero (probablemente durante la primera parte de la época de desove, fines de Julio y Agosto) podrían haber sido no las características, especialmente en la zona norte del área de muestreo, lo cual podría haber inducido, por ejemplo, el desplazamiento del stock adulto a áreas más normales (más al sur) durante el resto de la época reproductiva. Obviamente, este proyecto no contempla información del stock desovante por lo cual presentamos esta hipótesis solo como una posible explicación alternativa para la explicación de las zonas de máximas abundancias de huevos ubicadas en la región sur (Novena Región).
IX.- CONCLUSIONES

1.- El análisis de las muestras ictiplanctónicas permitió determinar 42 estaciones con huevos de anchoveta y 34 con huevos de sardina común en estrato entre 0 y 40 m de profundidad. En el estrato más profundo (40-100 m), sólo 3 estaciones presentaron huevos de anchoveta y 2 de sardina común.

2.- En 29 estaciones se encontró huevos de ambas especies, lo cual representa el 76% de estaciones con huevos de anchoveta y el 87% de estaciones con huevos de sardina común, indicando una superposición de ambas especies en las zonas de desove.

3.- El núcleo principal de huevos de sardina tuvo su centro frente a los 39°S, y se extiende más de un grado de latitud. El núcleo de abundancia de las larvas de esta especie se encontró más al norte, con centro en los 38°S, lo que indica que los huevos fueron transportados hacia el norte por la corriente superficial dominante.

4.- Un núcleo secundario de huevos y larvas de sardina común se observó entre los 37° y los 36°S (zona costera de la Octava región, incluido el Golfo de Arauco).

5.- El núcleo principal de huevos de anchoveta se presentó más al sur que el de huevos de sardina. La extensión de este núcleo es similar o mayor que la del núcleo de huevos de sardina. Asimismo, el centro del núcleo de larvas de anchoveta está a más de 1° de latitud hacia el norte del centro de huevos.

6.- Un núcleo secundario de huevos ocurrió entre los 37°S y los 36°S, como en el caso de la sardina, pero no se aprecia ningún núcleo secundario de larvas de anchoveta.

7.- El rango de tallas de larvas de anchoveta colectadas en el núcleo principal (Novena Región), varió desde 3 mm a 21 mm de longitud standar. El rango de tallas de las larvas de
sardina común en el núcleo principal varió entre 3 y 15 mm. En el núcleo secundario (Octava Región), las larvas de sardina común variaron entre 5 y 27 mm de longitud estándar.

8. - Un modelo lineal simple se utilizó para describir la relación entre talla larval y edad de ambas especies. Las tasas de crecimiento diarias obtenidas a partir de estos modelos para cada especie correspondieron a 0.60 mm d\(^{-1}\) para anchoveta entre 6.0 y 10.2 mm, y de 0.38 mm d\(^{-1}\) para sardina común entre 4.6 y 18.3 mm.

9. - La edad de las larvas de anchoveta varió entre 4 y 36 días desde el desove en el núcleo principal ubicado en la Novena Región. En este mismo núcleo principal, la edad de las larvas de sardina común varió entre los 5 y 37 días de edad mientras que en el núcleo secundario, éstas variaron entre los 9 y los 67 días, insinuando (junto con las altas abundancias de huevos) que el desove habría estado ocurriendo hasta al menos fines de octubre.

10. - La relación entre diámetro de los otolitos y longitud larval fue bien descrita por un modelo potencial. Para larvas de anchoveta el modelo fue: \(y = 2.6454x^{0.3389}\) y para sardina común fue: \(y = 1.1291x^{0.3452}\) donde \(x\) es diámetro del otolito.

11. - El rango de distribución vertical aumentaría (se profundizaría) en la medida que las larvas se van desarrollando. Huevos, larvas pre- y postflexión, tanto de larvas de anchoveta como de sardina común, se encontraron en el estrato más somero (0-40 m) mientras que en el estrato más profundo (40-100 m) las larvas de ambas especies en estado postflexión tienden a aumentar.

12. - En el estrato más somero (0-40 m), se determinó más taxa (37 taxa) que en el estrato más profundo (28 taxa).

13. - En el estrato más somero, el mictófido *Higophum brunii*, fue el taxon más frecuente, seguido de anchoveta y sardina común y *Sebastes capensis*. Los taxa más abundantes fueron sardina común y anchoveta.
14.- En el estrato más profundo, el micrófido *Higophum bruntii*, nuevamente fue el taxon más frecuente, seguido de otras tres especies de micrófidos y luego de *Merluccius gayi*. Los taxa más abundantes fueron *Higophum bruntii, Maurolicos sp.* y *Merluccius gayii*.

15.- Los resultados de comparaciones de ictioplancton en diferentes de áreas latitudinales indican que no existe diferencia significativa entre las comunidades de larvas de peces del núcleo de la Novena Región y de Punta Lavapié, pero sí entre las comunidades del núcleo del Golfo de Arauco y la de la zona norte (de la V a VII Regiones).

16.- En las regiones más al norte, la correspondencia de los máximos entre larvas de anchoveta y sardina común y el resto de la comunidad ictioplanctónica en la zona costera no es tan alta, y huevos y larvas de otros ictioplancteros tienden a ser relativamente abundantes en sectores más alejados de la costa y en el estrato más profundo.

17.- Dentro del núcleo principal, las larvas de anchoveta y sardina tienden a formar clusters distinguibles de las otras especies pero esto no ocurre en los núcleos secundarios.

18.- Entre los grupos de microplancton menores a 150 um, las diatomeas fueron el grupo mayoritario en el estrato somero y en el profundo, seguido de los dinoflagelados.

19.- Entre los grupos de microplancton mayores a 150 um, nauplius, copepoditos y larvas de poliquetos fueron los grupos mayoritarios.

20.- El taxon más abundante dentro del macroplancton de la VIII Regió fue el de los copépodos. Otros grupos abundantes fueron larvas de crustáceos y cladóceros.

21.- Entre los potenciales predadores de huevos y larvas de peces en la VIII Región, los sifonóforos, quetognatos e hidromedusas fueron las más abundantes en el estrato somero.
En el estrato más profundo, los quetognatos dominaron y además de los taxa en el estrato somero, aumentan los eufausidos notoriamente.

22.- Al comparar la distribución de alimento de larvas de peces por tamaño, se encontró diferencias entre la zona costera y la zona a media distancia de la costa en al VIII Región.

23.- El análisis de las características oceanográficas permitió identificar una serie de procesos de mesoescala, principalmente en la zona costera. Entre ello, la presencia de centros de surgencia (eg. Punta Curiamilla, Punta Lavapié), la presencia de intrusiones de agua dulce (eg. Rio BioBio), y áreas de mayor contenido en oxígeno disuelto (Golfo de Arauco).

24.- El análisis de las características oceanográficas también permitió determinar posibles áreas más extensas con características similares. Entre ellas, la diferenciación más clara estaría entre la zona comprendida entre la V Región y VII Regiones y el resto de regiones más al sur (VIII y IX Regiones).

25.- El conjunto de diferencias entre las Regiones norte (V a VII) y las sur (VIII y IX) en composición taxonómica, abundancia y distribución de la fauna ictioplanctónica y las características oceanográficas, coincidirían con las diferencias en distribución de los núcleos de huevos y larvas de anchoveta y sardina común (núcleos de desove normales en VIII Región y núcleos de desove inesperado en la IX Región).

26.- Durante el invierno de 1996, la zona norte (V a VII Regiones) habrían presentado anomalías térmicas negativas (no así durante el periodo de muestreo). Estas observaciones permitirían postular una hipótesis alternativa sobre las zonas de desove en la región sur (Novena Región), esto es, la presencia de estas anomalías en la zona norte al inicio de la temporada de desove podría haber inducido un desplazamiento de las áreas de desove hacia el sector más al sur.
X.- REFERENCIAS


Herrera, G., E. Tarifeño & M. Orellano 1987. Descripción de huevos y primeras diàfases larvales de la sardina común (Strangomera bentincki) y del machuelo (Ethmidium maculatum). Biología Pesquera 16: 107-113


Rojas, O., Mujica, A., Labra, M., Lederman, y H. Miles. 1983. Estimación de la abundancia relativa de huevos y larvas de peces. Instituto de Fomento Pesquero, Chile. AP 83-31: 98 pp.6


XI. - FIGURAS

Todas las figuras de distribución de plancton (ictioplancton, microplancton y macroplancton) están expresadas en 100 m², a menos que se indique otra cosa en las figuras.
Figura 1. Área total cubierta durante el presente estudio, indicando ubicación de las estaciones muestreadas. La numeración de las estaciones va de costa a oceano (1, 2, 3...).
Figura 1.1. Distribución de abundancia de huevos de Anchoveta frente a Chile Central, estrato 0 a 100 m de profundidad.
Figura 1.2. Distribución de abundancia de huevos de sardina común frente a Chile Central, estrato 0 a 100 m de profundidad.
Figura 1.3. Distribución de abundancia de huevos de anchoveta frente a Chile Central, estrato 0 a 40 m de profundidad.
Figura 1.4. Distribución de abundancia de huevos de sardina común frente a Chile Central, estrato 0 a 40 m de profundidad.
Figura 1.5. Distribución de abundancia de larvas de anchoveta frente a Chile Central, estrato 0 a 100 m de profundidad.
Figura 1.6. Distribución de abundancia de larvas de sardina común frente a Chile Central, estrato 0 a 100 m de profundidad.
Figura 1.7. Distribución de abundancia de larvas de anchoveta frente a Chile Central, estrato 0 a 40 m de profundidad.
Figura 1.8. Distribución de abundancia de larvas de sardina común frente a Chile Central, estrato 0 a 40 m de profundidad.
Figura 1.9. Distribución de abundancia de larvas de anchoveta frente a Chile Central, estrato 40 a 100 m de profundidad.
Figura 1.10 Distribución de abundancia de larvas de sardina común frente a Chile Central, estrato 40 a 100 m de profundidad.
Figura 1.11. Identificación geostadística de los núcleos de abundancia de huevos (a) y larvas (b) de sardina. Los círculos son las estaciones en transectas; círculos abiertos (sin captura), círculos cerrados (con captura). El polígono es el área abarcada por la interpolación (kriging) Los números indican densidad (huevos/larvas/100m²).
Figura 1.12. Identificación geostadística de los núcleos de abundancia de huevos (a) y larvas (b) de anchoveta. Los círculos son las estaciones en transectas; círculos abiertos (sin captura), círculos cerrados (con captura). El polígono es el área abarcada por la interpolación (kriging). Los números indican densidad (huevos/larvas/100m²)
Figura 2. Detalle de ubicación de las estaciones muestreadas al interior de las Bahías en la Octava Región.
Distribución de tallas para *E. ringens*
núcleo principal

![Histogram chart showing frequency distribution of sizes for *E. ringens* larvae.](chart)

- **Pre-flexión**  - **Post-flexión**

Figura 2.1. Distribución de estructura de tallas para larvas totales de anchoveta en el núcleo principal.
Figura 2.2. Distribución de estructura de tallas para larvas totales de sardina común en: a) núcleo principal y b) núcleo secundario.
Figura 2.3. Ajuste de modelo lineal simple entre longitud larval corregida y número de anillos diarios para larvas de: a) anchoyeta y b) sardina común.
Figura 2.4 Distribución de estructura de edades para larvas totales de anchoveta en el núcleo principal.
Figura 2.5 Distribución de estructura de edades para larvas totales de sardina común en: a) núcleo principal y b) núcleo secundario.
Figura 2.6. Distribución porcentual por núcleos para anchoveta y sardina común según estado de flexión notocordial.
Figura 2.7. Distribución de abundancia de larvas de anchoveta en estado de reflexión notocordial común frente a Chile Central, estrato 0 a 40 m de profundidad.
Figura 2.8. Distribución de abundancia de larvas de anchoveta en estado de postflexión notocordial común frente a Chile Central, estrato 0 a 40 m de profundidad.
Figura 2.9. Distribución de abundancia de larvas de sardina común en estado de preflexión notocordial común frente a Chile Central, estrato 0 a 40 m de profundidad.
Figura 2.10. Distribución de abundancia de larvas de sardina común en estado de posflexión notocordial común frente a Chile Central, estrato 0 a 40 m de profundidad.
Figura 2.11. Distribución de abundancia de larvas de anchoveta en estado de preflexión notocordial común frente a Chile Central, estrato 40 a 100 m de profundidad.
Figura 2.12. Distribución de abundancia de larvas de anchoveta en estado de posflexión notocordial común frente a Chile Central, estrato 40 a 100 m de profundidad.
Figura 2.13. Distribución de abundancia de larvas de sardina común en estado de preflexión notocordial común frente a Chile Central, estrato 40 a 100 m de profundidad.
Figura 2.14. Distribución de abundancia de larvas de sardina común en estado de preflexión notocordial común frente a Chile Central, estrato 40 a 100 m de profundidad.
Figura 2.15. Ajuste de modelo potencial entre longitud larval corregida y el diámetro de los otolitos en: a) anchoveta y b) sardina común.
Figura 3.1. Distribución de la abundancia de huevos totales de peces, *incluidas* la anchoyeta y sardina común en el área total de muestreo (0 - 40m)
Figura 3.2. Distribución de la abundancia de huevos totales de peces, *excluidos* la anchoyeta y sardina común en el área total de muestreo (0 - 40m)
Figura 3.3. Distribución de la abundancia de huevos totales de peces, *incluidos* anchoveta y sardina común en el área total de muestreo (40 - 100m)
Figura 3.4. Distribución de la abundancia de huevos totales de peces, *excluidos* anchoyeta y sardina común en el área total de muestreo (40 - 100m)
Figura 3.5. Distribución de la abundancia de huevos totales de peces, incluidos anchoveta y sardina común en el área total de muestreo (0 - 40m)
Figura 3.6. Distribución de la abundancia de huevos totales de peces, excluidos anchoveta y sardina común en el área total de muestreo (0 - 40m)
Figura 3.7. Distribución de la abundancia de huevos totales de peces, incluidos anchoveta y sardina común en el área total de muestreo (40 - 100m)
Figura 3.8. Distribución de la abundancia de huevos totales de peces, excluidos anchoveta y sardina común en el área total de muestreo (40 - 100m)
Figura 3.9. Análisis de Clusters (Complete linkage/ percent disagreement) de asociación ictioplanctónica para el núcleo principal.
Figura 3.10. Análisis de Clusters (Complete linkage/percent disagreement) de asociación ictioplanctónica para el núcleo secundario.
Figura 4.1.1. Distribución de las abundancias de Diatomeas por estrato de profundidad: (A) estrato 1 (0-40 m), (B) estrato 2 (40-100 m). Las regiones sin color corresponden a zonas con abundancias inferiores a los valores mínimos representados en las escalas respectivas. Las estaciones con contornos amarillos presentaban valores sobre \(4 \times 10^8\) ind/100m\(^2\) y fueron excluidos del Kriging.
Figura 4.1.2 Distribución de las abundancias de Dinoflagelados por estrato de profundidad: (A) estrato 1 (0-40 m), (B) estrato 2 (40-100 m). Las regiones sin color corresponden a zonas con abundancias inferiores a los valores mínimos representados en las escalas respectivas.
Figura 4.1.3. Distribución de las abundancias de Huevos de Invertebrados por estrato de profundidad: (A) estrato 1 (0-40 m), (B) estrato 2 (40-100 m). Las regiones sin color corresponden a zonas con abundancias inferiores a los valores mínimos representados en las escalas respectivas.
Figura 4.1.4. Distribución de las abundancias de Nauplios por estrato de profundidad: (A) estrato 1 (0-40 m), (B) estrato 2 (40-100 m). Las regiones sin color corresponden a zonas con abundancias inferiores a los valores mínimos representados en las escalas respectivas.
Figura 4.1.5. Distribución de las abundancias de Copepoditos por estratos de profundidad: (A) estrato 1 (0-40 m), (B) estrato 2 (40-100 m). Las regiones sin color corresponden a zonas con abundancias inferiores a los valores mínimos representados en las escalas respectivas.
Figura 4.1.6. Distribución de las Biomasa Macroplanctónicas (expresadas como biovolumen), por estrato de profundidad: (A) Estrato 1 (0-40 m); (B) Estrato 2 (0-100 m). Las regiones sin color corresponden a zonas con valores inferiores a los mínimos representados en las escalas respectivas.
Figura 4.1.7. Distribución de las abundancias de los taxa dominantes del Macroplancton, de las regiones Octava y Novena. Estrato 1 de profundidad (0-40m): (A) Copépodos; (B) Larvas de Crustáceos. Las regiones sin color corresponden a zonas con abundancias inferiores a los valores mínimos representados en las escalas respectivas.
Figura 4.1.8. Distribución de las abundancias de Quetognatos, de la Octava Región por estrato de profundidad: (A) estrato 1 (0-40 m), (B) estrato 2 (40-100 m). Las regiones sin color corresponden a zonas con abundancias inferiores a los valores mínimos representados en las escalas respectivas.
Figura 4.19: Distribución de las abundancias de Hidromedusas de la Octava Región por estrato de profundidad: (A) estrato 1 (0-40 m), (B) estrato 2 (40-100 m). Las regiones sin color corresponden a zonas con abundancias inferiores a los valores mínimos representados en las escalas respectivas.
Figura 4.1.10. Distribución de las abundancias de Eufáusidos, de la Octava Región por estrato de profundidad: (A) estrato 1 (0-40 m), (B) estrato 2 (40-100 m). Las regiones sin color corresponden a zonas con abundancias inferiores a los valores mínimos representados en las escalas respectivas.
Figura 4.1.11. Distribución de las abundancias de Sifonóforos, de la Octava Región por estrato de profundidad: (A) estrato 1 (0-40 m), (B) estrato 2 (40-100 m). Las regiones sin color corresponden a zonas con abundancias inferiores a los valores mínimos representados en las escalas respectivas.
Figura 4.1.12. Distribución de las abundancias de Ctenóforos, de la Octava Región por estrato de profundidad: (A) estrato 1 (0-40 m), (B) estrato 2 (40-100 m). Las regiones sin color corresponden a zonas con abundancias inferiores a los valores mínimos representados en las escalas respectivas.
Figura 4.1.1.4. Distribución de la Abundancia de Eufaúsidos en toda el área del estudio. Estrato 1 de profundidad (0-40m). Las regiones sin color corresponden a zonas con abundancias inferiores a los valores mínimos representados en las escala respectivas.

Figura 4.1.1.3. Distribución de la Abundancia de Quetognatos en toda el área del estudio. Estrato 1 de profundidad (0-40m). Las regiones sin color corresponden a zonas con abundancias inferiores a los valores mínimos representados en las escala respectivas.
Figura 4.1.15. Distribución de la Abundancia de Hidromedusas en toda el área del estudio. Estrato 1 de profundidad (0-40m). Las regiones sin color corresponden a zonas con abundancias inferiores a los valores mínimos representados en las escalas respectivas.

Figura 4.1.16. Distribución de la Abundancia de Sifonóforos en toda el área del estudio. Estrato 1 de profundidad (0-40m). Las regiones sin color corresponden a zonas con abundancias inferiores a los valores mínimos representados en las escalas respectivas.
Figura 4.1.17. Distribución de la Abundancia de Ctenóforos en toda el área del estudio. Estrato 1 de profundidad (0-40m). Las regiones sin color corresponden a zonas con abundancias inferiores a los valores mínimos representados en las escalas respectivas.

Figura 4.1.18. Distribución por tamaño de las presas de las larvas de sardina y anchoveta en la VIII Región. Las clases de tamaños utilizadas son: 40-80 um, 80-150, 150-300 um, 300-1000 um. Se asume que el límite de la última clase es de 1000 um considerando la trama de red y la velocidad del arrastre vertical utilizado.
Figura 4.1.19. Distribución de las Biomasa Fitoplanctónica superficial (expresada como mg Clorofila a / m$^3$).
Figura 4.2.1: Datos meteorológicos horarios medidos en la L/C Kay-Kay durante el crucero.

Figura 4.2.2: Relación temperatura del aire y radiación medidas en la L/C Kay-Kay durante el crucero.
Figura 4.2.3: Tendencia y residuo de la radiación diaria medida en L/C Kay Kay.
Figura 4.2.4. Promedios diarios de la temperatura del aire (figura superior) y del cubo de la velocidad del viento (figura inferior), observados en la L/C Kay-Kay durante el crucero.
Componente diaria del viento perpendicular a la costa

Componente diaria del viento a lo largo de la costa

Figura 4.2.5: Componentes zonal y meridional del viento. Carril Sur. 7 sept al 25 nov 1996
Componente diaria del viento perpendicular a la costa

Componente diaria del viento a lo largo de la costa

Figura 4.2.6: Componentes zonal y meridional del viento diario. Bellavista. 7 sept al 25 nov 1996
Figura 4.2.7. Distribución geográfica de las celdas con datos históricos de temperatura superficial del mar (TSM).
Figura 4.2.8: Evolución semanal de la anomalías de TSM en las celdas A a L. Las líneas verticales adicionales indican el período de muestreo, con respecto a promedio de 15 años.

Figura 4.2.9: Evolución semanal de las anomalías de TSM en las celdas A a L durante el período de muestreo (semanas 37 a 47 de 1996), con respecto a promedio de 15 años.
Figura 4.2.10a: Temperatura superficial del mar los días 15/09/96 (arriba, izquierda), 21/09/96 (arriba, derecha), 29/09/96 (abajo, izquierda) y 02/10/96 (abajo, derecha).
Figura 4.2.10b: Temperatura superficial del mar los días 12/10/96 (arriba, izquierda), 17/10/96 (arriba, derecha), 29/10/96 (abajo, izquierda) y 16/11/96 (abajo, derecha).
Figura 4.2.11a: Distribución horizontal de temperatura, salinidad, oxígeno disuelto y densidad en la superficie.
Figura 4.2.11b: Distribución horizontal de temperatura, salinidad, oxígeno disuelto y densidad a 10 m de profundidad.
Figura 4.2.11c: Distribución horizontal de temperatura, salinidad, oxígeno disuelto y densidad a 20 m de profundidad.
Figura 4.2.11d: Distribución horizontal de temperatura, salinidad, oxígeno disuelto y densidad a 30 m de profundidad.
Figura 4.2.11e: Distribución horizontal de temperatura, salinidad, oxígeno disuelto y densidad a 40 m de profundidad.
Figura 4.2.11f: Distribución horizontal de temperatura, salinidad, oxígeno disuelto y densidad a 60 m de profundidad.
Figura 4.2.11g: Distribución horizontal de temperatura, salinidad, oxígeno disuelto y densidad a 80 m de profundidad.
Figura 4.2.12a: Perfiles de temperatura, salinidad, sigma-τ y oxígeno disuelto. Sección 2. 32°40'S
Figura 4.2.12b: Perfiles de temperatura, salinidad, sigma-t y oxígeno disuelto. Sección 5. 33°40'S
Figura 4.2.12c: Perfiles de temperatura, salinidad, sigma-t y oxígeno disuelto. Sección 8. 35°10'S
Figura 4.2.12d: Perfiles de temperatura, salinidad, sigma-t y oxígeno disuelto. Sección 11. 36°20'S
Figura 4.2.12e: Perfiles de temperatura, salinidad, sigma-t y oxígeno disuelto. Sección 14. 36°50'S
Figura 4.2.12f: Perfiles de temperatura, salinidad, sigma-t y oxígeno disuelto. Sección 16. 37°10'S
Figura 4.2.12g: Perfiles de temperatura, salinidad, sigma-t y oxígeno disuelto. Sección 20. 38°10'S
Figura 4.2.13: Sección hidrográfica transversal No. 2. Lat. 32° 40' S.
Figura 4.2.13c: Sección hidrográfica transversal No. 8. Lat: 35° 10' S.
Figura 4.2.1.3d. Sección hidrográfica transversal No. 11. Lat. 36° 19' 48" S.
Figura 4.2.13: Sección hidrográfica transversal No. 14, Lat. 36° 50' S.
Figura 4.2.3F: Sección hidrográfica transversal No. 16. Lat. 37° 10' S.
Figura 4.2.13g: Sección hidrográfica transversal No. 20. Lat: 38° 10' S.
Figura 4.2.14: Relación temperatura-salinidad a 10 m y a 20 m, y relación salinidad-oxígeno disuelto a 10 m y a 20 m de profundidad.
Figura 4.2.15: Distribución horizontal de gradientes verticales de temperatura, salinidad, oxígeno disuelto y densidad (ver texto).
Figura 4.3.1. Relación entre la abundancia de huevos de anchoveta y la temperatura en el núcleo principal a 10 metros de profundidad.

Figura 4.3.2. Relación entre la Abundancia de huevos de sardina común y la temperatura en el núcleo principal a 10 metros de profundidad.
Figura 4.3.3. Relación entre la abundancia de larvas de anchoveta y la temperatura en el núcleo principal a 10 metros de profundidad.

Figura 4.3.4. Relación entre la abundancia de larvas de sardina común y la temperatura en el núcleo principal a 10 metros de profundidad.
Figura 4.3.5. Relación entre la abundancia de huevos de anchoveta y la salinidad en el núcleo principal a 10 metros de profundidad.

Figura 4.3.6. Relación entre la abundancia de huevos de sardina común y la salinidad en el núcleo principal a 10 metros de profundidad.
Figura 4.3.7. Relación entre la abundancia de larvas de anchoveta y la salinidad en el núcleo principal a 10 metros de profundidad.

Figura 4.3.8. Relación entre la abundancia de larvas de sardina y la salinidad en el núcleo principal a 10 metros de profundidad.
Figura 4.3.9. Relación entre la abundancia de huevos de anchoveta y el contenido de oxígeno disuelto en el núcleo principal a 10 metros de profundidad.

Figura 4.3.10. Relación entre la abundancia de huevos de sardina común y el contenido de oxígeno disuelto en el núcleo principal a 10 metros de profundidad.
Figura 4.3.11. Relación entre la abundancia de larvas de anchoveta y el contenido de oxígeno disuelto en el núcleo principal a 10 metros de profundidad.

Figura 4.3.12. Relación entre la abundancia de larvas de sardina común y el contenido de oxígeno disuelto en el núcleo principal a 10 metros de profundidad.
Figura 4.3.13. Relación entre la abundancia de huevos de anchoveta y $\text{Sigma-t}$ en el núcleo principal a 10 metros de profundidad.

Figura 4.3.14. Relación entre la abundancia de huevos de sardina común y $\text{Sigma-t}$ en el núcleo principal a 10 metros de profundidad.
Figura 4.3.15. Relación entre la abundancia de larvas de anchoveta y Sigma-t en el núcleo principal a 10 metros de profundidad.

Figura 4.3.16. Relación entre la abundancia de larvas de sardina común y Sigma-t en el núcleo principal a 10 metros de profundidad.
Figura 4.3.17. Análisis factorial de correspondencia total sin diferenciar por núcleos para el total de datos biológicos disponibles (huevos y larvas de anchoyeta y sardina común, predadores y presas). Simbología: E indica estación; primer número indica transecta y último número indica estación de la transecta partiendo desde la costa (1, 2, 3, etc). Por ejemplo: E-20.3 indica la estación número 3 de la transecta 20. GLF significa Golfo de Arauco; Huevos 1 y Larvas 1 indica anchoyeta y, Huevos 2 y Larvas 2 indica sardina común.
Figura 4.3.18. Análisis factorial de correspondencia total descompuesto en el núcleo principal, núcleo secundario y fuera de los núcleos (= núcleo 3).
Figura 4.3.19. Análisis factorial de correspondencia para el núcleo principal.
Figura 4.3.20. Análisis factorial de correspondencia para el núcleo secundario.
Figura 4.3.21. Análisis factorial de correspondencia para el área fuera de los núcleos (núcleo=3).
Figura 4.3.22. Representación gráfica de las dos primeras componentes principales con ocho variables del núcleo secundario. Para nomenclatura, ver figura 4.3.17. Nota: se ha presentado las estaciones y las variables separadamente para mayor claridad, aunque la escala para estas últimas ha sido ampliada.
ANEXO I
Figura 5.1. Área de desove (sombreado claro) de a) anchoveta y b) sardina común, en la zona central de Chile, indicando los núcleos principales de abundancia de huevos (áreas coloreadas).
Tabla 5.1.- Volumen de agua muestreada en el estrato 0-40 m, durante los muestreos ictioplanctónicos.

PROYECTO FIP 96-11
ESTRATO (0-40)

<table>
<thead>
<tr>
<th>TRANSECTO</th>
<th>ESTACION</th>
<th>VOLUMEN FILTRADO</th>
<th>TRANSECTO</th>
<th>ESTACION</th>
<th>VOLUMEN FILTRADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>207.3</td>
<td>7</td>
<td>1</td>
<td>172.1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>530.3</td>
<td>2</td>
<td>2</td>
<td>380.2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>481.1</td>
<td>3</td>
<td>3</td>
<td>360.5</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>417.5</td>
<td>4</td>
<td>4</td>
<td>400.7</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>344.0</td>
<td>5</td>
<td>5</td>
<td>338.2</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>441.9</td>
<td>6</td>
<td>6</td>
<td>351.8</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>370.3</td>
<td>7</td>
<td>7</td>
<td>548.4</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>349.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>368.0</td>
<td>8</td>
<td>1</td>
<td>392.4</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>363.1</td>
<td>2</td>
<td>2</td>
<td>342.9</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>384.2</td>
<td>3</td>
<td>3</td>
<td>434.1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>334.9</td>
<td>4</td>
<td>4</td>
<td>379.6</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>413.9</td>
<td>5</td>
<td>5</td>
<td>283.3</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>387.3</td>
<td>6</td>
<td>6</td>
<td>240.2</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>413.0</td>
<td>7</td>
<td>7</td>
<td>175.1</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>479.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>611.6</td>
<td>9</td>
<td>1</td>
<td>411.6</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>285.7</td>
<td>2</td>
<td>2</td>
<td>394.1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>406.3</td>
<td>3</td>
<td>3</td>
<td>559.8</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>375.6</td>
<td>4</td>
<td>4</td>
<td>363.4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>445.5</td>
<td>5</td>
<td>5</td>
<td>535.1</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>455.5</td>
<td>6</td>
<td>6</td>
<td>538.2</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>360.7</td>
<td>7</td>
<td>7</td>
<td>225.7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>338.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>520.3</td>
<td>10</td>
<td>1</td>
<td>292.1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>681.0</td>
<td>2</td>
<td>2</td>
<td>319.1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>401.7</td>
<td>3</td>
<td>3</td>
<td>207.5</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>407.7</td>
<td>4</td>
<td>4</td>
<td>404.0</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>328.6</td>
<td>5</td>
<td>5</td>
<td>382.6</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>381.1</td>
<td>6</td>
<td>6</td>
<td>425.3</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>398.3</td>
<td>7</td>
<td>7</td>
<td>225.7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>384.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>356.7</td>
<td>11</td>
<td>1</td>
<td>267.5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>403.6</td>
<td>2</td>
<td>2</td>
<td>325.4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>335.1</td>
<td>3</td>
<td>3</td>
<td>339.1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>317.5</td>
<td>4</td>
<td>4</td>
<td>310.4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>349.4</td>
<td>5</td>
<td>5</td>
<td>238.8</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>333.5</td>
<td>6</td>
<td>6</td>
<td>447.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>7</td>
<td>271.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>8</td>
<td>327.6</td>
</tr>
<tr>
<td>TRANSECTO</td>
<td>ESTACION</td>
<td>VOLUMEN FILTRADO</td>
<td>TRANSECTO</td>
<td>ESTACION</td>
<td>VOLUMEN FILTRADO</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>------------------</td>
<td>-----------</td>
<td>----------</td>
<td>------------------</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>564.2</td>
<td>21</td>
<td>1</td>
<td>270.3</td>
</tr>
<tr>
<td>2</td>
<td>343.3</td>
<td></td>
<td>2</td>
<td>2</td>
<td>262.7</td>
</tr>
<tr>
<td>3</td>
<td>398.7</td>
<td></td>
<td>3</td>
<td>3</td>
<td>136.1</td>
</tr>
<tr>
<td>4</td>
<td>359.8</td>
<td></td>
<td>4</td>
<td>4</td>
<td>94.5</td>
</tr>
<tr>
<td>5</td>
<td>360.6</td>
<td></td>
<td>5</td>
<td>5</td>
<td>98.5</td>
</tr>
<tr>
<td>6</td>
<td>344.5</td>
<td></td>
<td>6</td>
<td>6</td>
<td>131.3</td>
</tr>
<tr>
<td>7</td>
<td>307.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>420.2</td>
<td></td>
<td>22</td>
<td>1</td>
<td>130.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>223.0</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>232.2</td>
<td>3</td>
<td>3</td>
<td>409.2</td>
</tr>
<tr>
<td>2</td>
<td>347.4</td>
<td></td>
<td>4</td>
<td>4</td>
<td>220.0</td>
</tr>
<tr>
<td>3</td>
<td>275.6</td>
<td></td>
<td>5</td>
<td>5</td>
<td>177.5</td>
</tr>
<tr>
<td>4</td>
<td>159.8</td>
<td></td>
<td>6</td>
<td>6</td>
<td>154.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>7</td>
<td>188.9</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>705.9</td>
<td>23</td>
<td>1</td>
<td>179.4</td>
</tr>
<tr>
<td>3</td>
<td>165.3</td>
<td></td>
<td>2</td>
<td>2</td>
<td>267.4</td>
</tr>
<tr>
<td>5</td>
<td>327.2</td>
<td></td>
<td>3</td>
<td>3</td>
<td>206.8</td>
</tr>
<tr>
<td>6</td>
<td>438.9</td>
<td></td>
<td>4</td>
<td>4</td>
<td>288.8</td>
</tr>
<tr>
<td>7</td>
<td>320.9</td>
<td></td>
<td>5</td>
<td>5</td>
<td>68.7</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>481.9</td>
<td>6</td>
<td>6</td>
<td>165.5</td>
</tr>
<tr>
<td>3</td>
<td>395.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>460.4</td>
<td></td>
<td>2</td>
<td>2</td>
<td>409.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>361.1</td>
</tr>
<tr>
<td>5</td>
<td>395.0</td>
<td></td>
<td>4</td>
<td>4</td>
<td>414.6</td>
</tr>
<tr>
<td>6</td>
<td>360.6</td>
<td></td>
<td>5</td>
<td>5</td>
<td>473.3</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>330.1</td>
<td>6</td>
<td>6</td>
<td>444.6</td>
</tr>
<tr>
<td>2</td>
<td>330.1</td>
<td></td>
<td>7</td>
<td>7</td>
<td>219.8</td>
</tr>
<tr>
<td>3</td>
<td>340.5</td>
<td></td>
<td>8</td>
<td>8</td>
<td>378.5</td>
</tr>
<tr>
<td>4</td>
<td>310.9</td>
<td></td>
<td>9</td>
<td>9</td>
<td>239.9</td>
</tr>
<tr>
<td>5</td>
<td>341.3</td>
<td></td>
<td>10</td>
<td>10</td>
<td>226.1</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>579.0</td>
<td>11</td>
<td>11</td>
<td>254.8</td>
</tr>
<tr>
<td>3</td>
<td>540.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>316.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>310.0</td>
<td></td>
<td>1</td>
<td>409.4</td>
</tr>
<tr>
<td>3</td>
<td>400.8</td>
<td></td>
<td>2</td>
<td>2</td>
<td>460.2</td>
</tr>
<tr>
<td>5</td>
<td>519.9</td>
<td></td>
<td>3</td>
<td>3</td>
<td>313.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
<td>222.2</td>
</tr>
<tr>
<td>5</td>
<td>290.3</td>
<td></td>
<td>5</td>
<td>5</td>
<td>290.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>6</td>
<td>290.6</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>270.6</td>
<td></td>
<td>7</td>
<td>283.5</td>
</tr>
<tr>
<td>2</td>
<td>131.1</td>
<td></td>
<td>8</td>
<td>8</td>
<td>446.5</td>
</tr>
<tr>
<td>3</td>
<td>119.0</td>
<td></td>
<td>9</td>
<td>9</td>
<td>224.6</td>
</tr>
<tr>
<td>4</td>
<td>127.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>97.2</td>
<td></td>
<td>4</td>
<td>4</td>
<td>409.2</td>
</tr>
<tr>
<td>6</td>
<td>162.6</td>
<td></td>
<td></td>
<td>5</td>
<td>540.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabla 5.2.- Volumen de agua muestreada en el estrato 40-100 m, durante los muestreos ictioplanctónicos.

**PROYECTO FIP 96-11**

**ESTRATO (40-100)**

<table>
<thead>
<tr>
<th>TRANSECTOR</th>
<th>ESTACIÓN</th>
<th>VOLUMEN FILTRADO</th>
<th>TRANSECTOR</th>
<th>ESTACIÓN</th>
<th>VOLUMEN FILTRADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>324.3</td>
<td>7</td>
<td>2</td>
<td>380.2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>460.2</td>
<td></td>
<td>3</td>
<td>360.5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>437.6</td>
<td></td>
<td>4</td>
<td>400.7</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>421.5</td>
<td></td>
<td>5</td>
<td>338.2</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>321.1</td>
<td></td>
<td>6</td>
<td>351.8</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>450.9</td>
<td></td>
<td>7</td>
<td>546.4</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>338.1</td>
<td>8</td>
<td></td>
<td>287.8</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>345.7</td>
<td>8</td>
<td>2</td>
<td>334.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>344.0</td>
<td></td>
<td>3</td>
<td>434.1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>429.8</td>
<td></td>
<td>4</td>
<td>379.5</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>428.2</td>
<td></td>
<td>5</td>
<td>437.0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>353.7</td>
<td></td>
<td>6</td>
<td>240.2</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>410.4</td>
<td></td>
<td>7</td>
<td>368.4</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>368.4</td>
<td>8</td>
<td></td>
<td>419.1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>446.8</td>
<td>10</td>
<td>1</td>
<td>284.7</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>386.1</td>
<td></td>
<td>2</td>
<td>337.1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>372.2</td>
<td></td>
<td>3</td>
<td>208.8</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>406.1</td>
<td></td>
<td>4</td>
<td>340.2</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>379.6</td>
<td></td>
<td>5</td>
<td>306.1</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>384.1</td>
<td></td>
<td>6</td>
<td>364.9</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>370.0</td>
<td>7</td>
<td></td>
<td>268.4</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>382.7</td>
<td>11</td>
<td>2</td>
<td>394.4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>392.1</td>
<td></td>
<td>3</td>
<td>358.3</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>388.1</td>
<td></td>
<td>4</td>
<td>304.2</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>358.7</td>
<td></td>
<td>5</td>
<td>307.3</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>423.2</td>
<td></td>
<td>6</td>
<td>392.6</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>322.2</td>
<td></td>
<td>7</td>
<td>287.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td>367.4</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>336.6</td>
<td>12</td>
<td>3</td>
<td>368.4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>403.6</td>
<td></td>
<td>5</td>
<td>415.1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>335.1</td>
<td></td>
<td>6</td>
<td>374.3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>317.5</td>
<td></td>
<td>7</td>
<td>303.3</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>335.1</td>
<td></td>
<td>8</td>
<td>471.0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>335.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13</td>
<td>1</td>
<td>251.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>300.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>266.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>140.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>122.8</td>
</tr>
<tr>
<td>TRANSECTO</td>
<td>ESTACION</td>
<td>VOLUMEN FILTRADO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>297.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>345.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>408.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>287.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>588.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>460.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>465.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>401.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>310.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>299.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>346.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>360.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>513.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>422.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>441.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>421.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>5</td>
<td>118.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GOLFO</td>
<td>2</td>
<td>439.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>329.7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Tabla 5.3:

**PROYECTO FIP 96-11**

**HUEVOS DE PECES ESTRATO (0-40 m)**

<table>
<thead>
<tr>
<th>T</th>
<th>E</th>
<th>ANCHOVETA (N/100 m³)</th>
<th>SARDINA (N/100 m³)</th>
<th>TOTAL (N/100 m³)</th>
<th>ANCHOVETA (N/100 m²)</th>
<th>SARDINA (N/100 m²)</th>
<th>TOTAL (N/100 m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>1.9</td>
<td>0.0</td>
<td>0.0</td>
<td>77.2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
<td>15.1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.8</td>
<td>0.0</td>
<td>0.0</td>
<td>33.3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>19.2</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>4.1</td>
<td>0.0</td>
<td>0.0</td>
<td>162.8</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>2.7</td>
<td>0.0</td>
<td>0.0</td>
<td>108.6</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>3.2</td>
<td>0.0</td>
<td>0.0</td>
<td>129.6</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.0</td>
<td>0.0</td>
<td>3.4</td>
<td>0.0</td>
<td>0.0</td>
<td>137.4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>1.1</td>
<td>0.0</td>
<td>0.0</td>
<td>43.5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
<td>18.2</td>
<td>0.0</td>
<td>0.0</td>
<td>727.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>20.8</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.6</td>
<td>0.0</td>
<td>0.0</td>
<td>23.9</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>2.9</td>
<td>0.0</td>
<td>0.0</td>
<td>116.0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>8.3</td>
<td>0.0</td>
<td>0.0</td>
<td>330.5</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>25.2</td>
<td>0.0</td>
<td>0.0</td>
<td>1007.2</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.0</td>
<td>0.0</td>
<td>5.0</td>
<td>0.0</td>
<td>0.0</td>
<td>200.3</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>7.8</td>
<td>0.0</td>
<td>0.0</td>
<td>157.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
<td>55.3</td>
<td>0.0</td>
<td>0.0</td>
<td>2221.4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>5.4</td>
<td>0.0</td>
<td>0.0</td>
<td>216.6</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>1.6</td>
<td>0.0</td>
<td>0.0</td>
<td>63.9</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
<td>18.0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>7.0</td>
<td>0.0</td>
<td>0.0</td>
<td>281.0</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>8.9</td>
<td>0.0</td>
<td>0.0</td>
<td>354.8</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.0</td>
<td>0.0</td>
<td>170.3</td>
<td>0.0</td>
<td>0.0</td>
<td>6812.8</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1143.9</td>
<td>1.5</td>
<td>1377.6</td>
<td>22877.7</td>
<td>30.7</td>
<td>27551.7</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>43.9</td>
<td>0.3</td>
<td>56.0</td>
<td>2193.8</td>
<td>15.1</td>
<td>2799.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4.0</td>
<td>0.0</td>
<td>12.9</td>
<td>159.3</td>
<td>0.0</td>
<td>517.8</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>2.0</td>
<td>0.0</td>
<td>0.0</td>
<td>78.5</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>1.2</td>
<td>0.0</td>
<td>0.0</td>
<td>48.7</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>2.1</td>
<td>0.0</td>
<td>0.0</td>
<td>84.0</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>11.0</td>
<td>0.0</td>
<td>0.0</td>
<td>441.9</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.0</td>
<td>0.0</td>
<td>22.0</td>
<td>0.0</td>
<td>0.0</td>
<td>878.9</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>10.7</td>
<td>0.0</td>
<td>0.0</td>
<td>426.2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
<td>8.4</td>
<td>0.0</td>
<td>0.0</td>
<td>337.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>1.2</td>
<td>0.0</td>
<td>0.0</td>
<td>47.7</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>1.9</td>
<td>0.0</td>
<td>0.0</td>
<td>75.6</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>2.3</td>
<td>0.0</td>
<td>0.0</td>
<td>91.6</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>9.3</td>
<td>0.0</td>
<td>0.0</td>
<td>743.9</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
<td>3.4</td>
<td>0.0</td>
<td>0.0</td>
<td>134.2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>2.1</td>
<td>0.0</td>
<td>0.0</td>
<td>83.7</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>1.2</td>
<td>0.0</td>
<td>0.0</td>
<td>48.7</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>1.1</td>
<td>0.0</td>
<td>0.0</td>
<td>45.5</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
<td>16.0</td>
</tr>
</tbody>
</table>

_Huevos de peces estrato (0-40 m)_
<table>
<thead>
<tr>
<th>T</th>
<th>E</th>
<th>ANCHOVETA (N/100 m³)</th>
<th>SARDINA (N/100 m³)</th>
<th>TOTAL (N/100 m²)</th>
<th>ANCHOVETA (N/100 m²)</th>
<th>SARDINA (N/100 m²)</th>
<th>TOTAL (N/100 m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>22.9</td>
<td>0.0</td>
<td>0.0</td>
<td>917.4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.6</td>
<td>0.0</td>
<td>0.0</td>
<td>23.3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>1.8</td>
<td>0.0</td>
<td>0.0</td>
<td>73.7</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>2.1</td>
<td>0.0</td>
<td>0.0</td>
<td>84.3</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>1.4</td>
<td>0.0</td>
<td>0.0</td>
<td>56.5</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>1.7</td>
<td>0.0</td>
<td>0.0</td>
<td>66.6</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>8.0</td>
<td>0.0</td>
<td>0.0</td>
<td>319.9</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>761.9</td>
<td>2.9</td>
<td>1477.2</td>
<td>30476.2</td>
<td>0.0</td>
<td>116.6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>11.2</td>
<td>0.0</td>
<td>26.9</td>
<td>0.0</td>
<td>446.6</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>1.4</td>
<td>0.0</td>
<td>0.0</td>
<td>57.2</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.6</td>
<td>0.0</td>
<td>0.0</td>
<td>22.0</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>9.0</td>
<td>0.0</td>
<td>0.0</td>
<td>359.8</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>8.9</td>
<td>0.0</td>
<td>0.0</td>
<td>356.1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
<td>6.3</td>
<td>0.0</td>
<td>0.0</td>
<td>250.7</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>6.7</td>
<td>0.0</td>
<td>0.0</td>
<td>269.8</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.5</td>
<td>0.0</td>
<td>4.5</td>
<td>0.0</td>
<td>19.8</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>43.4</td>
<td>0.0</td>
<td>0.0</td>
<td>1735.6</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>2.4</td>
<td>0.0</td>
<td>0.0</td>
<td>94.1</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>8.9</td>
<td>0.0</td>
<td>0.0</td>
<td>354.4</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>309.5</td>
<td>0.7</td>
<td>529.3</td>
<td>12379.5</td>
<td>29.9</td>
<td>21170.7</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>111.9</td>
<td>0.6</td>
<td>121.7</td>
<td>0.0</td>
<td>4475.0</td>
<td>24.6</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.6</td>
<td>0.0</td>
<td>0.0</td>
<td>23.6</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>9.0</td>
<td>0.0</td>
<td>0.0</td>
<td>360.9</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>3.3</td>
<td>0.0</td>
<td>0.0</td>
<td>134.0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>2.7</td>
<td>0.0</td>
<td>0.0</td>
<td>107.3</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>2.2</td>
<td>0.0</td>
<td>0.0</td>
<td>88.4</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.0</td>
<td>0.0</td>
<td>1.2</td>
<td>0.0</td>
<td>0.0</td>
<td>48.8</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>22.7</td>
<td>21.3</td>
<td>557.2</td>
<td>680.6</td>
<td>638.0</td>
<td>16716.4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>67.6</td>
<td>22.1</td>
<td>477.7</td>
<td>3378.5</td>
<td>1106.8</td>
<td>23882.8</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>20.1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.6</td>
<td>0.0</td>
<td>0.0</td>
<td>22.2</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>2.0</td>
<td>0.0</td>
<td>0.0</td>
<td>81.9</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>20.9</td>
<td>0.0</td>
<td>0.0</td>
<td>836.1</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>4.6</td>
<td>0.0</td>
<td>0.0</td>
<td>182.2</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>38.1</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>2.6</td>
<td>0.0</td>
<td>0.0</td>
<td>103.4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
<td>1.7</td>
<td>0.0</td>
<td>0.0</td>
<td>69.1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>18.1</td>
<td>0.0</td>
<td>0.0</td>
<td>725.7</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>5.0</td>
<td>0.0</td>
<td>0.0</td>
<td>200.2</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>1.4</td>
<td>0.0</td>
<td>0.0</td>
<td>56.7</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>15.7</td>
<td>0.0</td>
<td>0.0</td>
<td>629.1</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.6</td>
<td>2.4</td>
<td>0.0</td>
<td>24.4</td>
<td>97.8</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>18.2</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.0</td>
<td>0.6</td>
<td>66.1</td>
<td>0.0</td>
<td>0.0</td>
<td>2642.7</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>5.0</td>
<td>0.0</td>
<td>0.0</td>
<td>199.2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>2.5</td>
<td>0.0</td>
<td>0.0</td>
<td>101.3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>7.8</td>
<td>0.0</td>
<td>0.0</td>
<td>312.8</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>10.6</td>
<td>0.0</td>
<td>0.0</td>
<td>425.3</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>8.3</td>
<td>0.0</td>
<td>0.0</td>
<td>332.8</td>
</tr>
</tbody>
</table>

Huevos de peces estrato (0-40 m)
<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>ANCHOVETA</th>
<th>SARDINA</th>
<th>TOTAL</th>
<th>ANCHOVETA</th>
<th>SARDINA</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(N/100 m³)</td>
<td>(N/100 m³)</td>
<td>(N/100 m²)</td>
<td>(N/100 m³)</td>
<td>(N/100 m³)</td>
<td>(N/100 m²)</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>0.6</td>
<td>0.6</td>
<td>9.1</td>
<td>33.3</td>
<td>33.3</td>
<td>499.8</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
<td>1.8</td>
<td>0.0</td>
<td>0.0</td>
<td>72.7</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>1.2</td>
<td>0.0</td>
<td>0.0</td>
<td>47.0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>3.2</td>
<td>0.0</td>
<td>0.0</td>
<td>128.7</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>5.3</td>
<td>0.0</td>
<td>0.0</td>
<td>210.9</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>1.4</td>
<td>0.0</td>
<td>0.0</td>
<td>69.1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>1.1</td>
<td>0.0</td>
<td>0.0</td>
<td>44.4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>2.5</td>
<td>0.0</td>
<td>0.0</td>
<td>101.1</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>1.3</td>
<td>0.0</td>
<td>0.0</td>
<td>25.8</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.0</td>
<td>1.0</td>
<td>2.5</td>
<td>39.9</td>
<td>39.9</td>
<td>99.8</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>8.8</td>
<td>0.0</td>
<td>0.0</td>
<td>353.9</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>2.2</td>
<td>0.0</td>
<td>59.1</td>
<td>88.7</td>
<td>0.0</td>
<td>2364.9</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>153.3</td>
<td>1.5</td>
<td>79.4</td>
<td>610.4</td>
<td>61.0</td>
<td>3174.1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5.0</td>
<td>0.0</td>
<td>10.1</td>
<td>201.6</td>
<td>0.0</td>
<td>403.2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>109.7</td>
<td>6.3</td>
<td>128.5</td>
<td>4388.9</td>
<td>250.8</td>
<td>5141.2</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8.2</td>
<td>0.0</td>
<td>16.5</td>
<td>329.3</td>
<td>0.0</td>
<td>658.6</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.2</td>
<td>0.0</td>
<td>8.6</td>
<td>49.2</td>
<td>0.0</td>
<td>344.4</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>0.7</td>
<td>0.0</td>
<td>8.9</td>
<td>29.6</td>
<td>0.0</td>
<td>355.2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.3</td>
<td>0.0</td>
<td>42.6</td>
<td>91.3</td>
<td>0.0</td>
<td>1705.1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5935.4</td>
<td>446.6</td>
<td>8086.2</td>
<td>237415.4</td>
<td>17864.9</td>
<td>323449.1</td>
</tr>
<tr>
<td>4</td>
<td>55.0</td>
<td>4.2</td>
<td>88.9</td>
<td>2200.5</td>
<td>169.3</td>
<td>3554.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>85.3</td>
<td>12.2</td>
<td>140.1</td>
<td>3411.12</td>
<td>487.3</td>
<td>5604.2</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>4.6</td>
<td>0.0</td>
<td>9.1</td>
<td>182.8</td>
<td>0.0</td>
<td>365.7</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>3.1</td>
<td>0.0</td>
<td>46.2</td>
<td>123.1</td>
<td>0.0</td>
<td>1846.2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>18.8</td>
<td>1.8</td>
<td>85.2</td>
<td>753.5</td>
<td>71.8</td>
<td>3408.8</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>65.0</td>
<td>18.6</td>
<td>376.3</td>
<td>2600.2</td>
<td>742.9</td>
<td>15053.8</td>
</tr>
<tr>
<td>4</td>
<td>2265.3</td>
<td>160.0</td>
<td>2694.4</td>
<td>90612.0</td>
<td>6399.6</td>
<td>107774.4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5.6</td>
<td>6.8</td>
<td>104.8</td>
<td>225.4</td>
<td>270.4</td>
<td>4191.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>84.2</td>
<td>0.0</td>
<td>0.0</td>
<td>3366.2</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>156.7</td>
<td>0.0</td>
<td>0.0</td>
<td>6268.4</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>14.5</td>
<td>3.3</td>
<td>65.8</td>
<td>579.7</td>
<td>133.8</td>
<td>2631.2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4.9</td>
<td>0.7</td>
<td>31.3</td>
<td>194.8</td>
<td>27.8</td>
<td>1252.5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>103.5</td>
<td>1.0</td>
<td>181.8</td>
<td>4138.7</td>
<td>38.7</td>
<td>7271.7</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>466.1</td>
<td>1.4</td>
<td>1155.1</td>
<td>18642.3</td>
<td>55.4</td>
<td>46204.0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>1048.5</td>
<td>0.0</td>
<td>0.0</td>
<td>41939.4</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>430.3</td>
<td>0.0</td>
<td>0.0</td>
<td>17212.9</td>
</tr>
<tr>
<td>TC</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>6.1</td>
<td>0.0</td>
<td>0.0</td>
<td>30.5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.0</td>
<td>0.0</td>
<td>8.3</td>
<td>19.5</td>
<td>0.0</td>
<td>165.9</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>10.2</td>
<td>0.0</td>
<td>0.0</td>
<td>122.7</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>6.4</td>
<td>0.0</td>
<td>0.0</td>
<td>31.8</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>8.1</td>
<td>0.0</td>
<td>0.0</td>
<td>81.4</td>
</tr>
<tr>
<td>TB</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>36.4</td>
<td>0.0</td>
<td>0.0</td>
<td>1640.2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.0</td>
<td>0.5</td>
<td>180.6</td>
<td>0.0</td>
<td>17.1</td>
<td>6321.5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>361.6</td>
<td>0.0</td>
<td>0.0</td>
<td>7232.9</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>109.5</td>
<td>0.0</td>
<td>0.0</td>
<td>2737.4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>17.3</td>
<td>0.0</td>
<td>0.0</td>
<td>519.8</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
<td>0.4</td>
<td>22.9</td>
<td>0.0</td>
<td>6.7</td>
<td>344.1</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>59.1</td>
<td>0.0</td>
<td>0.0</td>
<td>1182.7</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.0</td>
<td>0.0</td>
<td>57.1</td>
<td>0.0</td>
<td>0.0</td>
<td>1141.3</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.0</td>
<td>0.9</td>
<td>24.2</td>
<td>0.0</td>
<td>12.5</td>
<td>362.7</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.0</td>
<td>0.9</td>
<td>11.5</td>
<td>0.0</td>
<td>15.9</td>
<td>207.0</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0.0</td>
<td>0.0</td>
<td>35.3</td>
<td>0.0</td>
<td>0.0</td>
<td>529.9</td>
</tr>
</tbody>
</table>

Huevos de peces estrato (0-40 m)
<table>
<thead>
<tr>
<th>T</th>
<th>E</th>
<th>ANCHOVETA (N/100 m³)</th>
<th>SARDINA (N/100 m³)</th>
<th>TOTAL (N/100 m³)</th>
<th>ANCHOVETA (N/100 m²)</th>
<th>SARDINA (N/100 m²)</th>
<th>TOTAL (N/100 m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TG</td>
<td>1</td>
<td>2.4</td>
<td>0.0</td>
<td>14.2</td>
<td>97.7</td>
<td>0.0</td>
<td>566.7</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
<td>0.6</td>
<td>2.6</td>
<td>0.0</td>
<td>25.5</td>
<td>102.1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>6.3</td>
<td>0.0</td>
<td>0.0</td>
<td>346.5</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6.9</td>
<td>3.4</td>
<td>21.4</td>
<td>275.6</td>
<td>137.8</td>
<td>854.4</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>91.5</td>
<td>21.3</td>
<td>820.2</td>
<td>4118.4</td>
<td>959.9</td>
<td>36910.5</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>26.8</td>
<td>290.7</td>
<td>2511.7</td>
<td>482.6</td>
<td>5232.2</td>
<td>45210.5</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>81.1</td>
<td>31.8</td>
<td>314.9</td>
<td>2432.1</td>
<td>954.0</td>
<td>9446.2</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>4.5</td>
<td>3.6</td>
<td>82.8</td>
<td>44.5</td>
<td>35.6</td>
<td>828.1</td>
</tr>
</tbody>
</table>

E = ESTACION  
T = TRANSECTO  
TB = BAHIA CONCEPCION  
TC = BAHIA COLIUMO  
TG = GOLFO DE ARAUCO  
TOTAL = ANCHOVETA+SARDINA+OTROS HUEVOS

Huevos de peces estrato (0-40 m)
<table>
<thead>
<tr>
<th>T</th>
<th>E</th>
<th>ANCHOVETA (N/100 m³)</th>
<th>SARDINA (N/100 m³)</th>
<th>TOTAL (N/100 m³)</th>
<th>ANCHOVETA (N/100 m²)</th>
<th>SARDINA (N/100 m²)</th>
<th>TOTAL (N/100 m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.6</td>
<td>0.0</td>
<td>0.0</td>
<td>37.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
<td>26.1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>1.4</td>
<td>0.0</td>
<td>0.0</td>
<td>85.4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
<td>26.6</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>3.0</td>
<td>0.0</td>
<td>0.0</td>
<td>177.4</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.0</td>
<td>0.0</td>
<td>2.1</td>
<td>0.0</td>
<td>0.0</td>
<td>125.1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.6</td>
<td>0.0</td>
<td>0.0</td>
<td>23.1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
<td>1.7</td>
<td>0.0</td>
<td>0.0</td>
<td>104.6</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>28.0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.6</td>
<td>0.0</td>
<td>0.0</td>
<td>33.9</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>5.8</td>
<td>0.0</td>
<td>0.0</td>
<td>350.8</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>6.0</td>
<td>0.0</td>
<td>0.0</td>
<td>358.3</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.0</td>
<td>0.0</td>
<td>9.5</td>
<td>0.0</td>
<td>0.0</td>
<td>572.7</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
<td>6.7</td>
<td>0.0</td>
<td>0.0</td>
<td>402.8</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>8.8</td>
<td>0.0</td>
<td>0.0</td>
<td>528.3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>4.3</td>
<td>0.0</td>
<td>0.0</td>
<td>258.0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>29.5</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>31.6</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>3.6</td>
<td>0.0</td>
<td>0.0</td>
<td>218.7</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.0</td>
<td>0.0</td>
<td>63.8</td>
<td>0.0</td>
<td>0.0</td>
<td>3826.9</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>9.9</td>
<td>0.0</td>
<td>0.0</td>
<td>595.8</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>7.7</td>
<td>0.0</td>
<td>0.0</td>
<td>459.0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>2.1</td>
<td>0.0</td>
<td>0.0</td>
<td>123.7</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>1.1</td>
<td>0.0</td>
<td>0.0</td>
<td>66.9</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>2.4</td>
<td>0.0</td>
<td>0.0</td>
<td>141.8</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.0</td>
<td>0.0</td>
<td>3.1</td>
<td>0.0</td>
<td>0.0</td>
<td>186.2</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>4.2</td>
<td>0.0</td>
<td>0.0</td>
<td>157.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>29.7</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.6</td>
<td>0.0</td>
<td>0.0</td>
<td>35.8</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>1.3</td>
<td>0.0</td>
<td>0.0</td>
<td>75.6</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>33.5</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>1.8</td>
<td>0.0</td>
<td>0.0</td>
<td>109.7</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>1.7</td>
<td>0.0</td>
<td>0.0</td>
<td>34.1</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
<td>24.1</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>27.6</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>31.6</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>1.7</td>
<td>0.0</td>
<td>0.0</td>
<td>99.9</td>
</tr>
<tr>
<td>T</td>
<td>E</td>
<td>ANCHOVETA (N/100 m³)</td>
<td>SARDINA (N/100 m³)</td>
<td>TOTAL (N/100 m³)</td>
<td>ANCHOVETA (N/100 m²)</td>
<td>SARDINA (N/100 m²)</td>
<td>TOTAL (N/100 m²)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>----------------------</td>
<td>--------------------</td>
<td>-----------------</td>
<td>----------------------</td>
<td>--------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>2.8</td>
<td>0.0</td>
<td>0.0</td>
<td>168.6</td>
</tr>
<tr>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>35.6</td>
</tr>
<tr>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>57.5</td>
</tr>
<tr>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>1.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>105.8</td>
</tr>
<tr>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>196.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>11762.1</td>
</tr>
<tr>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>13.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>810.5</td>
</tr>
<tr>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>49.9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2995.7</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>55.3</td>
<td>0.5</td>
<td>104.0</td>
<td>12.7</td>
<td>0.0</td>
<td>2598.8</td>
</tr>
<tr>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>2.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>167.4</td>
</tr>
<tr>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>48.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2880.1</td>
</tr>
<tr>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>30.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1835.1</td>
</tr>
<tr>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>17.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1069.7</td>
</tr>
<tr>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>25.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1501.0</td>
</tr>
<tr>
<td>8</td>
<td>0.0</td>
<td>0.0</td>
<td>10.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>620.5</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>1.6</td>
<td>0.0</td>
<td>0.0</td>
<td>97.7</td>
</tr>
<tr>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>7.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>433.6</td>
</tr>
<tr>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>33.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1987.6</td>
</tr>
<tr>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>4.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>237.4</td>
</tr>
<tr>
<td>8</td>
<td>0.0</td>
<td>0.0</td>
<td>11.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>662.4</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>5.6</td>
<td>0.0</td>
<td>0.0</td>
<td>334.2</td>
</tr>
<tr>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
<td>5.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>319.0</td>
</tr>
<tr>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>3.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>180.1</td>
</tr>
<tr>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>17.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1026.6</td>
</tr>
<tr>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>1.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>97.7</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>3.4</td>
<td>0.0</td>
<td>0.0</td>
<td>201.6</td>
</tr>
<tr>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>34.7</td>
</tr>
<tr>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>3.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>205.8</td>
</tr>
<tr>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>136.9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>8216.2</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>5.4</td>
<td>0.0</td>
<td>0.0</td>
<td>326.3</td>
</tr>
<tr>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>24.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1459.7</td>
</tr>
<tr>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>181.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>10886.5</td>
</tr>
<tr>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>57.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>3467.4</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
<td>1.3</td>
<td>0.0</td>
<td>0.0</td>
<td>77.2</td>
</tr>
<tr>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>4.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>280.8</td>
</tr>
<tr>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>59.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>3567.0</td>
</tr>
<tr>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>55.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>3331.7</td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
<td>23.4</td>
</tr>
<tr>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>56.8</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>8.2</td>
<td>0.0</td>
<td>0.0</td>
<td>489.2</td>
</tr>
<tr>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>18.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1080.8</td>
</tr>
<tr>
<td>23</td>
<td>5</td>
<td>5.1</td>
<td>0.0</td>
<td>1476.6</td>
<td>152.6</td>
<td>0.0</td>
<td>44298.5</td>
</tr>
<tr>
<td>TG</td>
<td>3</td>
<td>0.9</td>
<td>0.0</td>
<td>5.9</td>
<td>54.7</td>
<td>0.0</td>
<td>355.4</td>
</tr>
<tr>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>8.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>509.5</td>
</tr>
</tbody>
</table>

T = TRANSECTO  
E = ESTACION  
TG = GOLFO DE ARAUCO  
TOTAL = ANCHOVETA+SARDINA+OTROS HUEVOS

Huevos de peces estrato (40-100 m)
<table>
<thead>
<tr>
<th>T</th>
<th>E</th>
<th>ANCHOVETA N/100 m³</th>
<th>SARDINA N/100 m³</th>
<th>TOTAL N/100 m³</th>
<th>ANCHOVETA N/100 m²</th>
<th>SARDINA N/100 m²</th>
<th>TOTAL N/100 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>12.5</td>
<td>0.0</td>
<td>0.0</td>
<td>501.7</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
<td>1.5</td>
<td>0.0</td>
<td>0.0</td>
<td>60.3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.8</td>
<td>0.0</td>
<td>0.0</td>
<td>33.3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>3.8</td>
<td>0.0</td>
<td>0.0</td>
<td>153.3</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>19.2</td>
<td>0.0</td>
<td>0.0</td>
<td>767.4</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>24.3</td>
<td>0.0</td>
<td>0.0</td>
<td>972.2</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.0</td>
<td>0.0</td>
<td>17.2</td>
<td>0.0</td>
<td>0.0</td>
<td>687.1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>5.4</td>
<td>0.0</td>
<td>0.0</td>
<td>217.4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
<td>13.2</td>
<td>0.0</td>
<td>0.0</td>
<td>528.8</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>7.8</td>
<td>0.0</td>
<td>0.0</td>
<td>312.3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>12.5</td>
<td>0.0</td>
<td>0.0</td>
<td>501.6</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>23.7</td>
<td>0.0</td>
<td>0.0</td>
<td>947.1</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>19.6</td>
<td>0.0</td>
<td>0.0</td>
<td>784.9</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>40.2</td>
<td>0.0</td>
<td>0.0</td>
<td>1607.7</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.0</td>
<td>0.0</td>
<td>12.1</td>
<td>0.0</td>
<td>0.0</td>
<td>484.0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>84.7</td>
<td>0.0</td>
<td>0.0</td>
<td>1693.9</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
<td>67.9</td>
<td>0.0</td>
<td>0.0</td>
<td>2716.1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>11.8</td>
<td>0.0</td>
<td>0.0</td>
<td>472.6</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>16.5</td>
<td>0.0</td>
<td>0.0</td>
<td>660.3</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>5.3</td>
<td>0.0</td>
<td>0.0</td>
<td>210.8</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>6.7</td>
<td>0.0</td>
<td>0.0</td>
<td>266.1</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.0</td>
<td>0.0</td>
<td>43.8</td>
<td>0.0</td>
<td>0.0</td>
<td>1750.4</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>16.1</td>
<td>0.0</td>
<td>0.0</td>
<td>322.9</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.3</td>
<td>0.0</td>
<td>2.4</td>
<td>15.1</td>
<td>0.0</td>
<td>121.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.5</td>
<td>0.0</td>
<td>10.5</td>
<td>59.7</td>
<td>0.0</td>
<td>418.2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>2.5</td>
<td>0.0</td>
<td>0.0</td>
<td>98.1</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>6.7</td>
<td>0.0</td>
<td>0.0</td>
<td>267.8</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>11.0</td>
<td>0.0</td>
<td>0.0</td>
<td>440.8</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>5.0</td>
<td>0.0</td>
<td>0.0</td>
<td>200.9</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>15.1</td>
<td>0.0</td>
<td>0.0</td>
<td>605.6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
<td>2.5</td>
<td>0.0</td>
<td>0.0</td>
<td>99.1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>14.9</td>
<td>0.0</td>
<td>0.0</td>
<td>596.8</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.6</td>
<td>0.0</td>
<td>36.5</td>
<td>25.2</td>
<td>0.0</td>
<td>1461.4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>5.7</td>
<td>0.0</td>
<td>0.0</td>
<td>229.0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>18.0</td>
<td>0.0</td>
<td>0.0</td>
<td>719.6</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0.4</td>
<td>0.0</td>
<td>5.0</td>
<td>31.0</td>
<td>0.0</td>
<td>402.9</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
<td>16.2</td>
<td>0.0</td>
<td>0.0</td>
<td>648.4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>7.2</td>
<td>0.0</td>
<td>0.0</td>
<td>288.5</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>37.1</td>
<td>0.0</td>
<td>0.0</td>
<td>1485.0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>45.7</td>
<td>0.0</td>
<td>0.0</td>
<td>1827.6</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>4.5</td>
<td>0.0</td>
<td>0.0</td>
<td>181.9</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>8.0</td>
<td>0.0</td>
<td>0.0</td>
<td>320.7</td>
</tr>
</tbody>
</table>

Larvas Sardina y Anchoveta estrato (0-40 m)
<table>
<thead>
<tr>
<th>T</th>
<th>E</th>
<th>ANCHOVETA N/100 m³</th>
<th>SARDINA N/100 m³</th>
<th>TOTAL N/100 m³</th>
<th>ANCHOVETA N/100 m²</th>
<th>SARDINA N/100 m²</th>
<th>TOTAL N/100 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1</td>
<td>1.5</td>
<td>0.5</td>
<td>4.6</td>
<td>61.2</td>
<td>20.4</td>
<td>183.5</td>
</tr>
<tr>
<td>2</td>
<td>3.5</td>
<td>0.6</td>
<td>5.2</td>
<td>140.0</td>
<td>23.3</td>
<td>210.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.8</td>
<td>0.0</td>
<td>5.5</td>
<td>73.7</td>
<td>0.0</td>
<td>221.1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.5</td>
<td>0.5</td>
<td>4.2</td>
<td>21.1</td>
<td>21.1</td>
<td>168.6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>2.8</td>
<td>0.0</td>
<td>0.0</td>
<td>113.0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>11.7</td>
<td>0.0</td>
<td>0.0</td>
<td>466.3</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>2.4</td>
<td>0.0</td>
<td>2.9</td>
<td>97.2</td>
<td>0.0</td>
<td>116.6</td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
<td>0.5</td>
<td>2.5</td>
<td>40.6</td>
<td>20.3</td>
<td>101.5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.0</td>
<td>0.4</td>
<td>1.4</td>
<td>0.0</td>
<td>14.3</td>
<td>57.2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>18.7</td>
<td>0.0</td>
<td>0.0</td>
<td>748.5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>4.5</td>
<td>0.0</td>
<td>0.0</td>
<td>179.4</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1.4</td>
<td>1.4</td>
<td>18.5</td>
<td>54.8</td>
<td>54.8</td>
<td>739.5</td>
</tr>
<tr>
<td>2</td>
<td>0.6</td>
<td>0.0</td>
<td>2.5</td>
<td>25.1</td>
<td>0.0</td>
<td>100.3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6.7</td>
<td>0.0</td>
<td>31.8</td>
<td>269.8</td>
<td>0.0</td>
<td>1272.3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>9.4</td>
<td>0.0</td>
<td>0.0</td>
<td>376.2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.6</td>
<td>0.0</td>
<td>10.5</td>
<td>62.7</td>
<td>0.0</td>
<td>418.2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.5</td>
<td>0.0</td>
<td>3.3</td>
<td>18.8</td>
<td>0.0</td>
<td>131.7</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>9.7</td>
<td>0.0</td>
<td>0.0</td>
<td>389.9</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>3.0</td>
<td>26.9</td>
<td>39.6</td>
<td>119.6</td>
<td>1076.5</td>
<td>1585.0</td>
</tr>
<tr>
<td>2</td>
<td>0.6</td>
<td>3.1</td>
<td>11.1</td>
<td>24.6</td>
<td>122.9</td>
<td>442.5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.0</td>
<td>1.2</td>
<td>6.5</td>
<td>0.0</td>
<td>47.2</td>
<td>259.5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>21.3</td>
<td>0.0</td>
<td>0.0</td>
<td>850.5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>2.5</td>
<td>0.0</td>
<td>0.0</td>
<td>100.5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2.7</td>
<td>1.3</td>
<td>23.7</td>
<td>107.3</td>
<td>53.6</td>
<td>947.5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>15.5</td>
<td>0.0</td>
<td>0.0</td>
<td>618.8</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.0</td>
<td>0.0</td>
<td>9.8</td>
<td>0.0</td>
<td>0.0</td>
<td>390.7</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1.1</td>
<td>2.8</td>
<td>9.9</td>
<td>31.9</td>
<td>85.1</td>
<td>297.8</td>
</tr>
<tr>
<td>2</td>
<td>5.1</td>
<td>15.3</td>
<td>35.7</td>
<td>203.9</td>
<td>611.7</td>
<td>1427.3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.0</td>
<td>0.0</td>
<td>5.5</td>
<td>40.1</td>
<td>0.0</td>
<td>220.7</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.7</td>
<td>6.7</td>
<td>28.3</td>
<td>66.7</td>
<td>1134.0</td>
<td>266.8</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3.6</td>
<td>0.5</td>
<td>30.7</td>
<td>143.4</td>
<td>20.5</td>
<td>1228.9</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.0</td>
<td>0.6</td>
<td>12.8</td>
<td>0.0</td>
<td>23.2</td>
<td>510.9</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>13.0</td>
<td>0.0</td>
<td>26.0</td>
<td>520.5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.0</td>
<td>0.0</td>
<td>6.2</td>
<td>0.0</td>
<td>0.0</td>
<td>247.5</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>1.7</td>
<td>45.7</td>
<td>73.2</td>
<td>68.9</td>
<td>1826.3</td>
<td>2928.5</td>
</tr>
<tr>
<td>2</td>
<td>3.5</td>
<td>31.7</td>
<td>68.5</td>
<td>138.2</td>
<td>1266.6</td>
<td>2740.4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.2</td>
<td>0.7</td>
<td>47.9</td>
<td>87.1</td>
<td>25.0</td>
<td>1915.8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>2.5</td>
<td>0.0</td>
<td>0.0</td>
<td>100.1</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>0.3</td>
<td>27.5</td>
<td>34.8</td>
<td>11.3</td>
<td>1099.2</td>
<td>1394.0</td>
</tr>
<tr>
<td>3</td>
<td>3.6</td>
<td>8.5</td>
<td>62.9</td>
<td>145.2</td>
<td>338.8</td>
<td>2516.6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.6</td>
<td>0.0</td>
<td>11.6</td>
<td>24.4</td>
<td>0.0</td>
<td>464.5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5.0</td>
<td>0.0</td>
<td>25.5</td>
<td>0.0</td>
<td>200.5</td>
<td>1020.7</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>4.4</td>
<td>0.0</td>
<td>0.0</td>
<td>174.5</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>2.5</td>
<td>0.8</td>
<td>6.2</td>
<td>74.7</td>
<td>24.9</td>
<td>186.8</td>
</tr>
<tr>
<td>3</td>
<td>4.1</td>
<td>0.0</td>
<td>12.7</td>
<td>162.0</td>
<td>0.0</td>
<td>506.3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.4</td>
<td>0.0</td>
<td>9.6</td>
<td>17.4</td>
<td>0.0</td>
<td>382.3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>15.2</td>
<td>0.0</td>
<td>0.0</td>
<td>607.6</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>11.1</td>
<td>0.0</td>
<td>0.0</td>
<td>443.7</td>
<td></td>
</tr>
</tbody>
</table>

Larvas Sardina y Anchoyeta estrato (0-40 m)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>ANCHOVETA N/100 m³</th>
<th>SARDINA N/100 m³</th>
<th>TOTAL N/100 m³</th>
<th>ANCHOVETA N/100 m²</th>
<th>SARDINA N/100 m²</th>
<th>TOTAL N/100 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>1</td>
<td>3.0</td>
<td>7.9</td>
<td>21.2</td>
<td>166.6</td>
<td>433.2</td>
<td>1166.3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6.1</td>
<td>0.0</td>
<td>32.1</td>
<td>242.3</td>
<td>0.0</td>
<td>1284.5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.2</td>
<td>0.0</td>
<td>7.0</td>
<td>47.0</td>
<td>0.0</td>
<td>281.9</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.3</td>
<td>0.0</td>
<td>11.6</td>
<td>51.5</td>
<td>0.0</td>
<td>463.2</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.8</td>
<td>0.0</td>
<td>11.1</td>
<td>70.3</td>
<td>0.0</td>
<td>445.4</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.7</td>
<td>0.0</td>
<td>0.0</td>
<td>34.5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>5.2</td>
<td>0.0</td>
<td>0.0</td>
<td>207.1</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>26.5</td>
<td>0.0</td>
<td>0.0</td>
<td>1061.9</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>6.5</td>
<td>0.0</td>
<td>18.7</td>
<td>129.0</td>
<td>0.0</td>
<td>374.2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>6.0</td>
<td>1.0</td>
<td>25.4</td>
<td>239.5</td>
<td>39.9</td>
<td>1018.0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.8</td>
<td>0.0</td>
<td>18.1</td>
<td>30.8</td>
<td>0.0</td>
<td>723.2</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>3.7</td>
<td>33.3</td>
<td>48.8</td>
<td>147.8</td>
<td>1330.4</td>
<td>1951.2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>39.7</td>
<td>72.8</td>
<td>133.8</td>
<td>1587.0</td>
<td>2911.6</td>
<td>5352.5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>290.8</td>
<td>444.4</td>
<td>746.9</td>
<td>11630.3</td>
<td>17774.4</td>
<td>29875.3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>76.8</td>
<td>4.7</td>
<td>80.3</td>
<td>3072.1</td>
<td>188.1</td>
<td>3573.7</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>107.0</td>
<td>6.6</td>
<td>125.9</td>
<td>4279.8</td>
<td>263.4</td>
<td>5037.1</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>71.3</td>
<td>38.1</td>
<td>110.9</td>
<td>2853.6</td>
<td>1524.1</td>
<td>4772.4</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>2.2</td>
<td>4.4</td>
<td>11.8</td>
<td>88.6</td>
<td>177.6</td>
<td>473.5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>16.7</td>
<td>2.3</td>
<td>25.9</td>
<td>669.9</td>
<td>91.3</td>
<td>1035.4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>25.9</td>
<td>0.0</td>
<td>47.3</td>
<td>1037.4</td>
<td>0.0</td>
<td>1891.7</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>57.1</td>
<td>0.0</td>
<td>319.6</td>
<td>2285.2</td>
<td>0.0</td>
<td>12783.1</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>50.8</td>
<td>4.1</td>
<td>74.2</td>
<td>2030.5</td>
<td>162.4</td>
<td>3167.5</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>4.6</td>
<td>0.0</td>
<td>25.9</td>
<td>182.8</td>
<td>0.0</td>
<td>1035.8</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>15.4</td>
<td>0.0</td>
<td>16.9</td>
<td>615.4</td>
<td>0.0</td>
<td>676.9</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.7</td>
<td>2.7</td>
<td>6.3</td>
<td>107.6</td>
<td>107.6</td>
<td>251.1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>12.2</td>
<td>0.0</td>
<td>13.7</td>
<td>488.8</td>
<td>0.0</td>
<td>547.4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>11.8</td>
<td>1.8</td>
<td>16.4</td>
<td>472.7</td>
<td>72.7</td>
<td>654.5</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6.8</td>
<td>0.0</td>
<td>27.0</td>
<td>270.4</td>
<td>0.0</td>
<td>1081.7</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>36.2</td>
<td>0.0</td>
<td>0.0</td>
<td>1449.8</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>6.4</td>
<td>0.0</td>
<td>0.0</td>
<td>254.1</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>32.3</td>
<td>1.1</td>
<td>40.1</td>
<td>1293.3</td>
<td>44.6</td>
<td>1605.4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5.6</td>
<td>2.1</td>
<td>9.0</td>
<td>222.7</td>
<td>83.5</td>
<td>361.9</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>2.9</td>
<td>0.0</td>
<td>0.0</td>
<td>116.1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.0</td>
<td>0.0</td>
<td>19.7</td>
<td>38.7</td>
<td>0.0</td>
<td>786.6</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>67.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2678.3</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>8.5</td>
<td>0.0</td>
<td>193.4</td>
<td>338.5</td>
<td>0.0</td>
<td>7734.1</td>
</tr>
<tr>
<td>TC</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.6</td>
<td>0.0</td>
<td>0.0</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
<td>2.4</td>
<td>0.0</td>
<td>0.0</td>
<td>48.8</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>1.2</td>
<td>0.0</td>
<td>0.0</td>
<td>14.7</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>1.8</td>
<td>0.0</td>
<td>0.0</td>
<td>18.5</td>
</tr>
<tr>
<td>TB</td>
<td>1</td>
<td>1.1</td>
<td>2.8</td>
<td>16.1</td>
<td>47.3</td>
<td>126.2</td>
<td>725.4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.0</td>
<td>7.8</td>
<td>16.6</td>
<td>0.0</td>
<td>273.4</td>
<td>580.9</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
<td>2.2</td>
<td>16.6</td>
<td>0.0</td>
<td>43.3</td>
<td>332.3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.0</td>
<td>1.4</td>
<td>6.6</td>
<td>24.1</td>
<td>36.2</td>
<td>168.8</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
<td>1.7</td>
<td>7.2</td>
<td>0.0</td>
<td>50.7</td>
<td>215.5</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.4</td>
<td>0.0</td>
<td>0.4</td>
<td>6.7</td>
<td>0.0</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.9</td>
<td>8.2</td>
<td>81.0</td>
<td>18.2</td>
<td>163.8</td>
<td>1619.7</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.0</td>
<td>13.2</td>
<td>42.3</td>
<td>0.0</td>
<td>264.2</td>
<td>845.4</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.0</td>
<td>19.2</td>
<td>62.5</td>
<td>0.0</td>
<td>287.7</td>
<td>937.9</td>
</tr>
<tr>
<td>10</td>
<td>0.0</td>
<td>14.2</td>
<td>110.6</td>
<td>0.0</td>
<td>254.8</td>
<td>1990.3</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3.1</td>
<td>13.3</td>
<td>79.3</td>
<td>47.1</td>
<td>200.2</td>
<td>1189.2</td>
<td></td>
</tr>
</tbody>
</table>

Larvas Sardina y Anchoveta estrato (0-40 m)
<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>ANCHOVETA N/100 m³</th>
<th>SARDINA N/100 m³</th>
<th>TOTAL N/100 m³</th>
<th>ANCHOVETA N/100 m²</th>
<th>SARDINA N/100 m²</th>
<th>TOTAL N/100 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>TG</td>
<td>1</td>
<td>0.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.0</td>
<td>19.5</td>
<td>39.1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
<td>17.4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>10.8</td>
<td>0.0</td>
<td>0.0</td>
<td>433.8</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.9</td>
<td>18.0</td>
<td>31.5</td>
<td>49.5</td>
<td>990.0</td>
<td>1732.7</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.8</td>
<td>2.2</td>
<td>0.0</td>
<td>31.0</td>
<td>86.1</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
<td>0.7</td>
<td>2.8</td>
<td>0.0</td>
<td>31.0</td>
<td>123.9</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.0</td>
<td>9.9</td>
<td>16.2</td>
<td>0.0</td>
<td>177.8</td>
<td>292.1</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.4</td>
<td>173.3</td>
<td>213.7</td>
<td>13.4</td>
<td>5200.2</td>
<td>6409.9</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.0</td>
<td>1.8</td>
<td>3.6</td>
<td>0.0</td>
<td>17.8</td>
<td>35.6</td>
</tr>
</tbody>
</table>

T = TRANSECTO
E = ESTACION
TG = GOLFO DE ARAUCO
TB = BAHÍA CONCEPCIÓN
TC = BAHÍA COLIUMO
TOTAL = ANCHOVETA+SARDINA+OTRAS LARVAS

Larvas Sardina y Anchoyeta estrato (0-40 m)
### Tabla 5.6:

**PROYECTO FIP 96-11**

**LARVAS DE SARDINA Y ANCHOVETA ESTRATO (40-100 m)**

<table>
<thead>
<tr>
<th>T</th>
<th>E</th>
<th>ANCHOVETA N/100 m³</th>
<th>SARDINA N/100 m³</th>
<th>TOTAL N/100 m³</th>
<th>ANCHOVETA N/100 m²</th>
<th>SARDINA N/100 m²</th>
<th>TOTAL N/100 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>6.2</td>
<td>0.0</td>
<td>0.0</td>
<td>370.0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.9</td>
<td>0.0</td>
<td>0.0</td>
<td>52.2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>4.6</td>
<td>0.0</td>
<td>0.0</td>
<td>274.2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>3.8</td>
<td>0.0</td>
<td>0.0</td>
<td>227.8</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>21.2</td>
<td>0.0</td>
<td>0.0</td>
<td>1270.6</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>1.8</td>
<td>0.0</td>
<td>0.0</td>
<td>106.5</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>60.3</td>
<td>0.0</td>
<td>0.0</td>
<td>3620.2</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0.0</td>
<td>0.0</td>
<td>6.3</td>
<td>0.0</td>
<td>0.0</td>
<td>375.3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>3.5</td>
<td>0.0</td>
<td>0.0</td>
<td>138.8</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>8.8</td>
<td>0.0</td>
<td>0.0</td>
<td>530.5</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>2.8</td>
<td>0.0</td>
<td>0.0</td>
<td>168.1</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>27.1</td>
<td>0.0</td>
<td>0.0</td>
<td>1628.5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>45.3</td>
<td>0.0</td>
<td>0.0</td>
<td>2719.3</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0.5</td>
<td>0.0</td>
<td>29.3</td>
<td>32.6</td>
<td>0.0</td>
<td>1759.0</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0.0</td>
<td>0.0</td>
<td>5.7</td>
<td>0.0</td>
<td>0.0</td>
<td>343.6</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
<td>7.6</td>
<td>0.0</td>
<td>0.0</td>
<td>456.6</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>62.2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>71.5</td>
<td>0.0</td>
<td>0.0</td>
<td>4288.0</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>6.4</td>
<td>0.0</td>
<td>0.0</td>
<td>384.1</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>3.7</td>
<td>0.0</td>
<td>0.0</td>
<td>221.3</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>34.9</td>
<td>0.0</td>
<td>0.0</td>
<td>2093.2</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0.0</td>
<td>0.0</td>
<td>78.9</td>
<td>0.0</td>
<td>0.0</td>
<td>4735.1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>8.9</td>
<td>0.0</td>
<td>0.0</td>
<td>533.1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>14.8</td>
<td>0.0</td>
<td>0.0</td>
<td>887.5</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>4.6</td>
<td>0.0</td>
<td>0.0</td>
<td>278.3</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>50.2</td>
<td>0.0</td>
<td>0.0</td>
<td>3601.9</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>25.5</td>
<td>0.0</td>
<td>0.0</td>
<td>1531.2</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.6</td>
<td>0.0</td>
<td>0.0</td>
<td>37.2</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>5.1</td>
<td>0.0</td>
<td>0.0</td>
<td>309.0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
<td>2.0</td>
<td>0.0</td>
<td>0.0</td>
<td>118.9</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>6.0</td>
<td>0.0</td>
<td>0.0</td>
<td>358.1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>58.6</td>
<td>0.0</td>
<td>0.0</td>
<td>3515.0</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.6</td>
<td>0.0</td>
<td>0.0</td>
<td>35.8</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>9.5</td>
<td>0.0</td>
<td>0.0</td>
<td>573.0</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>2.1</td>
<td>0.0</td>
<td>0.0</td>
<td>126.2</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0.0</td>
<td>0.0</td>
<td>2.8</td>
<td>0.0</td>
<td>0.0</td>
<td>166.4</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>0.0</td>
<td>0.0</td>
<td>2.5</td>
<td>0.0</td>
<td>0.0</td>
<td>149.7</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>0.0</td>
<td>0.0</td>
<td>10.1</td>
<td>0.0</td>
<td>0.0</td>
<td>603.2</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>0.0</td>
<td>0.0</td>
<td>9.1</td>
<td>0.0</td>
<td>0.0</td>
<td>545.8</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>0.0</td>
<td>0.0</td>
<td>3.7</td>
<td>0.0</td>
<td>0.0</td>
<td>219.6</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>0.0</td>
<td>0.0</td>
<td>0.9</td>
<td>27.6</td>
<td>0.0</td>
<td>55.3</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>0.0</td>
<td>0.0</td>
<td>1.4</td>
<td>0.0</td>
<td>0.0</td>
<td>82.4</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>0.0</td>
<td>0.0</td>
<td>6.7</td>
<td>0.0</td>
<td>0.0</td>
<td>399.7</td>
</tr>
</tbody>
</table>

Larvas de Sardina y Anchoveta estrato (40-100m)
<table>
<thead>
<tr>
<th>T</th>
<th>E</th>
<th>ANCHOVETA N/100 m³</th>
<th>SARDINA N/100 m³</th>
<th>TOTAL N/100 m³</th>
<th>ANCHOVETA N/100 m²</th>
<th>SARDINA N/100 m²</th>
<th>TOTAL N/100 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
<td>0.0</td>
<td>2.8</td>
<td>6.3</td>
<td>0.0</td>
<td>168.6</td>
<td>379.3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
<td>1.2</td>
<td>0.0</td>
<td>0.0</td>
<td>71.2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.0</td>
<td>0.0</td>
<td>4.8</td>
<td>0.0</td>
<td>57.5</td>
<td>287.4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>8.2</td>
<td>0.0</td>
<td>0.0</td>
<td>493.8</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>3.9</td>
<td>0.0</td>
<td>0.0</td>
<td>235.2</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>3.1</td>
<td>0.0</td>
<td>0.0</td>
<td>187.1</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>12.7</td>
<td>0.0</td>
<td>0.0</td>
<td>760.1</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>0.0</td>
<td>1.0</td>
<td>15.2</td>
<td>0.0</td>
<td>25.4</td>
<td>380.3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>1.7</td>
<td>0.0</td>
<td>0.0</td>
<td>100.5</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>26.3</td>
<td>0.0</td>
<td>0.0</td>
<td>1577.9</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.7</td>
<td>0.0</td>
<td>20.8</td>
<td>0.0</td>
<td>39.0</td>
<td>1249.6</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.5</td>
<td>0.0</td>
<td>15.8</td>
<td>0.0</td>
<td>30.6</td>
<td>947.5</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>27.8</td>
<td>0.0</td>
<td>0.0</td>
<td>1667.8</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.0</td>
<td>0.0</td>
<td>39.7</td>
<td>0.0</td>
<td>0.0</td>
<td>2384.3</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>0.5</td>
<td>0.0</td>
<td>4.3</td>
<td>0.0</td>
<td>32.6</td>
<td>260.6</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>58.3</td>
<td>0.0</td>
<td>0.0</td>
<td>3498.0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>14.4</td>
<td>0.0</td>
<td>0.0</td>
<td>865.6</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>16.5</td>
<td>0.0</td>
<td>0.0</td>
<td>989.1</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.0</td>
<td>0.0</td>
<td>58.2</td>
<td>0.0</td>
<td>0.0</td>
<td>3490.4</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0.0</td>
<td>4.8</td>
<td>7.2</td>
<td>0.0</td>
<td>286.4</td>
<td>429.6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.0</td>
<td>48.5</td>
<td>63.1</td>
<td>0.0</td>
<td>2910.9</td>
<td>3788.3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>12.8</td>
<td>0.0</td>
<td>0.0</td>
<td>765.2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.9</td>
<td>1.4</td>
<td>51.3</td>
<td>0.0</td>
<td>171.1</td>
<td>85.5</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>6.0</td>
<td>0.0</td>
<td>0.0</td>
<td>362.9</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>6.0</td>
<td>0.0</td>
<td>0.0</td>
<td>362.9</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>5.7</td>
<td>0.0</td>
<td>0.0</td>
<td>34.7</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>1.4</td>
<td>0.3</td>
<td>60.5</td>
<td>81.6</td>
<td>0.0</td>
<td>20.4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.9</td>
<td>0.0</td>
<td>44.3</td>
<td>52.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>82.5</td>
<td>0.0</td>
<td>0.0</td>
<td>4952.7</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>30.4</td>
<td>0.0</td>
<td>0.0</td>
<td>1823.2</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>0.6</td>
<td>0.0</td>
<td>30.2</td>
<td>38.6</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.3</td>
<td>0.7</td>
<td>32.1</td>
<td>80.2</td>
<td>40.1</td>
<td>1925.1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3.5</td>
<td>0.0</td>
<td>18.5</td>
<td>207.8</td>
<td>0.0</td>
<td>1108.2</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>7.8</td>
<td>0.0</td>
<td>70.0</td>
<td>466.4</td>
<td>0.0</td>
<td>4197.7</td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>3.1</td>
<td>0.0</td>
<td>0.0</td>
<td>186.9</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.5</td>
<td>0.0</td>
<td>24.6</td>
<td>28.4</td>
<td>0.0</td>
<td>1476.9</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.9</td>
<td>0.0</td>
<td>22.2</td>
<td>54.4</td>
<td>0.0</td>
<td>1331.8</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>21.3</td>
<td>0.0</td>
<td>0.0</td>
<td>1279.9</td>
</tr>
<tr>
<td>23</td>
<td>5</td>
<td>2.5</td>
<td>0.0</td>
<td>52.5</td>
<td>152.5</td>
<td>0.0</td>
<td>3152.5</td>
</tr>
<tr>
<td>TG</td>
<td>2</td>
<td>0.5</td>
<td>0.5</td>
<td>2.3</td>
<td>27.3</td>
<td>0.0</td>
<td>136.7</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
<td>4.7</td>
<td>14.4</td>
<td>0.0</td>
<td>0.0</td>
<td>280.2</td>
</tr>
</tbody>
</table>

T = TRANSECTO  
E = ESTACION  
TG = GOLFO DE ARAUCO  
TOTAL = ANCHOVETA+SARDINA+OTRAS LARVAS  

Larvas de Sardina y Anchoyeta estrato (40-100m)