

UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS NATURALES Y OCEANOGRAFICAS DEPARTAMENTO DE OCEANOGRAFIA

INFORME FINAL

PROYECTO DEL FONDO DE INVESTIGACION PESQUERA Y ACUICULTURA

"IDENTIFICACIÓN DE UNIDADES POBLACIONALES DE JAIBA MARMOLA, X REGIÓN"

FIP N° 2017-67

PROPONENTE : DEPARTAMENTO DE OCEANOGRAFIA UNIVERSIDAD DE CONCEPCION

REQUIRENTE : FONDO DE INVESTIGACIÓN PESQUERA Y ACUICULTURA

CONCEPCION, DICIEMBRE 2018

JEFE DE PROYECTO

Sandra Ferrada Fuentes.

AUTORES POR TEMA

- a) Revisión y análisis de información biológica pesquera, diseño, implementación y ejecución de plan de muestreo
 Gustavo Aedo Urrutia
 Sandra Ferrada Fuentes
- b) Desarrollo de marcadores moleculares SNPs Victoria Herrera Yánez Ricardo Galleguillos Gonzalez Cristian Canales Aguirre Daniel Gomez Uchida Selim Musleh Vega Sandra Ferrada Fuentes Rocio Barrios Figueroa
- c) Análisis morfométrico
 Victoria Herrera Yánez
 Sandra Sampértegui Espinoza
 Hugo Benítez
 Sandra Ferrada Fuentes
- d) Análisis molinillo gástrico y pedúnculo ocular Sandra Sampértegui Espinoza Ciro Oyarzún González Marco Retamal Rivas Sandra Ferrada Fuentes Edith Montero Campos

Como citar este informe:

Ferrada Fuentes S., Herrera-Yañez V., Aedo G., Sampértegui S., Canales-Aguirre C., Gomez – Uchida D., Musleh Vega S., Benitez H., Oyarzún C., Retamal Rivas M., Barrios R., Montero E & R Galleguillos. 2018. Identificación de unidades poblacionales de jaiba marmola, X región. Informe Final. FIPA N°2017-67. 186 páginas.

RESUMEN EJECUTIVO

El objetivo general del presente proyecto es definir unidades poblacionales para la administración de Jaiba Marmola (*Metacarcinus edwardsii*) en áreas de su distribución y explotación en la X Región de Los Lagos. Para lograr este objetivo, se propuso utilizar tres fuentes de evidencia, que incluyen, levantamiento y análisis de información biológica pesquera, análisis morfométrico del cefalotórax, y el análisis genético a partir de marcadores polimorfismos de único nucleótido, SNPs (Single Nucleotide Polymorphism). El presente documento corresponde al Pre informe Final, y se encuentra organizado en función de los tres objetivos específicos indicados en las bases técnicas, y de las actividades principales.

Se implementó un diseño de muestreo para la identificación de unidades poblacionales en jaiba marmola en la X Región de Los Lagos, sustentado en el estudio de la estructuración espacial de información histórica de captura y esfuerzo de pesca. Se muestrearon 11 localidades, cubriendo espacialmente la región del Biobío, la región de Los Ríos, la región de Los Lagos, y la región de Aysén del General Carlos Ibáñez del Campo, con 30 eventos de muestreo, contando con 659 ejemplares muestreados para fines genéticos y morfométricos. El diseño de muestreo y número de muestras fue mejorado sustantivamente para cada aproximación. En el caso de los aspectos genéticos, se analizaron 450 en vez de 300 ejemplares, y en el caso de morfométrica se analizaron 581 ejemplares en vez de 120.

En el caso de los aspectos pesqueros se utilizó la información registrada en el programa de seguimiento de pesquerías bentónicas, del Instituto de Fomento Pesquero (IFOP). Los requerimientos del análisis permitió el uso de 296 observaciones de captura y esfuerzo de pesca, provenientes de 16 procedencias (i.e. zonas de pesca) georreferenciadas, para un total de 6 años (2006, 2008, 2009, 2010, 2011 y 2016), y 11 meses (excepto marzo).

El GLM construido para evaluar el efecto de la procedencia (i.e. zona de pesca) sobre la CPUE (kg/trampa), logró identificar tres macrozonas principales: norte (Ancud-Calbuco), centro (Dalcahue), y sur (Quellón). Esta estructuración se correspondió con el diseño de muestro implementado para la colecta de individuos de jaiba marmola, en el análisis genético y morfométrico.

Como evidencia genética se comprometieron y desarrollaron marcadores moleculares del tipo SNPs, y de manera complementaria, con la finalidad de verificar la especie en estudio, y robustecer los resultados con SNPs, se analizó el marcador molecular Citocromo Oxidasa I del ADN mitocondrial. Durante la etapa del desarrollo de marcadores moleculares SNPs un aspecto crítico para una adecuada construcción de las librerías genómicas, y los mejores resultados en la secuenciación masiva, fue el trabajar con ADN de alto peso molecular, y en concentración adecuada para tales fines. Es así que variados métodos y

protocolos fueron ensayados para tales fines. Resultando finalmente en extracciones de ADN adecuadas para la construcción de las tres librerías RADseq, y posterior secuenciación en tecnología Illumina HiSeq4000.

Producto de la secuenciación masiva se obtuvo un total de 2.177.757.552 millones de secuencias crudas, el control de calidad indica que se trata de secuencias de ADN de alta calidad, lo que es óptimo para la identificación y selección de loci SNPs. Un aspecto importante que se debe destacar, es el alto porcentaje de ADN foráneo presente en las muestras seleccionadas para el desarrollo de SNPs, lo que repercutiendo en el número de muestras finalmente analizadas en un contexto poblacional. De 285 ejemplares incluidos en las librerías genómicas, se analizaron en un contexto poblacional 129 ejemplares para 1911 loci SNPs.

Como parte del análisis estadístico poblacional de las bases de datos de loci SNPs, se evaluaron los resultados para distintos porcentajes de missing data presentes en las bases de datos, esto con la finalidad de detectar sesgos en los resultados debido a esta información faltante. Independiente de los umbrales de missing data de las bases de datos de SNPs, los resultados no evidencian un patrón de estructura genética espacial entre las localidades o sitios estudiados. Este patrón de homogeneidad genética es confirmado por el análisis de la Citocromo oxidasa I. Tampoco se evidencia divergencias genéticas significativas relacionadas con el sexo y con las tallas, no pudiendo establecerse hipótesis relacionadas con filopatrias, o migraciones sesgadas por el sexo. El patrón aquí descrito confirma evidencia anterior en base a loci microsatélites, donde a lo largo de 700 km de costa chilena no se evidencio patrones espaciales en la estructura genética para *M. edwardsii*, sugiriendo una alta conectividad genética entre los sitios de muestreo.

Este mismo resultado ha sido reportado para otras especies de crustáceos que no presentan estructuración genética debido a la duración de los estadios larvales en la columna de agua, lo que les permite mantener una amplia dispersión dentro de su rango de distribución y poder mantener la conectividad genética a lo largo del tiempo. La homogeneidad genética espacial descrita en el presente estudio es consistente con el largo desarrollo de larvas pelágicas de esta especie, que tiene una duración de tres meses con cinco estadios larvales de zoea y una etapa de megalopa, y a su alta capacidad de dispersión durante este periodo.

En el análisis de morfometría geométrica destaca el efecto de la diferenciación corporal de los individuos, particularmente en la variación de los hitos de la zona posterior del cefalotórax, confirmando una extensión de la forma corporal, principalmente para individuos de la región de Aysén. Esto podría ser explicado como una expresión de una característica de la historia de vida diferencial entre hembras y machos; por ejemplo, almacenaje de huevos en hembras y/o diferencias en la calidad alimenticia durante el desarrollo ontogenético debido a un componente ecologico asociado al ambiente entre el sur de Chile

y las zonas centro - sur. Se confirmo la existencia de diferencias significativas entre la variación de la forma entre las distintas localidades, aunque estas diferencias no conforman grupos discretos como para diferenciar subespecies o tipos morfológicos. El dimorfismo sexual fue claro mediante el uso de hitos en el cefalotórax completo, observando ademas una alta varianza en el tamaño de machos a diferencia de hembras, con una clara tendencia a tener forma corporal más ovalada.

El análisis de correlación entre la distancia morfológica y genética individual no es significativa, no evidenciando alguna base genética a las diferencias morfológicas evidenciadas.

En términos de manejo pesquero de la especie, se recomienda implementar medidas que permitan mantener la variabilidad genética, así como el intercambio genético a lo largo de la distribución geográfica de *M. edwardsii*, en especial en aquellas zonas donde se observa mayor variabilidad genética, y/o variantes génicas únicas. Estas variantes genéticas pueden ser adaptativas y una reducción de la variabilidad genética, debido a la aplicación de ineficientes estrategias de manejo, puede resultar en la incapacidad de los organismos para responder a cambios ambientales futuros, sean estos de origen natural o antrópicos.

ABSTRACT

The main goal of this project was to define population units of the Crab (*Metacarcinus edwardsii*) on its distribution in the X Region of Los Lagos for the management administration. To achieve this goal, we proposed using three different approaches that included: i) fishery information, ii) biological information, iii) geometric morphometry of the cephalothorax analysis and genetic analysis from single nucleotide polymorphism markers (i.e. SNPs). This document is the Final Report, and is organized according to the three specific objectives indicated in the technical bases, and the main activities.

A sampling design was implemented for the identification of population units in Crab in the X Region of Los Lagos, based on data of the spatial structuring of historical information of fishing capture and effort. Eleven locations were sampled, spatially covering the following Chilean adminstrative regions: i) Biobío, Los Ríos, Los Lagos, and Aysén. A total of 30 sampling events and 659 specimens collected for genetic and morphometric purposes. The sampling design and number of samples was substantively improved for each approach comparing with the proposal awarded. On this way, for genetic approach, we collected and analyzed 450 instead of 300 specimens, and for geometric morphometry, a total fo 581 specimens instead of 120.

Forfishery data, the information recorded in the benthic fisheries monitoring program from the Fisheries Development Institute (FIFG) was used. The requirements of the analysis allowed the use of 296 records of capture and fishing effort, from 16 georeferenced fishing zones, between the following years: 2006, 2008, 2009, 2010, 2011 and 2016.

The generalized linear model constructed to evaluate the effect of origin (i.e. fishing area) on the CPUE (kg / trap), managed to identify three main macrozones: north (Ancud-Calbuco), center (Dalcahue), and south (Quellón). This structure was implemented as sampling design for collect specimens for genetic and morphometric analysis.

The genetics analyses based on SNPs was complemented with mitochondrial sequences. Specifically, we sequenced and analyzed a fragment of Cytochrome Oxidase I, in order to verify the species under study, and increase the power of SNPs. For SNPs, a critical critical step for build the genomic libraries is obtain genomic DNA of high molecular weight. Several DNA purification protocols were tested for such purposes. Finally, three pair-end libraries were built using SbfI as endonuclease, and later tese were sequencing on a Illumina HiSeq4000 sequencing.

From the three libraries we obtained a total of 2,177,757,552 raw sequences, and quality control indicated that it is high quality DNA sequences, which is optimal for the identification and selection of loci SNPs. We identifyied an high percentage of foreign DNA present in the samples which were filtered-out for further analyses. Of 285 specimens included in the genomic libraries, 129 specimens were analyzed for population analyses using two databases with different thresholds of missing data (i.e. 20% and 10%, 1911 loci SNPs and XXXX respectively).

We conducted the population structure analyses with both dataset, 20% and 10% dataset in order to detecting biases in the results due to this missing information.

Independent of the missing data thresholds of the SNPs databases, the results did not show a spatial genetic structure pattern between the localities studied. This pattern of genetic homogeneity is agreed whit the analysis of Cytochrome Oxidase I. Additionally, no significant genetic divergences are found related to sex and size, and hypotheses related to phylopatria, or migrations biased by sex, can not be established. The pattern described here confirms previous evidence based on microsatellite loci, where along 700 km of Chilean coast where no spatial patterns were observed for *M. edwardsii*, suggesting a high genetic connectivity between along its geographic distribution.

Similarresult has been reported for other species of crustaceans that do not have been found genetic structure. The main biological explanation are related to the duration of the larval stages in the water column, which allows them to maintain a wide dispersion within their range of

distribution and be able to maintain genetic connectivity over time. The spatial genetic homogeneity described in the present study is consistent with the long development of pelagic larvae of this species, that is around three months (i.e. five zoea and one megalopa).

The geometric morphometry analyses showed that the effect of the corporal differentiation of the individuals stands out, particularly in the variation of the landmarks of the posterior zone of the cephalothorax. This latter is confirmed by an extension of the corporal form, mainly for individuals of the Aysén region. This could be explained as an expression of a characteristic of differential life history between females and males; for example, storage of eggs in females and / or differences in food quality during ontogenetic development due to an ecological component associated with the environment in the studied area. We confirmed the existence of significant differences between the variation of the form between the different localities, although these differences do not gathered in discrete groups as to differentiate subspecies or morphological types. The sexual dimorphism was clear through the use of landmark in the complete cephalothorax, also observing a high variance in the size of males unlike females, with a clear tendency to have a more oval body shape.

The correlation analysis between morphological and genetical distance was not significant, suggesting none genetic relationship to the morphological differences evidenced.

For fisheries management of the M. edwarsii, it is recommended to implement measures to maintain genetic variability, as well as genetic exchange throughout the geographical distribution of *M. edwardsii*, especially in those areas with high genetic diversity. These genetic variants could be adaptive, and a reduction of it, due to the application of inefficient management strategies, could result in the inability of organisms to respond to future environmental changes.

INDICE

ANTECEDENTES GENERALES1
Metacarcinus edwardsii (Bell, 1835); UN CASO DE ESTUDIO2
METODOLOGÍA DE TRABAJO GENERAL5
Reunión de coordinación5
Enfoque metodológico5
"Revisión exhaustiva de bases de datos de captura y esfuerzo pesquero de jaiba marmola para un diseño de muestreo espacial adecuado"
Características de las bases de datos para la pesquería de jaiba marmola9
Análisis para las bases de datos para la pesquería de jaiba marmola9
Requerimiento del análisis para las bases de datos de la pesquería de jaiba marmola10
RESULT'ADOS DE LA REVISION DE INFORMACIÓN PESQUERA PARA DISEÑO DE MUESTREO ESPACIAL DE JAIBA MARMOLA11
Variación y distribución espacial de la CPUE11
Estructuración espacial de la CPUE20
Objetico Específico 2.1 "Caracterizar las unidades poblacionales de Jaiba Marmola de la X Región e
interpretar patrones de estructuración genética a la luz de variación y gradientes morfológicos latitudinales
documentados previamente" y Objetivo Específico 2.2 "Identificar y definir los límites geográficos de
las unidades poblacionales de jaiba marmola en la X Región"25
Antecedentes genéticos
IMPLEMENTACIÓN Y EJECUCION DE PLAN DE MUESTREO DE JAIBA MARMOLA26
Pasos del proceso de muestreo en laboratorio de jaiba marmola
Obtención de medidas morfológicas28
Obtención de datos para morfometría geométrica28
Obtención de tejido para DNA28
Obtención de molinillo gástrico y pedúnculo ocular29
Protocolo de Muestreo de tejido para Análisis ADN
METODOLOGÍA

Procedimiento Marmola	para	la	extracción	de	ADN	genómico	desde	ejemplares	de	Jaiba 36
Cuantificacionos	do orte		on do ADNA							
Cuantincaciones	s de extr	accion	ies de ADN §	genom	100		•••••			
Corroboración	de la es	pecie	de los ejemp	olares	en estudi	o de Jaiba M	larmola u	itilizando AD	N bar	coding
(COI)										38
Corroboración o	le la esp	ecie M	etacarcinus edn	vardsii o	le los ejer	nplares en est	udio			39
Desarrollo de los	s marca	dores 1	noleculares S	SNPs p	oara <i>Metad</i>	arcinus edwards	sii			39
Selección de Enz	zima pai	ra Redi	ucción del Ge	enoma	de Metaco	arcinus edwards.	<i>ü</i>			39
Preparación libr	erías RA	Dseq								40
Revisión cualitat	iva de li	brerías	s genómicas.	•••••						41
Selección de par	ámetros	s para l	a identificacio	ón de S	SNPs					41
Limpieza de la b	ase de d	atos de	e secuenciaci	ón ma	siva de Al	DN foráneo.				42
Selección e iden	tificació	n de Sl	NPs						•••••	42
Filtrado de loci S	SNPs co	n alto j	porcentaje de	emissi	ng data		•••••			43
Diversidad gen	lética e	n lo c a	alidades y 1	region	es admir	nistrativas ba	isado en	marcadores	mole	culares
SNPs				•••••			•••••			46
Parámetro de	e div	ersida	d genética	ı po	oblaciona	l basado	en 1	marcadores	mole	culares
mitocondriales										46
Análisis de estru	ctura ge	nética	poblacional l	oasado	en marca	adores moleca	ulares SN	Ps		46
Análisis de estru	ctura ge	nética	poblacional t	oasado	en marca	dores molecu	lares mite	ocondriales		47
Detección de est	tructura	pobla	cional sin info	ormaci	ón a prio	ri				47
Relaciones gener	alógicas	: Rede	s de haplotip	os						49
Morfometría Ge	eométric	ca del c	efalotó r ax de	Jaiba	Marmola					49
Obtención de da	atos mo	rfomé	tricos del cefa	alotóra	x de Jaiba	a Marmola				49
Análisis de form	a geomo	étrica d	lel cefalotóra	x de Ja	iba Marn	nola	•••••			50
Estadística de la	forma d	lel cefa	llotórax de Ja	iba Ma	armola					51

Relación entre datos genéticos y morfológicos51
RESULTADOS
Procedimiento para la extracción de ADN genómico desde ejemplares de Jaiba Marmola y Cuantificaciones de extracciones de ADN genómico
Corroboración de la especie Metacarcinus edwardsii de los ejemplares en estudio60
Desarrollo de los marcadores moleculares SNPs para Metacarcinus edwardsii
Selección de Enzima para Reducción del Genoma de Metacarcinus edwardsii
Preparación de librerías genómicas RADseq65
Revisión cualitativa de librerías genómicas
Selección de parámetros para la identificación de SNPs71
Limpieza de la base de datos de secuenciación masiva de ADN foráneo71
Selección e identificación de SNPs77
Filtrado de loci SNPs con alto porcentaje de missing data78
Diversidad genética en localidades y regiones administrativas basado en marcadores moleculares SNPs
Parámetro de diversidad genética poblacional basado en marcadores moleculares mitocondriales
Identificación y distribución espacial de haplotipos132
Análisis de estructura genética poblacional basado en marcadores moleculares SNPs
Índice de Fijación o estructuración genética poblacional Fst134
Índice de estructuración genética poblacional para la base de datos con 10% de datos faltantes135
Índice de estructuración genética poblacional para la base de datos con 20% de datos faltantes136
Análisis de inferencia bayesiana STRUCTURE137
Adegenet
Análisis de estructura genética poblacional basado en marcadores moleculares mitocondriales142
Detección de estructura poblacional sin información a priori respecto al origen poblacional de los ejemplares analizados

Relaciones genealógicas: Redes de haplotipos143
Resultados Morfometría Geométrica144
Relación entre datos genéticos y morfológicos150
Para dar cumplimiento al objetivo específico 2.3 "Estimar el grado de conectividad entre unidades poblacionales de la X Región, y entre unidades de la X Región y otras de regiones colindantes: XIV y XI Regiones"
ANÁLISIS Y DISCUSIÓN DE LOS RESULTADOS153
CONCLUSIONES
ANÁLISIS DEL MOLINILLO GÁSTRICO EN LA JAIBA MARMOLA COMO POSIBLE ESTRUCTURA PARA LA DETERMINACIÓN DE EDAD162
Metodología de análisis del molinillo gástrico de jaiba marmola163
Resultados de la descripción del molinillo gástrico de jaiba marmola163
Cortes y tinciones histológicas de las muestras de molinillos gástricos168
Resultados
Taller de Difusión de Resultados171
REFERENCIAS BIBLIOGRAFÍCAS177
ANEXOS

INDICE DE TABLAS

Tabla 1. Procedencias georreferencias con CPUE (kg/trampa) de jaiba marmola, X Región11
Tabla 2. Resumen de la relación promedio-varianza a los datos de CPUE (kg/trampa) provenientes de la pesquería de jaiba marmola X Región15
Tabla 3. Resumen del GLM (procedencia) aplicado a los datos de CPUE (kg/trampa) provenientes de la pesquería de jaiba marmola X Región
Tabla 4. Resumen del GLM (procedencia y año) aplicado a los datos de CPUE (kg/trampa) provenientes de la pesquería de jaiba marmola X Región
Tabla 5. Resumen del GLM (procedencia y mes) aplicado a los datos de CPUE (kg/trampa) provenientes de la pesquería de jaiba marmola X Región
Tabla 6. Comparación en la bondad de ajuste entre modelos20
Tabla 7. Eventos de muestreos realizados como parte del proyecto FIPA N°2017-6730
Tabla 8. Detalles de muestreos realizados como parte del proyecto FIPA N°2017-6731
Tabla 9. Detalle de la información recolectada de cada ejemplar de jaiba marmola muestreado35
Tabla 10. Comparación de modelos de frecuencias alélicas correlacionadas y no correlacionadas obtenido en Geneland mediante el Factor de Bayes
Tabla 11. Cuantificaciones de ADN genómico de individuos seleccionados de Jaiba Marmola para las librerías genómicas
Tabla 12. Tabla resumen de identidad genética de los 114 individuos y sus respectivas secuencias de ADNgeneradas, comparadas con las secuencias depositadas en GenBank
Tabla 13. Identificación de las enzimas de restricción adecuadas para la implementación de librerías RADseq en M. edwardsii.
Tabla 14. Orden de las tres placas de ADN genómico para construcción de librerías RADseq, con su respectivo código de barra o barcode
Tabla 15. Parámetros básicos por librería obtenidos desde secuenciación de alto rendimiento

Tabla 16. Porcentaje de lecturas de ADN foráneo identificadas por individuo de Jaiba Marmola
secuenciado71
Tabla 17. Datos faltantes por individuo y por localidad de muestreo.
Tabla 18. Datos faltantes por loci
Tabla 19. Estadísticos resumen promedio de diversidad genética por cada localidad analizada para una
base de datos considerando un máximo de 10% y 20% de datos faltantes130
Tabla 20. Estadísticos resumen promedio de diversidad genética por cada región administrativa analizada para una base de datos considerando un máximo de 10% y 20% de datos faltantes
Tabla 21. Índices de diversidad molecular por localidades estudiadas para el marcador COI131
Tabla 22. Índices de diversidad molecular por regiones administrativas para el marcador COI132
Tabla 23. Haplotipos identificados para la jaiba marmola Metacarcinus edwardsii por regiones
administrativas
Tabla 24. Índice de estructuración genética poblacional Fst por pares de localidades 10% de datos faltantes
Tabla 25. Índice de estructuración genética poblacional Fst por pares de regiones administrativas 10% de datos faltantes
Tabla 26. Índice de estructuración genética poblacional Fst para el sexo con 10% de datosfaltantes
Tabla 27. Índice de estructuración genética poblacional Fst por pares de Talla (Juvenil <120 mm Longitud Cefalotoraxica, Adulto > 120 mm LC) 10% de datos faltantes
Tabla 28. Índice de estructuración genética poblacional Fst por pares de localidades 20% de datos faltantes
Tabla 29. Índice de estructuración genética poblacional Fst por pares de regiones administrativas 20% de datos faltantes
Tabla 30. Índice de estructuración genética poblacional Fst por pares de sexo 20% de datos faltantes137
Tabla 31. Índice de estructuración genética poblacional Fst por pares de Talla (Juvenil <120 mm Longitud
Cefalotoraxica, Adulto > 120 mm LC) 20% de datos faltantes
Tabla 32. Índice de estructuración genética poblacional Øst por pares de regiones142

Tabla 33: Resumen de las primeras 11 dimensiones de 54 dimensiones de la forma con sus Eigenvalues
(valor referencial de forma) y su porcentaje acumulado en cada dimensión145
Tabla 34: Distancias de Mahalanobis calculadas para 11 localidades y las VIII, X, XI y XIV Regiones
estudiadas148

INDICE DE FIGURAS

Figura 1. Diapositiva de la presentación de Andrés Olguín, durante el taller "Monitoreo de recurso
bentónicos explotados por pescadores artesanales con énfasis en la pesquería de jaibas"7
Figura 2. Carta conductora de entrega de base de datos del programa de seguimiento de jaiba marmola
en las regiones X y XI
Figura 3. Esquema de la composición de las bases de datos en jaiba marmola, X Región9
Figura 4. Mediana (línea horizontal), percentiles del 25% y 75% (caja rectangular), límites superior e
inferior de 1,5 veces el rango intercuartílico (líneas verticales discontinuas), y valores atípicos (círculos),
para la CPUE (kg/trampa) en función de la procedencia12
Figura 5. Mediana (línea horizontal), percentiles del 25% y 75% (caja rectangular), límites superior e
inferior de 1,5 veces el rango intercuartílico (líneas verticales discontinuas), y valores atípicos (círculos),
para la CPUE (kg/trampa) en función del año12
Figura 6. Mediana (línea horizontal), percentiles del 25% y 75% (caja rectangular), límites superior e
inferior de 1,5 veces el rango intercuartílico (líneas verticales discontinuas), y valores atípicos (círculos),
para la CPUE (kg/trampa) en función del mes13
Figura 7. Distribución de frecuencia de la CPUE (kg/trampa) en la pesquería de jaiba marmola, X
Región14
Figura 8. Relación promedio-varianza en los datos de CPUE (kg/trampa) para la pesquería artesanal de
jaiba marmola X Región
Figura 9. Estadísticos del Modelo Lineal Generalizado (GLM) para el efecto procedencia (i.e. zona de
pesca)
Figura 10. Termplot function para mostrar gráficamente el efecto de la procedencia (i.e. zona de pesca)
sobre la estructuración espacial de la CPUE (kg/trampa) en jaiba marmola20
Figura 11. Macrozonación de la CPUE (kg/trampa) en la pesquería artesanal de jaiba marmola
desarrollada en aguas de la X Región21

Figura 12. Polígonos de pesca para recursos bentónicos definidos por el proyecto FIP 2005-51
"Diagnóstico biológico-pesquero para recursos pesqueros bentónicos de la zona contigua, X y XI región"
(Molinet et al., 2007)
Figura 13. Diseño de muestreo propuesto para la colecta de muestras de jaiba marmola en aguas interiores
de la X Región, y regiones contiguas (XIV y XI)24
Figura 14. Distribución geográfica de las localidades de muestreo de Jaiba Marmola del proyecto FIPA N°2017-67
Figura 15. Ejemplar de Jaiba Marmola proveniente de Loncoyan, Valdivia, en posición dorsal para registro fotográfico
Figura 16. Toma de medidas corporales en ejemplares de Jaiba Marmola
Figura 17. Pereiópodos de Jaiba Marmola ordenamos para el muestreo de tejido muscular33
Figura 18. Muestras de branquias extraídas desde ejemplares de Jaiba Marmola
Figura 19. Muestra de branquia de jaiba marmola en la primera etapa de la extracción siendo triturada en un mortero
Figura 20. Esquema del procedimiento de obtención de RADseq. Obtenido de Baird et al. 200841
Figura 21: Figura 21a Histograma de frecuencias con el porcentaje de datos faltantes en los individuos
para cada locus. Figura 21b Gráfico de puntos donde cada punto corresponde al porcentaje de individuos
que no tienen información para cada loci43
Figura 22: Figura 22a Histograma de frecuencias con el porcentaje de datos faltantes en los loci para cada
individuo. Figura 22b Gráfico de puntos donde cada punto corresponde al porcentaje de loci que no
tienen información para cada individuo44
Figura 23. Figura 23a Histograma de frecuencia con el porcentaje de datos faltantes en los individuos para cada loci. Figura 23b Gráfico de puntos donde cada punto corresponde al porcentaje de individuos que no tienen información para cada loci; las líneas rojas marcan umbrales de tolerancia de información faltante del 10% al 50% y el número de loci que cumplen con tener un porcentaje de información faltante menor o igual al valor umbral respectivo
Figura 24. Vista dorsal del cefalotorax de Jaiba Marmola (Metacarcinus edwardsii) con 29 hitos (landmarks)
Figura 25. Perfiles de extracción de ADN, comparando 3 tipos de tejidos conservados en congelación

Figura 37	. Porcentaje	de varianz	a explicado	para c	cada	componente	principal	en l	oase a	la	forma	del
cefalotóra	x con 29 hite	os morfológ	i c os									145

Figura 38. Análisis de componentes principales para destacar la presencia de dimorfismo sexual de la forma del cefalotorax en los individuos de Metacarcinus edwardsii (Jaiba Marmola)......146 Figura 39. Análisis de componentes canónicos entre regiones para la forma del cefalotórax de Metacarcinus edwardsii (Jaiba Marmola) con sus respectivos promedios de forma geométrica por regiones......147 Figura 40: Análisis discriminante de la forma del cefalotórax entre regiones administrativas en Metacarcinus edwardsii (Jaiba Marmola)......148 Figura 41. Regresión multivariada de la forma geométrica del cefalotórax en Metacarcinus edwardsii (Jaiba Marmola) puntos negros representan a los machos y puntos morados representan a las hembras conjunto a dos representaciones de formas con tamaños extremos de hembras y machos......149 Figura 42. Correlación entre distancia morfológica individual y distancia genética individual utilizando Figura 43. Correlación entre distancia morfológica individual y distancia genética individual utilizando Figura 44. Vista antero dorsal de un ejemplar de Jaiba Marmola, indicando la ubicación del molinillo Figura 45. Vista dorsal de un ejemplar de Jaiba Marmola, indicando la ubicación del molinillo gástrico.....165 Figura 46. Vista ventral interna mostrando la posición del estómago o cámara cardiaca que contiene el molinillo gástrico en un ejemplar de Jaiba Marmola......165 Figura 47. Vista dorsal con abdomen removido para exponer el estómago cardíaco que contiene el molinillo gástrico, y las mandíbulas de un ejemplar de Jaiba Marmola.....166 Figura 48. Vista del molinillo gástrico de Metacarcinus edwardsii, que muestra la disposición y el arreglo estructural de los osiculos llamados; mesocardio (m), un par de zigocardios (z), y un par de pterocardios (p). Las placas de dentículos del mesocardio (md) y zigocardio (zd) están ubicados distalmente, y son utilizados Figura 49. Acercamiento de las placas de dentículos del A) zygocardio, y B) mesocardio, que muestra la región Figura 50. Vista de los pterocardios del molinillo gástrico de Jaiba Marmola......167 Figura 51. Fotografía de un corte histológico de bandas de crecimiento identificadas, indicadas por

Figura	52.	Fotografía	de un	corte	histológico	de	bandas	de	crecimiento	identificadas,	indicadas	por
puntos	, en	una sección	n longiti	udinal	de osiculos	del	mesoca	rdic	o del molinill	o gástrico de u	una hembr	a de
127 cm	LC	en <i>Metacara</i>	rinus edn	vardsii.				••••				170

INDICE ANEXOS

ANEXO 1. Acta de la reunión de coordinación proyecto FIPA N°2017-67	177
ANEXO 2. Personal participante por actividad	180

En el contexto de las Bases de licitación pública del Proyecto FIP N°2017-67 "Identificación de unidades poblacionales de Jaiba Marmola, X región", se presenta el siguiente objetivo general.

OBJETIVO GENERAL

Definir unidades poblacionales para la administración de Jaiba Marmola (*Metacarcinus edwardsii*) en áreas de su distribución y explotación en la X Región de Los Lagos.

OBJETIVOS ESPECÍFICOS

En el contexto de las Bases del Proyecto FIP N°2017-67 "Identificación de unidades poblacionales de Jaiba Marmola, X región" se presentan los siguientes objetivos específicos:

2.1 Caracterizar las unidades poblacionales de jaiba marmola de la X Región e interpretar patrones de estructuración genética a la luz de variación y gradientes morfológicos latitudinales documentados previamente.

2.2 Identificar y definir los límites geográficos de las unidades poblacionales de jaiba marmola en la X Región.

2.3 Estimar el grado de conectividad entre unidades poblacionales de la X Región, y entre unidades de la X Región y otras de regiones colindantes: XIV y XI Regiones.

ANTECEDENTES GENERALES

Una de las mayores interrogantes en el ámbito del manejo de recursos marinos, es el cómo identificar y preservar la biocomplejidad de las especies a nivel intra e interpoblacional a través de sus tres ejes; la heterogeneidad espacial, la conectividad y las contingencias históricas (Cadenasso et al., 2006). De esta forma la evolución de la estructura espacial de las poblaciones depende del balance entre la heredabilidad, flujo génico (conectividad) y adaptación a regímenes de selección (Lenormand, 2002). Es así como el conocimiento de la conectividad y la estructuración espacial a través de la distribución de las especies es vital para el entendimiento de la dinámica poblacional, diseñar estrategias de conservación, y desarrollo de prácticas sustentables de manejo (Hutchings et al., 2007).

Los primeros estudios sobre la temática se focalizaron especialmente sobre sistemas terrestres, frecuentemente sobre problemáticas de fragmentación de hábitat, pero en los últimos años, especies marinas y sus hábitats han recibido mayor atención, considerando que la escala de dispersión de organismos marinos es frecuentemente mayor que los organismos terrestres y de aguas continentales (Avise, 1998; Waples, 1998). Estudios de conectividad en sistemas marinos se han focalizado sobre especies con un amplio rango de distribución, desde invertebrados con larvas pelágicas a ballenas, en que los diferentes estados de sus ciclos de vida habitan en áreas separadas (Bjorndal & Bolten, 2008). Especial interés ha despertado la cuantificación de la conectividad en stocks de especies comercialmente importantes o que se encuentran amenazadas, pues para un manejo efectivo de estos recursos es requisito el conocimiento de los patrones de estructuración temporal y espacial, así como la identificación de unidades evolutivamente significativas (Landi et al., 2005; Pereyra et al., 2004; VanDeHey et al., 2009).

En el contexto de la actividad extractiva desarrollada en torno a especies de importancia comercial, uno de los requerimientos básicos para el adecuado manejo de poblaciones naturales, ya sea por razones comerciales o de conservación, es el conocimiento de sus aspectos reproductivos, como por ejemplo, si una población es reproductivamente autosustentable o depende de inmigrantes para el reemplazo de sus individuos adultos, ya que el nivel de intercambio génico originado por la inmigración entre poblaciones, puede afectar su sustentabilidad en el largo plazo.

Un método para determinar si una población es reproductivamente autosustentable es determinar diferencias fenotípicas entre grupos. Si una población es suficientemente diferente del punto de vista fenotípico de otras poblaciones, se podría deber a que se encuentran separadas reproductivamente. Sin embargo, de haber diferencia poblacional, a menos que las condiciones ambientales sean idénticas para ambas poblaciones, es igualmente posible que las diferencias fenotípicas observadas sean producto de: a)

plasticidad fenotípica, b) norma de reacción, c) variaciones adaptativas y/o, d) correlación de caracteres con fitnnes (Hutchings et al., 2007). Por otro lado, un segundo método para evaluar las diferencias poblacionales, es examinar directamente la estructura de las poblaciones a partir de evidencia genética (e.g. Ferrada et al. 2002, Canales-Aguirre et al. 2010.

De esta manera y tomando en cuenta que poblaciones diferenciadas pueden ser medidas desde un punto de vista morfológico o genético, establecer el grado de conectividad que exista entre ellas es importante para determinar el grado de aislamiento de las poblaciones. De este modo y dado que el monitoreo directo de la conectividad de una especie a través de su rango de distribución geográfica es muy dificultoso, se han desarrollado métodos indirectos (e.g. Genéticos) para evaluar el grado de conectividad entre diferentes poblaciones (e.g. Hedgecock et al. 2007). Siendo válido estos métodos indirectos cuando las poblaciones se han diferenciado genéticamente debido a una separación de periodos y/o lugares de desove (aislamiento reproductivo).

Operacionalmente podemos inferir sobre stocks genéticos o unidades poblacionales a través de diversas metodologías, cuya aplicación dependerá de la escala temporal considerada y los objetivos planteados. Para dar cumplimiento a los objetivos de los Términos de Referencia del proyecto FIP N°2017-67 "Identificación de unidades poblacionales de Jaiba Marmola, X región", se utilizará un enfoque holístico que incluirá metodologías actualmente aplicadas a la identificación de stocks genéticos o unidades poblacionales, para lo cual se cuenta con la experiencia de científicos nacionales. Las herramientas a utilizar involucrarán la genética de poblaciones, morfología corporal, y descriptores genéticos.

Metacarcinus edwardsii (Bell, 1835); UN CASO DE ESTUDIO

Metacarcinus edwardsii (Bell 1835), especie conocida comúnmente como jaiba marmola, presenta sinónimos en el sur de Chile como jaiba chilota o jaiba mola roqueña, internacionalmente se conoce como buey austral en España y crab en países de habla inglesa (FAO 2002). Es una de los principales recursos de crustáceos de nuestro país, presentando desembarques artesanales anuales de hasta 4279 toneladas, lo que equivale al 86% del total de jaibas capturadas en nuestro país (Sernapesca 2010). Su explotación se concentra en el sur del país (40-48 ° S), pero con gran variación en la intensidad pesquera local. En la actualidad, para esta región, la pesquería de jaiba es manejada con un tamaño legal mínimo (110 mm de ancho de caparazón, CW) para ambos sexos y la recolección de hembras está prohibida mientras transporta embriones (alrededor de 4-5 meses, usualmente de abril a agosto). Por lo tanto, las hembras ovígeras deben ser liberadas cuando están atrapadas en las trampas. Esta es una pesquería durante todo

el año sin cierres estacionales. *M. edwardsii* es una especie univoltina con una estación de apareamiento de octubre a enero, que se asocia con muda femenina. Después del apareamiento, las hembras pueden almacenar los espermatozoides dentro del receptáculo seminal durante varios meses para fertilizar los ovocitos, y luego transportar embriones durante el otoño y el invierno. Hasta la fecha se desconoce el efecto de la pesca selectiva (sexo y tamaño) en la condición reproductiva de *M. edwardsii* (Pardo et al. 2015).

M. edwardsii se distribuye latitudinalmente abarcando gran parte de las costas del Océano Pacífico oriental, desde Guayaquil, al sur de Ecuador, hasta el Islote Henkeyesca en el sur de Chile (Nations 1975; 1979; Vinuesa et al. 1999; Retamal et al. 2009). En Chile su distribución va desde la V hasta la XI regiones, siendo la décima región la que se lleva los mayores desembarques (Sernapesca 2010). La zona sur de Chile, es la región con mayores abundancia de estas especies, probablemente por la abundancia de estuarios en sus costas, los cuales serían usados como áreas de crianza por los juveniles de *M. edwardsii* (Pardo et al. 2012a, b). Respecto a su batimetría, se encuentra en el intermareal y submareal somero (Retamal 1981), registrándose hasta profundidades de 70 m (Olguín 2006). Las zonas de mayor abundancia, para esta especie, se encuentran en los fiordos del sur de Chile, destacándose el mar interior de Calbuco y el estuario de Maullín (Retamal, 1981). Al menos en la zona centro-sur esta especie presentaría migraciones batimétricas estacionales asociadas a procesos reproductivos (Muñoz et al. 2006).

En su desarrollo, la jaiba marmola posee 7 etapas de larva zoea, que en total permanecen en el plancton entre 31 y 49 días. Durante este periodo pueden recorrer grandes distancia siendo arrastradas por las corrientes, lo que hace pensar que su dispersión puede afectar sustancialmente su estructura poblacional (Millikin & Williams 1984). En la fase final del desarrollo larval presentan una larva megalopa, que es transportada hacia ambientes cercanos a la costa por diversos tipos de procesos hidrodinámicos y regulada por aspectos conductuales de éstas (Shanks & Brink, 2005; Morgan & Fisher, 2010; Pardo et al., 2012a; Pardo et al., 2012b). Una vez en la costa, la larva busca activamente un sustrato apropiado y se asienta para metamorfosear a juvenil y reclutar a la sección bentónica de la población (Abello & Guerao 1999) *C. edwardsii* se asienta abundantemente sobre roca para luego utilizar los fondos blandos como refugio frente a periodos de hiposalinidad dentro del estuario, enterrándose en la arena, esto corresponde a un mecanismo de protección contra la depredación (Pardo et al. 2011).

La distribución y abundancia de los juveniles tardíos (30 a 101 mm de ancho del cefalotórax) y los adultos a partir de la talla de primera madurez sexual, equivalente a 102 mm AC, (Pardo et al., 2009) no ha sido estudiada. Las hembras y los machos, en promedio, alcanzan el desarrollo completo de caracteres sexuales secundarios a 106 y 118 mm de ancho de caparazón (CW), respectivamente. El CW en el que el 50% de

las hembras y los machos tienen gónadas de aspecto adulto es de alrededor de 101 mm. El tamaño mínimo legal actual es de 120 mm CW, lo suficientemente alto como para fines de conservación. Sin embargo, es poco probable proporción de cangrejos de tamaño sub-legal en los desembarques (Pardo et al. 2009).

METODOLOGÍA DE TRABAJO GENERAL

Reunión de coordinación

En la séptima semana de iniciado el proyecto, se realizó la reunión de coordinación con profesionales del Fondo de Investigación Pesquera y Acuicultura, en la ciudad de Valparaíso. Durante el desarrollo del taller se presentó el enfoque, diseño de muestreo, metodología y antecedentes bibliográficos que sustentan su elección para cada uno de los objetivos. Se contó con la presencia de profesionales de la Subsecretaría de Pesca y Acuicultura. Las presentaciones fueron abiertas a discusión entre los participantes y se recogieron las observaciones y sugerencias de los asistentes. Ver Anexo 1 Acta de Reunión de Coordinación

Enfoque metodológico

La identificación de stock genéticos y/o unidades poblacionales es un campo interdisciplinario que encierra el reconocimiento de componentes (unidades) autosustentables dentro de las poblaciones naturales (especies) y representa un tema central en la ciencia y manejo pesquero. Representa un prerequisito para la evaluación de stock y el manejo pesquero. Su identificación tiene consecuencia en la confiabilidad de los resultados de la evaluación de stock y por tanto en la eficacia del manejo pesquero.

El objetivo general de este proyecto se alcanza integrando diferentes métodos en una aproximación multidisciplinaria. Este enfoque ha sido recomendado por Walkman (1999) y Begg and Waldman (1999) y representa "el estado del arte" para la identificación de unidades naturales tanto a nivel evolutivo como demográfico. Como ejemplo, este enfoque fue aplicado en el proyecto HOMSIR (Horse Mackerel Stock Identification Research) para resolver el problema de la estructura poblacional del jurel *Trachurus trachurus* en toda su distribución en el Atlántico Noreste y Mar Mediterráneo.

Este enfoque se considera hoy más adecuado que el enfoque tradicional de aplicación aislada de diferentes métodos e incluso de competencia y exclusión. Sin embargo cuando los resultados de diferentes métodos son visualizados en el contexto del aspecto preciso que abordan y son combinados, es posible lograr un resultado derivado de una perspectiva múltiple y por tanto más completa, que provee información más confiable para el manejo pesquero. De acuerdo con Begg and Waldman (1999) al sobreponer todos los resultados de un conjunto de técnicas permite elaborar un patrón generalizado y definitivo de la estructura evolutiva y demográfica de las poblaciones en conformidad con las necesidades del manejo pesquero.

Con el objeto de dar cumplimiento tanto al objetivo general como específicos de este proyecto, la presente propuesta se sustentó en tres pilares fundamentales:

• El adecuado conocimiento de la pesquería de la Jaiba Marmola como parte del programa de monitoreo de crustaceos bentónicos que realiza el Instituto de Fomento Pesquero, IFOP.

• La identificación de los puntos de muestreo y acciones de oportunidad con el objeto de asegurar la colecta de individuos y que esta sea coherente tanto con la distribución espacio-temporal del recurso como con aquellos niveles de agregación que sugieran unidades poblacionales discretas.

• El uso de técnicas y metodologías multidisciplinarias que son recurrentemente empleadas para la identificación de unidades poblacionales a niveles evolutivos y demográficos, a saber: (1) marcadores genéticos, y (2) morfometría corporal.

Para dar cumplimiento a los objetivos planteados se propuso y desarrollo esta primera actividad:

"Revisión exhaustiva de bases de datos de captura y esfuerzo pesquero de jaiba marmola para un diseño de muestreo espacial adecuado"

Las bases técnicas del proyecto solicitaron implementar un diseño de muestreo para la obtención individuos de jaiba marmola, el cual se sustenta en el análisis de la estructuración espacial de información pesquera, en función de datos de captura y esfuerzo. Para ello fue necesario recurrir a las bases de datos histórica para la pesquería de jaiba marmola en la X Región. Tales bases de datos históricos dicen relación con el monitoreo en la pesquería de jaibas, llevado a cabo por el Instituto de Fomento Pesquero (IFOP). Por este motivo se coordinó un taller de trabajo, el cual tuvo lugar en la Facultad de Ciencias Naturales y Oceanográficas, de la Universidad de Concepción, con fecha 8 de septiembre de 2017.

En este taller de trabajo se invitó al Sr. Andrés Olguín, investigador del IFOP, Biólogo Marino y Magister en Gestión de Recursos Acuáticos, quien expuso sobre el tema: "Programa de Seguimiento de las Principales Pesquerías Nacionales: Monitoreo de Recursos Bentónicos Explotados por Pescadores Artesanales con énfasis en la Pesquería de Jaiba". Durante este taller se trabajó en el ámbito de los objetivos del programa, cobertura geográfica de éste, especies consideradas, el tipo de información colectada, proceso de sistematización de la información recopilada, indicadores generados, y principales resultados históricos del programa (Figura 1).

Figura 1. Diapositiva de la presentación de Andrés Olguín, durante el taller "Monitoreo de recurso bentónicos explotados por pescadores artesanales con énfasis en la pesquería de jaibas"

Uno de los aspectos más relevantes del taller de trabajo, en cuanto a la pesquería de jaiba marmola, fue aquella relacionada sobre qué información era la adecuada de considerar para el análisis espacial de la captura y esfuerzo de pesca. De esta manera se identificó en conjunto con el Sr. Andrés Olguín las bases de datos más apropiadas, las cuales fueron solicitadas y traspasadas el 10 de octubre de 2017. La información fue solicitada mediante carta formal el día 24 de julio. Se agradece al Señor Andrés Olguín y al señor Carlos Montenegro, Jefe Departamento de Evaluación de Pesquerías del IFOP, por las gestiones y facilidades en la obtención de esta información (Figura 2).

Departamento Evaluación de Pesquerías Instituto de Fornento Pesquero

MEMORÁNDUM / DEP / IFOP / 2017 / 072

A	:	Sandra Ferrada Fuentes Jefe Proyecto FIPA 2017-67 Universidad de Concepción
De	:	Carlos Montenegro Silva Jefe Departamento Evaluación de Pesquerías
Materia	:	Respuesta carta solicitud información.
Fecha	1	Valparaíso, 16 de octubre de 2017.

Por intermedio de la presente sírvase encontrar adjunto archivos que contienen base de datos solicitada por la Institución que usted representa, relativa al recurso jaiba marmola en las regiones X y XI.

La información entregada cumple con la mayor parte de los requerimientos solicitados por esta institución en carta enviada a IFOP el día 24 de julio del año en curso, esto es información de:

- Proyecto Investigación Situación Pesquerías Bentónicas
- Proyecto Seguimiento de Pesquerías de Crustáceos Bentónicos

No se entrega información relativa a proyectos FIP, dado que no son de nuestra competencia, los cuales deben ser solicitados al FIPA.

Se entregan dos archivos: uno en formato ACCESS con las bases de datos de los proyectos mencionados anteriormente, recopilando la información para el periodo 2005 al 2016. El segundo archivo es un texto que explica cada una de las bases de datos entregadas y su contenido.

Ademas se entregan 9 archivos maestros que permiten vincular las bases de datos solicitadas.

Sin otro particular se despide atentamente,

C.C.:	Sr. Mauricio Galvez Sr. Andrés Olguín Archivo DEP
CMS	'mjf

FC-2/IT-2/P-7-5

Figura 2. Carta conductora de entrega de base de datos del programa de seguimiento de jaiba marmola en las regiones X y XI.

Características de las bases de datos para la pesquería de jaiba marmola

La base de datos proporcionada por IFOP consistió de 2 periodos. Un primer periodo comprendió aquella información colectada en el marco del Seguimiento de Pesquerías Bentónicas, años 2005 a 2011; mientras que un segundo periodo correspondió a datos recopilados en el marco del Seguimiento de Pesquerías de Crustáceos Bentónicos, X Región de Los Lagos y XI Región de Aysén, años 2012 a 2016.

La base de datos 2005 a 2011 contiene la información de 255.687 registros, entre la X y XI regiones, para diversas especies bentónicas, de los cuales, 312 registros correspondieron a jaiba marmola en la X Región, y 490 registros de jaiba marmola en la XI Región. A su vez, la base de datos 2012 a 2016 contiene información de 2.568 registros, entre la X y XI regiones, para diversas especies de crustáceos, de los cuales, 23 registros correspondieron a jaiba marmola en la X Región, y 266 registros de jaiba marmola en la XI Región.

Como se desprende de la Figura 3, la información de la pesquería de jaiba marmola desarrollada en la X Región, dice relación con aquella registrada en 4 puertos de desembarque durante el periodo 2005-2011 (San Rafael de Calbuco, Dalcahue, Quellón y La Vega de Calbuco), y en 3 puertos de desembarque durante en el periodo 2012-2016 (Ancud, Dalcahue y Tenaún). Todos los registros corresponden a operaciones de pesca que utilizaron trampas, siendo la información proporcionada por embarcaciones extractivas y de proveedores. Para el periodo 2005-2011 la información fue asociada a 26 procedencias, y en el periodo 2012-2016, a 12 procedencias. Una procedencia se refiere a una zona de pesca georreferenciada, en el cual se desplegó esfuerzo de pesca.

Figura 3. Esquema de la composición de las bases de datos en jaiba marmola, X Región.

Análisis para las bases de datos para la pesquería de jaiba marmola

El enfoque propuesto para el análisis de la estructuración espacial de la información sobre captura y esfuerzo de pesca, corresponde a la implementación de Modelos Lineales Generalizados (GLM), los

cuales son extensiones matemáticas de modelos lineales que permiten lidiar con la no-linealidad y con estructuras de varianza no constantes. Los GLM utilizan una función de enlace para establecer la relación entre la media de la variable respuesta y una función suavizada de la(s) variable(s) explicativa(s) (Guissan et al., 2002).

La notación general de un modelo lineal generalizado es:

$$y_{i} = \sum_{j} \beta_{j} X_{ij} + \varepsilon_{i}$$
$$\mu_{i} = E(Y_{i})$$
$$\eta_{i} = \sum_{j} \beta_{j} X_{ij}$$
$$\eta_{i} = g(\mu_{i})$$

Dónde: y_i es el vector de la variable respuesta; X_{ij} es la matriz de variables predictoras y covariables; β_i es el vector de parámetros; η_i es el vector del predictor lineal; μ_i son los valores ajustados; $g(\mu_i)$ es la función de enlace.

Seleccionado el set de modelos más apropiados, se procedió a la selección de los predictores que explicaran de mejor manera la variable respuesta, lo que se aborda mediante la optimización del modelo a través de la reducción de la Devianza (D²), donde la devianza nula corresponde a la devianza del modelo con sólo el intercepto, y la devianza residual es aquella no explicada por el modelo luego de haber incluido a todas las variables. También se probó la bondad del ajuste mediante el criterio de información de Akaike (AIC), el cual relaciona el número de parámetros (k) en el modelo estadístico, y el valor máximo de la función de verosimilitud para el modelo estimado (L) (Miller, 2010).

Requerimiento del análisis para las bases de datos de la pesquería de jaiba marmola

Debido a que el análisis de GLM se basa en la construcción de un modelo que evalúa la naturaleza de la CPUE georreferenciada, y en su exploración con otros factores, en este caso, temporales (año y mes), fue necesario considerar como válido sólo aquella información que dispusiera de 2 y más observaciones por área georreferenciada. Esta condición también fue necesaria en el caso de los factores año y mes. De esta forma, desde la información original compuesta por 335 observaciones, las restricciones disminuyeron la

información a 296 observaciones. Esta última base de datos comprendió información de captura y esfuerzo de pesca proveniente de 16 procedencias georreferenciadas (Tabla 1), 6 años (2006, 2008, 2009, 2010, 2011 y 2016), y 11 meses (excepto marzo). Las procedencias 9165, 9166 y 9703, no se encontraron codificadas con sus respectivos nombres y coordenadas en la base de datos histórica proporcionada por IFOP. Sin embargo, igualmente es utilizada en el análisis GLM.

Código IFOP	Nombre	Latitud	Longitud
8760	Rilán	42°32'30"	73°38'00"
9003	Bahía Ancud	41°51'56"	73°50'04"
9153	Llingua	42°26'10"	73°26'34"
9164	Curaco de Velez	42°26'16''	73°36'35"
9165	-	-	-
9166	Tenaún	42°20'00"	73°23'00"
9169	Ahoni	42°45'00"	73°33'00"
9172	Isla Alao	42°35'04''	73°16'44"
9196	Isla Lin-Lin	42°22'00"	73°26'00"
9205	Isla Quenac	42°28'11''	73°23'00"
9232	Isla Guapiquilan	43°25'59"	74°16'59"
9270	Canal Yelcho	43°12'07"	73°35'38"
9283	Achao	42°27'30"	73°29'00"
9703	-	-	-
9715	Estero Chauquiar	41°47'41"	73°04'19"
9717	Helvecia	41°46'00"	73°06'20''

Tabla 1. Procedencias georreferencias con CPUE (kg/trampa) de jaiba marmola, X Región.

RESULTADOS DE LA REVISION DE INFORMACIÓN PESQUERA PARA DISEÑO DE MUESTREO ESPACIAL DE JAIBA MARMOLA

Variación y distribución espacial de la CPUE

La CPUE mediana (kg/trampa) presentó una amplia variación para buena parte de las 16 procedencias analizadas (Tabla 1, Figura 4), con valores identificados como atípicos en las procedencias 8760 (Rilán) y 9283 (Achao). Se distingue un grupo de procedencias con CPUE mediana inferior a 20 kg/trampa (9003,

9166, 9270, 9715 y 9716), mientras que en el otro grupo de procedencias la CPUE mediana supera los 30 kg/trampa.

Figura 4. Mediana (línea horizontal), percentiles del 25% y 75% (caja rectangular), límites superior e inferior de 1,5 veces el rango intercuartílico (líneas verticales discontinuas), y valores atípicos (círculos), para la CPUE (kg/trampa) en función de la procedencia.

Figura 5. Mediana (línea horizontal), percentiles del 25% y 75% (caja rectangular), límites superior e inferior de 1,5 veces el rango intercuartílico (líneas verticales discontinuas), y valores atípicos (círculos), para la CPUE (kg/trampa) en función del año.

Figura 6. Mediana (línea horizontal), percentiles del 25% y 75% (caja rectangular), límites superior e inferior de 1,5 veces el rango intercuartílico (líneas verticales discontinuas), y valores atípicos (círculos), para la CPUE (kg/trampa) en función del mes.

La CPUE mediana (kg/trampa) también presentó una amplia variación en función del año (Figura 5) y mes (Figura 6) de captura. Los años 2006, 2008 y 2010, mostraron valores atípicos, con valores de CPUE cercanos a 10 kg/trampa para los años 2008 y 2016; mientras que en los otros años la CPUE varió entre 20 y 60 kg/trampa. Aquellos meses con valores atípicos en la CPUE fueron mayo y julio (Figura 6), con valores de CPUE mediana que fluctuaron entre 10 y 60 kg/trampa, en los meses de abril y mayo, respectivamente.

La CPUE varió entre 2,6 y 98,0 kg/trampa, para todas las 296 observaciones analizadas en 16 procedencias (e.g. zonas de pesca, Tabla 1) de la X Región, cuya distribución aproximadamente normal (Figura 7), fue sometida a prueba por medio de 2 aproximaciones.

Figura 7. Distribución de frecuencia de la CPUE (kg/trampa) en la pesquería de jaiba marmola, X Región.

Mientras la prueba de la prueba de normalidad de Shapiro-Wilk calculó un valor del estadístico W = 0,98413 (valor-p = 0,002327), lo que significa evidencia significativa en contra de la hipótesis de normalidad en los datos de CPUE; el test de Kolmogorov-Smirnov con la corrección de Lillierfors calculó un valor del estadístico D = 0,048271 (valor-p = 0,09283), lo que implica la falta de evidencia contra la hipótesis de normalidad para los mismos datos de CPUE. El test de Kolmogorov-Smirnov con la corrección de Lillierfors presenta ventajas comparativas respecto al test de Shapiro-Wilk, especialmente en el caso de muestras compuestas, y cuando la media muestral y la varianza muestral, no proporcionan necesariamente el mejor ajuste para la distribución empírica de los datos (Drezner et al., 2010; Razali & Wah, 2011). Por tanto, bajo los resultados del test de Kolmogorov-Smirnov modificado, se determinó que los datos de CPUE cumplen con el supuesto de normalidad.

En la implementación del modelo lineal generalizado, la pendiente de la relación promedio-varianza a los datos de CPUE (kg/trampa) fue altamente significativo (valor-p < 0,001) (Tabla 2). El coeficiente de determinación de esta relación alcanzó un valor de R² = 0,59 (Figura 8). El valor de la pendiente de la
relación promedio-varianza fue cercano a 2, lo que indica que la distribución de la CPUE logaritmizada sigue una función de probabilidades tipo gamma, con lo cual se puede comenzar a implementar el GLM con la opción "family = Gamma".

Tabla 2. Resumen de la relación promedio-varianza a los datos de CPUE (kg/trampa) provenientes de la pesquería de jaiba marmola X Región.

Coeficiente	Estimado	Error Estándar	t	Valor-p
Intercepto	-2,2112	1,4949	-1,479	0,1612
Log(CPUE)	2,0479	0,4316	4,744	0,0003 ***

El modelo nulo ajustado considera el efecto de la procedencia (i.e. zona de pesca) sobre la CPUE (kg/trampa), mediante la expresión:

glm (formula = CPUE ~ as.factor(PRO_CAP), family = Gamma(link = inverse), data = MX) Dónde: PRO_CAP, corresponde al factor procedencia (Tabla 1).

Figura 8. Relación promedio-varianza en los datos de CPUE (kg/trampa) para la pesquería artesanal de jaiba marmola X Región.

El modelo nulo ajustado presentó una devianza nula = 110,932, una devianza residual = 61,412, y un valor de AIC = 2523,9. De esta forma la varianza explicada por el modelo correspondió al 44,6%.

Las procedencias cuyo efecto fue más significativo correspondieron a: 9003 (Bahía Ancud), 9166 (sin identificar), 9270 (Canal Yelcho), 9283 (Achao), 9715 (Estero Chauquiar) y 9717 (Helvecia) (Tabla 3).

El gráfico de residuos frente a valores pronosticados mostró que los residuos presentaron una tendencia en torno a la media (Figura 9, superior izquierda), lo que refleja cumplimiento de la condición de independencia de los errores. Los errores se distribuyen de manera aproximadamente estrecha a la línea de tendencia central (Figura 9, superior derecha), lo que indica que los errores se distribuyen normalmente. La desviación estándar de los residuos en escala raíz cuadrada también ratifican la independencia de los errores (Figura 9, inferior izquierda).

Tabla 3. Resumen del GLM (procedencia) aplicado a los datos de CPUE (kg/trampa) provenientes de la pesquería de jaiba marmola X Región.

Coeficiente	Estimado	Error Estándar	t	Valor-p
Intercepto	0,02115	0,00080	26,587	2 x 10-16 ***
Factor 9003	0,08810	0,01640	5,375	1,6 x 10-7 ***
Factor 9153	-0,00109	0,00292	-0,418	0,676
Factor 9164	-0,00161	0,00198	-0,553	0,581
Factor 9165	0,00161	0,00247	0,653	0,515
Factor 9166	0,05229	0,01394	3,750	2 x 10-4 ***
Factor 9169	0,00173	0,00352	0,493	0,623
Factor 9172	-0,00519	0,00399	-1,303	0,194
Factor 9196	-0.004780	0,00497	-0,962	0,337
Factor 9205	-0,00236	0,00467	-0,505	0,614
Factor 9232	0,00186	0,00569	0,327	0,744
Factor 9270	0,04001	0,01499	2,670	0,008 **
Factor 9283	0,00357	0,00177	2,021	0,044 *
Factor 9703	0,00300	0,00206	1,456	0,147
Factor 9712	0,13540	0,02100	6,448	5 x 10-10 ***
Factor 9717	0,14249	0,04005	3,557	4 x 10-4 ***

El modelo conjunto ajustado considera el efecto de la procedencia (i.e. zona de pesca) y el año de pesca sobre la CPUE (kg/trampa), mediante la expresión:

 $glm(formula = CPUE \sim PRO_CAP + as.factor(ANO_CAP), family = Gamma(link = inverse), data = MX)$

Donde: AÑO_CAP, corresponde al efecto año sobre la CPUE.

El modelo conjunto ajustado presentó una devianza nula = 110,932, una devianza residual = 81,885, y un valor de AIC = 2594,4. De esta forma la varianza explicada por el modelo correspondió al 26,2%. Los años cuyo efecto fue más significativo correspondieron a 2008 y 2016 (Tabla 4).

Figura 9. Estadísticos del Modelo Lineal Generalizado (GLM) para el efecto procedencia (i.e. zona de pesca).

En el caso del modelo conjunto que considera el efecto de la procedencia (i.e. zona de pesca) y el mes de pesca sobre la CPUE (kg/trampa), la expresión fue la siguiente:

glm(formula = CPUE ~ PRO_CAP + as.factor(MES_CAP), family = Gamma(link = inverse), data = MX)

Donde: MES_CAP, corresponde al efecto mes sobre la CPUE.

El modelo conjunto ajustado presentó una devianza nula = 110,932, una devianza residual = 98,228, y un valor de AIC = 2661. De esta forma la varianza explicada por el modelo correspondió al 11,5%. Los meses cuyo efecto fue más significativo correspondieron a: abril, julio y noviembre (Tabla 5).

Tabla 4. Resumen del GLM (procedencia y año) aplicado a los datos de CPUE (kg/trampa) provenientes de la pesquería de jaiba marmola X Región.

Coeficiente	Estimado	Error Estándar	t	Valor-p
Intercepto	-2,327 x 10 ⁻²	2,041 x 10 ⁻²	-1,140	0,255
Procedencia	5,825 x 10 ⁻⁶	2, 096 x 10 ⁻⁶	2,780	5,8 x 10-3 **
Factor 2008	9,432 x 10 ⁻²	2,739 x 10 ⁻²	3,444	6,6 x 10-4 ***
Factor 2009	4,5 76 x 10 ⁻³	7,150 x 10 ⁻³	0,640	0,523
Factor 2010	-6,859 x 10 ⁻³	6,464 x 10 ⁻³	-1,061	0,290
Factor 2011	-1,055 x 10-2	6,618 x 10-2	-1,595	0,112
Factor 2016	8,008 x 10 ⁻²	1,919 x 10-2	4,172	4,0 x 10 ⁻⁵ ***

Tabla 5. Resumen del GLM (procedencia y mes) aplicado a los datos de CPUE (kg/trampa) provenientes de la pesquería de jaiba marmola X Región.

Coeficiente	Estimado	Error Estándar	t	Valor-p
Intercepto	-3,604 x 10-2	2,222 x 10 ⁻²	-1,622	0,106
Procedencia	6,313 x 10-6	2,464 x 10 ⁻⁶	2,562	0,011 *
Factor 2	6,662 x 10-4	3,059 x 10-3	0,218	0,828
Factor 4	2,068 x 10-2	6,647 x 10 ⁻³	3,112	0,002 ***
Factor 5	-3,099 x 10 ⁻³	4,400 x 10 ⁻³	-0,704	0,482
Factor 6	-9,658 x 10-4	3, 678 x 10 ⁻³	-0,263	0,793
Factor 7	1,041 x 10-2	4,255 x 10 ⁻³	2,447	0,015 *
Factor 8	3,625 x 10-4	2,874 x 10 ⁻³	0,126	0,900
Factor 9	5,323 x 10-3	2,743 x 10 ⁻³	1,941	0,053
Factor 10	2,1 82 x 10 ⁻³	2,665 x 10 ⁻³	0,819	0,414
Factor 11	6,109 x 10-3	2,394 x 10-3	2,551	0,011 *
Factor 12	-7,797 x 10-4	2,2 90 x 10 ⁻³	-0,340	0,734

Tabla 6. Comparación en la bondad de ajuste entre modelos.

Modelo	gl	Devianza Residual	AIC
Procedencia	280	61,412	2.523,9
Procedencia – Año	289	81,885	2.594,4
Procedencia – Mes	284	98,228	2.661,0

Finalmente, el modelo más explicativo correspondió al modelo nulo, esto es, aquel que sólo consideró el efecto de la procedencia (i.e. zona de pesca) sobre la CPUE. El modelo nulo presentó la menor devianza residual y el menor valor de AIC (Tabla 6).

Estructuración espacial de la CPUE

El GLM construido para evaluar el efecto de la procedencia (i.e. zona de pesca) sobre la CPUE (kg/trampa), logró determinar estructuración espacial en la CPUE. La Figura 10 expone gráficamente la estructuración espacial de la CPUE determinada por el GLM nulo. Llevada esta estructuración a coordenadas geográficas, se observan tres principales macrozonas (Figura 11).

Figura 10. Termplot function para mostrar gráficamente el efecto de la procedencia (i.e. zona de pesca) sobre la estructuración espacial de la CPUE (kg/trampa) en jaiba marmola.

Figura 11. Macrozonación de la CPUE (kg/trampa) en la pesquería artesanal de jaiba marmola desarrollada en aguas de la X Región.

Se distingue una zona norte en torno a Bahía Ancud y Calbuco, una zona central extendida entre Isla Lin-Lin y el sector de Ahoni, y una zona sur en las inmediaciones de Canal Yelcho (Figura 11).

La información histórica registrada en el marco del Programa de Seguimiento de las Principales Pesquerías Bentónicas, con énfasis en la pesquería artesanal de jaiba marmola, permitió la implementación de un Modelo Lineal Generalizado (GLM), a partir del cual fue posible evidenciar estructuración espacial en la CPUE (kg/trampa), para la zona de aguas interiores de la X Región.

Debido a que el levantamiento de información sobre captura y esfuerzo de pesca en esta pesquería artesanal, no está diseñado para analizar los cambios espaciales en la CPUE, la aplicación de modelos de regresión lineal múltiple, obliga a prescindir de una proporción de la información registrada en tales programas de seguimiento. Lo anterior se tradujo en no poder utilizar los datos de varias procedencias (i.e. zonas de pesca), años, y meses.

La estructuración espacial de la CPUE guarda bastante relación con los polígonos de pesca definidos por Molinet et al. (2007) (Figura 12), según los cuales se identificaba 3 polígonos importantes para jaiba marmola en aguas de la X Región: Ancud (2), Dalcahue (4), y Quellón (5). Según los resultados obtenidos con la información de seguimiento, el polígono asociado a Dalcahue exhibe los mayores valores de CPUE, cuya mediana varió entre 35 y 70 kg/trampa. En el polígono asociado al sector de Ancud, la CPUE mediana presentó valores en torno a los 10 kg/trampas; mientras que en el polígono que engloba al sector sur de Quellón, la CPUE mediana es cercana a 20 kg/trampa.

Al interior de polígono del sector Dalcahue, la zona de pesca Achao exhibió diferencias significativas con las otras procedencias de esa macrozona, a pesar de que la CPUE no fue marcadamente diferente. Tal diferencia significativa puede guardar relación con la mayor variabilidad de la CPUE en Achao, la cual se manifestó por un alto número de observaciones atípicas. A su vez, la procedencia Isla Guaipiquilan mostró valore de CPUE similares al polígono Dalcahue, lo que podría indicar estructuración espacial de la CPUE a una escala menor.

Finalmente, el diseño de muestreo propuesto e implementado para la colecta de muestras de jaiba marmola, se correspondió con la estructuración espacial evidenciada en el presente análisis, la cual, adicionalmente, fue validada y apoyada por los representantes de la pesca artesanal que dirige esfuerzo de pesca a la captura de jaiba marmola en aguas de la X Región.

Tal diseño (Figura 13) de muestreo fue expuesto y discutido en el taller de trabajo con el señor Andrés Olguín de IFOP, realizado en la Facultad de Ciencias Naturales y Oceanográficas, de la Universidad de Concepción, con fecha 8 de septiembre de 2017. Este diseño de muestreo espacial fue presentado con posterioridad el jueves 28 de septiembre, en la 8° sesión del Comité de Manejo de Crustáceos bentónicos, Provincia de Chiloé en Dalcahue, junto a representantes del Comité, representantes de la Dirección Zonal de la Subsecretaría de Pesca y Acuicultura, la Gobernación marítima de Castro, y representantes del Servicio Nacional de pesca y Acuicultura de la X Región de Los Lagos.

Figura 12. Polígonos de pesca para recursos bentónicos definidos por el proyecto FIP 2005-51 "Diagnóstico biológico-pesquero para recursos pesqueros bentónicos de la zona contigua, X y XI región" (Molinet et al., 2007).

Figura 13. Diseño de muestreo propuesto para la colecta de muestras de jaiba marmola en aguas interiores de la X Región, y regiones contiguas (XIV y XI).

Los nombres que se indican en la Figura 13 corresponden a los puertos de desembarques y zonas identificados como importantes a incluir en el muestreo. Las localidades de muestreo finalmente ejecutadas estuvieron sujetas a la gestión con los pescadores, condiciones del clima, y disponibilidad del recurso en el momento del muestreo.

Objetico Específico 2.1 "Caracterizar las unidades poblacionales de Jaiba Marmola de la X Región e interpretar patrones de estructuración genética a la luz de variación y gradientes morfológicos latitudinales documentados previamente" y **Objetivo Específico 2.2** "Identificar y definir los límites geográficos de las unidades poblacionales de jaiba marmola en la X Región".

Antecedentes genéticos

Uno de los principales objetivos de la evaluación y manejo de las poblaciones explotadas es la identificación y conectividad entre unidades poblacionales o stock genéticos afectas por extracción pesquera, ya que estas son la unidad básica sobre la cual reconocen otras unidades ecológicamente relevantes donde se sostienen las evaluaciones y las medidas de ordenamiento. Este concepto de stock genético, se refiere a una población que evolucionó independientemente de otras y que por lo tanto acumuló diferencias genéticas con respecto a ellas (Spanakis et al., 1989). La estimación del grado de conectividad a través del rango de distribución de especies comercialmente importantes o que se encuentran amenazadas, ha tenido gran interés, pues para un manejo efectivo de estos recursos es requisito el conocimiento de los patrones de estructuración temporal y espacial de las especies a través de su distribución geográfica. Desde una perspectiva genética entre poblaciones, a partir de evidencia directa del genoma (i.e marcadores moleculares), lo que refleja el balance entre los procesos potencialmente diversificadores de la deriva génica y la selección, versus, el efecto homogenizador del flujo génico.

Dentro de la batería de marcadores moleculares disponibles para análisis genéticos, los SNPs (conocidos por su acrónico en inglés SNP (Single-nucleotide polymorphism) son muy utilizados con fines de estudios microevolutivos, a nivel poblacional (Seeb et al. 2011). Los marcadores SNPs se definen como un cambio único de una base en una secuencia de ADN con una alternativa usual de dos nucleótidos posibles en una posición dada (Vignal et al., 2002). Estos pueden utilizarse para diversas aplicaciones tales como la construcción de mapas genéticos de alta resolución, rasgos de mapeo, diagnósticos genéticos, análisis de estructura genética en poblaciones, análisis filogenético, etc (Rafalski, 2002). Una ventaja importante de los SNPs es su abundancia en el genoma, ya que se pueden obtener miles o millones de estos polimorfismos por secuencia disponibles para ser analizados (Jorde, 2000). Además este marcador molecular posee bajas tasas de error y de mutación (Morin et al. 2004), mayor automatización en el proceso de toma de muestra (Olsen et al. 2011), y permiten la caracterización de loci afectados por selección neutral y estimar la divergencia adaptativa a una mayor escala que otros marcadores (Everett et al. 2011).

El uso de marcadores moleculares tipo SNPs en el género *Cancer* y *Metacarcinus* son escasos (publicados en revistas de corriente principal). El trabajo más destacado es en *Cancer maenas*, donde utilizan 9137 loci SNPs desarrollados por RADseq, los cuales revelan divergencia genética entre 11 localidades de estudio, divergencia asociada con patrones de colonización en el Atlántico noreste (Jeffery et al, 2017). Los estimados de Fst reportados promedian valores de 0,052, con el 52% de los loci con valores de Fst> 0,05, y significativos.

Para *Metacarcinus edwardsii* (sinónimo de *Cancer edwardsii* Bell, 1835) restringida es la información genética disponible, no habiendo disponibles loci SNPs desarrollados. Destaca el aporte realizado por Rojas-Hernadez et al., (2016) donde analizan 8 loci microsatélites en 6 localidades distribuidas entre Concepción y Puerto Montt, reportando estimados de Fst no mayores a 0,005, con patrones no significativos de divergencia genética. Los autores infieren que esta homogeneidad genética podría ser explicada por la alta fecundidad de esta especie, la alta dispersión larval, y la baja varianza reproductiva debido a su modelo de reproducción y la existencia del receptáculo seminal.

Como evidencia genética a utilizar para contrastar las hipótesis planteadas de patrones de divergencia genética se desarrollaron y seleccionaron marcadores moleculares de polimorfismo de único nucleótido, SNPs. De manera complementaria, se incorporó el análisis de un marcador molecular mitocondrial, específicamente un fragmento de ADN de la Citocromo Oxidasa I.

IMPLEMENTACIÓN Y EJECUCION DE PLAN DE MUESTREO DE JAIBA MARMOLA

Al momento de la entrega de este informe final, se ha ejecutado la totalidad del plan de muestreo propuesto a partir de la información pesquera levantada y analizada. Destacando que el comienzo administrativo del presente proyecto es el 22 de junio de 2017, coincidiendo con el comienzo de la estación invernal. Es así que debido al mal tiempo, en particular en la X y XI región, los eventos de muestreo se fueron desplazando ante la negativa de los pescadores artesanales contactados a salir a faenar, hasta el mes de septiembre ya entrando a la primavera (Tabla 8).

Finalmente la ejecución incluyo 30 eventos de muestreo, provenientes de 11 localidades distribuidas desde la VIII a la XI región (Tabla 7) (Figura 14). La X región incluyo siete localidades, habiéndose propuesto seis localidades, con 15 eventos de muestreo, con un total de 246 muestras. Se destaca que se incluyó la localidad de Quellón en el muestreo, con la finalidad de mejorar la cobertura espacial en la isla de Chiloé. Sólo las localidades de Encolma e Isla Guapi Quilan presentan 20 ejemplares cada una, esto debido a la dificultad de acceder a estas zonas que están ubicadas dentro del Parque privado de Tantauco. Sin embargo ambas

muestras son buenos representantes de los ejemplares capturados al sur de la Isla de Chiloé por la flota artesanal que se dedica al recurso jaiba marmola.

En el caso de la XI región se incluyeron tres localidades que tienen como puerto de desembarque a Puerto Aguirre con 9 eventos de muestreo, y con una totalidad de 167 muestras, sobrepasando los 90 ejemplares propuestos a muestrear en el plan de muestreo original. Cabe destacar nuevamente que el retraso en la ejecución de este muestreo se debe a las contigencias del trabajo en terreno, con una actividad que es dinámica y que se mueve de acuerdo a la disponibilidad el recurso, al precio de venta del recurso, y al acceso a las zonas de pesca debido a las características del clima de la región. Un aspecto muy importante a considerar es que la mayoría de las capturas de jaiba marmola realizadas en la XI región, se desembarcan en la X región, esto causado principalmente por el hecho que la única planta de proceso de jaiba de la XI región, no se encuentra operativa en su totalidad, y la fracción operante está destinada al procesamiento de Centolla. Esto sumado a que operativamente es más seguro y de fácil navegación para los pescadores que trabajan el recurso de la XI región, llegar a la X región que visitar los fiordos y canales de Aysén. A pesar de estos aspectos se realizaron varios intentos por ejecutar los muestreos antes de la fecha de entrega de la región de Aysén. La ejecución del muestreo en la XI región se consiguió a fines del mes de diciembre e inicios del mes de enero, tal como se indica en la Tabla 8. Se espera estos aspectos sean considerados en el futuro por los evaluadores.

En la XIV región se ejecutó el muestreo en una localidad con un evento de muestreo, con una totalidad de 55 muestras, sobrepasando las 30 muestras comprometidas. La propuesta original del plan de muestreo de estas tres regiones, comprometía 300 muestras, pero con la finalidad de contar con suficientes muestras que presentaran ADN de calidad y cantidad adecuada para el desarrollo de los marcadores SNPs se muestrearon 460 muestras.

Entiendo que la especie se distribuye geográficamente más allá de la XIV región, se realizó un esfuerzo por incorporar localidades de la VIII región, sumándose 117 ejemplares de Punta Lavapie, y 74 ejemplares de Laraquete. Se muestreo un total de 659 ejemplares, sobrepasando en un 100% los 300 propuestos, y mejorando sustancialmente la cobertura geográfica del plan de muestreo inicial. Se destaca la buena disposición de pescadores artesanales de todas las regiones muestreadas, ante las coordinaciones de los eventos de muestreo, la disposición a aceptar un muestreador a bordo, y facilitar la información de sus embarcaciones y zonas de pesca más relevantes.

Se agradece particularmente a pescadores de la región del Biobio, pescadores de la región de Los Ríos, a través de Pesca en Linea, y FIPASUR. Así como pescadores de la región de Los Lagos, a través del Comité de Manejo Crustáceos Bentónicos Provincia de Chiloé, por facilitar y apoyar en los eventos de muestreo. En la región de Aysén se contó con el apoyo del Centro de Investigación en Ecosistemas de la Patagonia para fines de muestreo en laboratorio.

Al mes de enero de 2018 se finalizó con el muestreo en terreno, contando con 659 ejemplares de jaiba marmola para fines del análisis genético y morfométrico (Figura 15).

Pasos del proceso de muestreo en laboratorio de jaiba marmola

Obtención de medidas morfológicas

Previo al inicio del proceso de muestreo de cada ejemplar, los individuos fueron separados por localidad, y entre machos y hembras. Empleando un vernier se tomaron las siguientes medidas: Para machos, se tomaron el ancho y largo de cefalotórax, alto, largo y grosor de la quela derecha, y peso total. Para hembras las mismas medidas excepto el alto de quela y se agregó el ancho del abdomen (Tabla 9) (Figura 16). A cada individuo se le asignó un código, el que fue empleado para todos los siguientes pasos del muestreo, y del análisis.

Obtención de datos para morfometría geométrica

Para analizar los cambios en forma y tamaño de los individuos empleando morfometría geométrica, se registraron imágenes digitales de la región dorsal del cefalotórax de cada individuo muestreado, 659 en total, empleando una cámara Canon Rebel T5, de 18 megapixeles, considerando que análisis de este tipo requieren fotos de alta calidad. Cada fotografía contiene el código de la muestra, y una escala de tamaño (Figura 15). Todos los cefalotórax han sido limpiados y guardados en la eventualidad que se tenga que repetir algunas fotografías (data biológica del muestreo disponible en CD-FIPA).

Obtención de tejido para DNA

Para la extracción de DNA, inicialmente se probaron extracciones desde diferentes tipos de tejidos: hemolinfa, pleópodos, tejido de la musculatura abdominal, branquias y musculo del primer pleópodo, entre otros, resultando en un mayor éxito para extracción de DNA, el tejido obtenido desde branquias (Figura 18) y dactilopodito (Figura 17). Para esto, se separó el abdomen del cefalotórax, quedando expuestas las branquias, las cuales fueron extraídas y depositadas en placas petris, y lavadas repetidas veces con agua destilada, hasta su total limpieza. Luego fueron secadas con papel toalla, y preservadas en alcohol absoluto. El tejido del dactilopodito se extrajo rompiendo la quela, limpiando los restos de exosqueleto y preservando el tejido resultante en alcohol absoluto.

Obtención de molinillo gástrico y pedúnculo ocular

Para la extracción del molinillo gástrico, que se encuentra a la altura del lóbulo mesogástrico, se procede a retirar todo el tejido circundante, y retirar suavemente la cámara cardiaca, cuidando de no recortar los osiculos que componen el molinillo, limpiando con agua destilada, y se preservo en una mezcla de glicerol, agua destilada y alcohol, para su posterior observación.

Región	Localidad	Lat	Long
VIII	Punta Lavapie 1	-37,1224	-73,5598833
VIII	Punta Lavapie 2	-37,119444	-73,596667
VIII	Punta Lavapie 3	-37,085556	-73,551389
VIII	Laraquete 1	-37,154722	-73,185
VIII	Laraquete 2	-37,156111	-73,188889
XIV	Loncoyen 1	-39,8	-73,41
Х	Caulin 1	-41,803333	-73,620278
X	Caulin 2	-41,804722	-73,624722
Х	Caulin 3	-41,8	-73,630278
Х	Bahia Ancud 1	-41,83828	-73,8375
X	Bahia Ancud 2	-41,84572	-73,83051
Х	Bahia Ancud 3	-41,84341	-73,85816
Х	Bahia Ancud 4	-41,84773	-73,84448
Х	Dalcahue 1	-42,52	-73,55
Х	Rilán 1	-42,5789833	-73,6527167
Х	Yelcho 1	-43,23921	-73,56692
Х	Yelcho 2	-43,23796	-73,55738
Х	Yelcho 3	-43,22828	-73,51857
Х	Yelcho 4	-43,21963	-73,51742
Х	Encolma 1	-43,53	-74,06
Х	Isla Guapi Quilan 1	-43,43	-74,28
XI	Puerto Aysén 1	-45,195758	-73,315033
XI	Puerto Aysén 2	-45,195183	-73,312386
XI	Puerto Aysén 3	-45,193878	-73,310908
XI	Puerto Aysén 4	-45,389944	-73,778444
XI	Puerto Aysén 5	-45,392619	-73,780928
XI	Puerto Aysén 6	-45,394914	-73,782156
XI	Puerto Aysén 7	-45,640658	-73,585397
XI	Puerto Aysén 8	-45,64025	-73,586836
XI	Puerto Aysén 9	-45,639814	-73,588411

Tabla 7. Eventos de muestreos realizados como parte del proyecto FIPA N°2017-67.

Localidad (código)	Fecha	Línea	Nº Muestras
	04-09-2017	1	23
Punta Lavapie (PL)	19-11-2017	2	20
	25-11-2017	3	74
Laraquete (LA)	10-12-2017	1	16
Laraquete (LA)	15-12-2017	2	58
Loncoyen (LO)	23-09-2017	1	55
		1	20
Caulin (CA)	10-11-2017	2	11
		3	12
		1	8
Babia Apcud (BA)	09 11 2017	2	19
Dama Ancue (DA)	09-11-2017	3	10
		4	3
Dalcahue (DA)	11-09-2017	1	40
Rilán (RI)	12-09-2017	1	41
		1	22
Velcho (VE)	20-10-2017	2	10
	20-10-2017	3	5
		4	5
Encolma (EN)	12-10-2017	1	20
Isla Guapi Quilan (GQ)	12-10-2017	1	20
		1	14
	27-12-2017	2	20
		3	14
		4	20
Puerto Aysén (AY)	01-01-2018	5	16
		6	23
		7	19
	01-01-2018	8	25
		9	16
Total			659

Tabla 8. Detalles de muestreos realizados como parte del proyecto FIPA N°2017-67

Figura 14. Distribución geográfica de las localidades de muestreo de Jaiba Marmola del proyecto FIPA N°2017-67.

Figura 15. Ejemplar de Jaiba Marmola proveniente de Loncoyan, Valdivia, en posición dorsal para registro fotográfico.

Figura 16. Toma de medidas corporales en ejemplares de Jaiba Marmola.

Figura 17. Pereiópodos de Jaiba Marmola ordenamos para el muestreo de tejido muscular.

Figura 18. Muestras de branquias extraídas desde ejemplares de Jaiba Marmola.

Tabla 9. Detalle de la información recolectada de cada ejemplar de jaiba marmola muestreado.

ID
Localidad
Embarcación
Fecha
Lance
Latitud
Longitud
Sexo
LC ancho
LC largo
Alto quela (macho)
Ancho abdomen (Hembras) (cm)
Largo quela (cm)
Grosor quela (cm)
Foto
Peso Total (g)
Cuantificación ng/ul
Tejido de branquias (lavadas en agua destilada)
Tejido muscular de pereiópodos (quela)
Molinillo gástrico
Mandíbula
Pedúnculo Ocular

Protocolo de Muestreo de tejido para Análisis ADN

Un paso importante para el éxito del análisis a nivel de ADN, independiente del marcador molecular a utilizar, es considerar los cuidados de la toma de la muestra, provenga esta del ambiente, como muestras de fecas, contenido estomacal, tapetes bacterianos o que provengan de un espécimen en particular, como muestras de sangre, pelos, tejido, otolitos, escamas.

Es por esta razón que a continuación entregamos la guía que se utilizó por los muestreadores en terreno y en laboratorio con fines de análisis de ADN, y asi asegurar el éxito del desarrollo de los marcadores moleculares SNPs propuestos.

Disectar de cada ejemplar de Jaiba Marmola, un trozo de tejido de 1x1x1 cm, es preferente que el tejido provenga de la musculatura, sin piel/caparazón, ni restos de fluidos, se prioriza tomar musculatura desde los

apéndices pereiópodos o quelípedos. El trozo disectado debe depositarse en un tubo de transporte de 10 ml que contenga Alcohol Etílico Puro (96%) para análisis (no técnico), enrasar el tubo a 9 ml antes de agregar la muestra. La relación volumen muestra/volumen alcohol en el tubo es de 1:9. El tejido debe quedar flotando en el tubo, para este fin si es necesario, seccionar en pequeños trozos el tejido muestreado. **Importante**; la toma de tejido para análisis genético debe realizarse posterior a la toma de la fotografía para el análisis morfométrico.

Para la disección del tejido se debe usar un bisturí nuevo y/o estéril para cada animal, (esto evita la contaminación cruzada entre individuos que puede llevar a errores en los resultados). Para este efecto cambiar la hoja del bisturí entre ejemplar y/o bien flamear en alcohol la hoja del bisturí. Las Pinzas a utilizar deben ser lisas (pinzas con dientes pueden contener tejido entre ellos de muestra en muestra, lo que podría contaminarlas).

Luego de depositar el tejido en el tubo de transporte, colocar en un interior un trozo de papel diamante con el código de la muestra escrito con lápiz mina, NO utilizar lápiz pasta o de otra material (el alcohol se encarga de borrar el rotulo además de contaminar la muestra con colorantes). Para finalizar cerrar el tubo y sellar con un trozo de parafilm.

METODOLOGÍA

Procedimiento para la extracción de ADN genómico desde ejemplares de Jaiba Marmola

Los individuos colectados en terreno fueron transportados al Laboratorio de Genética y Acuicultura de la Universidad de Concepción, en donde se registraron variadas medidas biológicas como talla, peso, sexo, así como fotografías para el análisis de morfometría geométrica. Mayores detalles de la toma de estas medidas en las secciones correspondientes.

Se realizaron extracciones de ADN genómico a 450 ejemplares de jaiba marmola siguiendo finalmente el siguiente protocolo:

Extracción de ADN con kit comercial "Nucleo Spin®" (Macherey-Nagel) (con modificaciones)

1. Preparar la muestra: 20 mg de tejido (branquia y musculatura de quelipodos), en un tubo de micro centrifuga 1,5 ml

2. Agregar 80 µl de PBS: (phosphate buffered saline)

3. Pre-lisis de muestras: Agregar 180 µl Buffer T1, triturar la muestra con mortero, agregar nuevamente 180 µl Buffer T1. Devolver muestras triturada al tubo de 1,5 ml.

Figura 19. Muestra de branquia de jaiba marmola en la primera etapa de la extracción siendo triturada en un mortero.

4. Agregar 25 µl Proteinasa K (INVITROGEN), agitar y mezclar.

5. Incubar a 56°C por 3 horas.

6. Lisis de la muestra: Agitar las muestras antes de añadir 200 μl de buffer B3 y 1.5 μl de RNase Solution 4mg/ml (Promega). Incubar a 70°C por 30 minutos.

7. Centrifugar por 5 minutos a 11.000 rpm

8. Transferir el sobrenadante a un tubo nuevo de 1,5ml. Agregar Ajustes de ADN, condiciones de unión: Añadir 210 μl de etanol (96-100%) a la muestra y agitar vigorosamente.

9. Incubar a -20°C por una hora o más

10. Enlazar ADN: Para cada muestra colocar una columna NucleoSpinTissue en un tubo de recogida, aplique la muestra en la columna. Centrifugar durante 2 minuto a 11.000 rcf (*g). Descartar el flujo a través de la columna y colocar un nuevo tubo de colección.

11. Si la muestra no se extrae completamente a través de la matriz, repetir el paso de centrifugación a 11.000 rcf (*g). Deseche el flujo.

12. Lavar la membrana de sílice:

13. Primer lavado: Añadir 500 µl Buffer BW, Centrifugar por 2 minuto a 11.000 rcf (*g). Deseche el flujo y coloque un nuevo tubo de colección.

14. Segundo lavado: Añadir 600 μl de Buffer B5 a la columna y centrifugar por 2 minuto a 11.000 rcf (*g). Deseche el flujo a través de la columna y coloque un nuevo tubo de colección.

15. Secar la membrana de sílice: Centrifugar la columna durante 2 minuto a 11.000 rcf (*g).

16. En esta etapa es removido el etanol residual.

17. Eluir el ADN de alta pureza: coloque la columna NucleoSpinTissue en un tubo de microcentrifuga de 1,5 ml. Y añada 50 μl de Buffer BE precalentado (70°C), incubar a temperatura ambiente por 3 minutos. Centrifugar por 2 minuto a 11.000 rcf (*g).

Cuantificaciones de extracciones de ADN genómico

Se determinó la calidad y cantidad de ADN extraído utilizando un espectrofotómetro NanoDrop, el cual registra la absorbancia a 230 nm (hidratos de carbono, péptidos, fenoles y combinaciones aromáticas), 260 nm (ADN), 280 nm (proteínas y fenol) y 320 nm (turbidez) de las muestras seleccionadas. Además nos entregó la razón de absorbancias A260/280 y A260/230, para determinar la pureza de las extracciones de ADN.

Las cuantificaciones de ADN genómico sólo se realizaron sobre los extractos que arrojaron ADN de alto peso molecular y no degradado en los geles de agarosa (*ver sección resultados* Figura 25). La selección de los 285 ejemplares para las librerías genómicas RADseq se realizó en base al ADN de alto peso molecular, y una concentración mayor a 20 ng/ul de ADN en extractos de 50 ul (*ver sección resultados* Tabla 11).

Corroboración de la especie de los ejemplares en estudio de Jaiba Marmola utilizando ADN barcoding (COI)

Para la corroboración de la especie *Metacarcinus edwardsii* de los ejemplares en estudio, se procedió aislar y amplificar mediante PCR la región del ADN mitocondrial COI (o Citocromo Oxidasa I) del genoma mitocondrial. La amplificación mediante la reacción en cadena de la polimerasa del gel COI de aproximadamente 700 pares de bases se utilizaron los partidores LCO 1490 (5' -GGT CAA CAA ATCATA AAG ATA TTG G-3') y HC02198 (5'- TAA ACT TCA GGG TGA CCA AAA AAT CA3') (Folmer et al. 1994). La PCR se efectuó en un volumen final de 30 µl que contenía 3 µl de ADN molde, 2 mM de MgCl2, 0,2 mM de dNTPs, 0,4 µmol de cada partidor, 0,4 U de Taq ADN polimerasa

(Invitrogen), 1X de tampón para PCR (Invitrogen). Los ciclos de temperatura se llevaron a cabo en un termociclador MJ Research PTC-200 DNA Engine con el siguiente programa de temperatura: desnaturalización inicial del ADN a 94°C por un 2 minutos, seguido de 35 ciclos de amplificación (desnaturalización a 94°C por 20 segundos, unión de los partidores a 45°C por 30 segundos, extensión a 72°C por 1 minutos) y una extensión final de 4 minutos a 72°C. Los fragmentos de la amplificación por PCR del gen COI se separaron por electroforesis en gel de agarosa al 1,5%, se tiñó con bromuro de etidio (10mg/ml) y se visualizó mediante un transiluminador UV. Una vez terminado este proceso las muestras fueron secuenciadas en los laboratorios de MacrogenTM en Korea. La secuenciación se llevó a cabo utilizando un secuenciador ABI 3730xl. Las 118 secuencias de ADN obtenidas fueron editadas y alineadas utilizando el algoritmo de ClustalX 1.83 (Thompson et al. 1997), y el programa BioEdit v. 7.2.5 (Hall 1999). Posterior a la edición se obtiene una matriz cuadrada de 114 secuencias con una longitud de 634 pb. Esta matriz se utilizó para fines de corroboración de la especie en estudio, y para fines de análisis poblacionales.

Corroboración de la especie Metacarcinus edwardsii de los ejemplares en estudio

La matriz de las 114 secuencias de ADN del genoma mitocondrial de los ejemplares en estudio fue comparada con secuencias de ADN disponibles en la base de datos GenBank que se aloja en la página del National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov/. Para este fin en la plataforma http://www.ncbi.nlm.nih.gov/ se selecciona la ventana BLAST (Basic Local Alignment Search Tool) que contiene el algoritmo de búsqueda de semejanzas (homologías) con secuencias depositadas en GenBank, mediante alineamientos. El flujo de comandos utilizados corresponde a: Query Sequence or Upload File (archivos de secuencias de ADN), Choose Search Set, Database, Program Selection, Optimize for highly similar sequences (megablast), BLAST, en este momento el algoritmo comienza a realizar la búsqueda (*ver sección resultados* Tabla 12).

Desarrollo de los marcadores moleculares SNPs para Metacarcinus edwardsii

Selección de Enzima para Reducción del Genoma de Metacarcinus edwardsii

Para acceder al genoma de *Metacarcinus edwardsii* fue necesario crear una versión reducida del genoma en donde la elección de la endonucleasa que fragmentará el genoma del individuo debe ser elegida en función de características tal como el tamaño del genoma de la especie (Miller et al. 2007). El tamaño del genoma de una especie puede ser expresado como C-value, el cual significa un valor "constante" o "característico" del contenido haploide por núcleo. El C-value es generalmente expresado en picogramos (pg), donde 1

pg equivale a 1 Gigabase (=1000 Mb). De esta manera podemos tener una idea del tamaño tiene un genoma.

No hay antecedentes sobre el tamaño del genoma para la especie *Metacarcinus edwardsii*. Sin embargo, es posible asumir que especies cercanamente emparentadas tienen tamaños genómicos similares. En la base de datos Genome Size (www.genomesize.com) hay información de tamaño de genoma para las especies *Cancer anthonyi, C. borealis,* y *C. pagurus*, pertenecientes a la Familia *Cancridae* y cercanamente emparentadas con *M. edwardsii*, quienes presentaron C-value de 1,72, 2,27 y 2,44 respectivamente. Con estos valores de C-value podemos estimar que el tamaño del genoma de *M. edwardsii* podría tener entre 1680 y 2390 Mb. Para identificar la enzima de restricción más adecuada para reducir el genoma de *M. edwardsii* y secuenciar en una sola línea en Illumina (ver sección preparación de Librerías RADseq), se usó *RadCounter* (Tabla 1, https://www.wiki.ed.ac.uk/display/RADSequencing/Home) utilizando siguientes parámetros para la estimación: 50% de G+C, 2386 Mb (C-value para *C. pagurus*), 30X cobertura, 95 individuos por librería y 300 millones de lecturas esperadas por línea.

Preparación librerías RADseq

Tres librerías RADseq fueron construidas (n = 95 individuos por cada una) utilizando la enzima de restricción *Sh/I* siguiendo los métodos descritos en Baird et al. (2008) y Everett et al. (2012) (ver Figura 20). Específicamente, se transfirió 400 ng de ADN genómico total de cada individuo a placas de 95 pocillos (i.e. una placa por librería), donde se redujo la complejidad del genoma de *M. edwardsii* con la enzima de restricción *Sh/I*. Posteriormente, a cada individuo se le acopló un código de barra individual de 10 pb para ser identificados en análisis posteriores. El ADN de los individuos se agrupó en un tubo de 1,5 ml (95 individuos) para posteriormente ser fragmentado un Sonicador (~500 pb). El ADN fragmentado fue purificado utilizando AMPure XP SPRI beads (Beckman Coulter), y posteriormente desde gel extrayendo el ADN que presentó un tamaño entre 300 - 650 pb. Finalmente, se utilizó el kit de preparación de librerías Kappa siguiendo las recomendaciones del manufacturador. La preparación de cada librería fue realizada con la finalidad de obtener secuencias de 150 pb de largo por lectura. Cada librería fue construida para secuenciar el ADN en ambos sentidos (i.e. pair-end). Finalmente, las librerías fueron secuenciadas en un secuenciador de última generación Illumina HiSeq4000 en Genomics & Cell Characterization Core Facility (GC3F) de la *Universidad de Oregon* (https://gc3f.uoregon.edu/).

Figura 20. Esquema del procedimiento de obtención de RADseq. Obtenido de Baird et al. 2008.

Revisión cualitativa de librerías genómicas

Se utilizó el programa FASTQC como herramienta de control de calidad visual para datos de secuencia obtenidos en secuenciador de alto rendimiento (Andrews 2010). Específicamente, revisamos parámetros básicos de las lecturas: secuencias totales, secuencias de baja calidad, largo de secuencias, % GC, y calidad de secuencias por bases nucleotídicas. Estos parámetros fueron analizados para cada una de las tres librerías generadas y en ambos sentidos de secuenciación.

Selección de parámetros para la identificación de SNPs

Las lecturas crudas fueron pre-procesadas en el programa *STACKS* v1.45 (Catchen et al. 2011, Catchen et al. 2013) con la finalidad de obtener el mejor ajuste de los parámetros que entreguen un trade-off entre número de SNPs y parámetros. Considerando que no hay un genoma de referencia, se realizó un *De Novo Analysis* descritos en Rochette & Catchen (2017). Específicamente, las lecturas obtenidas mediante secuenciación fueron clasificadas individualmente utilizando el código de barra individual de 10 pb, utilizado en la construcción de las librerías. Este procedimiento de clasificación y ordenamiento de lecturas por individuo fue llevado a cabo utilizando el programa *process_radtags* en *STACKS*. Esto, con la finalidad de capturar la mayor cantidad de SNPs para posteriores análisis.

Limpieza de la base de datos de secuenciación masiva de ADN foráneo

Para identificar y eliminar secuencias de ADN distintas a la de Jaiba Marmola (ADN foráneo) presente en las lecturas generadas en Illumina HiSeq4000 desde las tres librerías genómicas, se utilizó el software Kraken v2 (Wood & Salzberg 2014). Para esto se construyó una base de datos de referencia utilizando genomas de referencias (RefSeq) bacterianos e información taxonómica contenida en las bases de datos de la NCBI (Sayers *et al.* 2009; O'Leary *et al.* 2016). Se analizaron los datos de secuenciación masiva de los 285 individuos incorporados en las tres librerías genómicas, realizó el análisis para individuos que con una cobertura igual o mayor a 400.000 lecturas.

Selección e identificación de SNPs

La identificación de pilas únicas (i.e. lecturas similares) se llevó a cabo a través de un ensamble de las lecturas para cada individuo utilizando el programa *ustacks* en *STACKS*, con un parámetro -M de 4 (i.e. parámetro que controla la Distancia máxima (en pb) permitida entre pilas) y un parámetro de -m de 3 (i.e. Profundidad mínima de cobertura requerida para crear una pila). Para identificar loci a lo largo de los ensambles obtenidos, se construyó un catálogo de loci consenso, utilizando el programa *cstacks* en *STACKS*, para cada individuos procesados en *ustacks*. Para *cstacks* se utilizó un parámetro -n de 4 (i.e. número de desajustes permitidos entre los loci de la muestra al compilar el catálogo). Específicamente se utilizó un total de 33 individuos pertenecientes de cada referencia geográfica de las diferentes localidades donde se colecto *M. edwardsii* (3 individuos por localidad). Posteriormente, se utilizó s*stacks* en *STACKS* para comparar e identificar loci putativos entre cada individuo y el catálogo de loci consenso creado en la etapa anterior. Finalmente, utilizamos el programa *populations* en *STACKS*, con la finalidad de aplicar filtros a nivel intra e inter poblacional (e.g. -p, número mínimo de individuos en una población requerida para procesar un locus; -r, porcentaje mínimo de individuos en una población requerida para procesar un locus para esa población). Se probó el parámetro r, 0,6 y 0,8; y el parámetro p, entre 5 y 7.

Finalmente, utilizamos el programa *populations* en *STACKS*, donde se aplicaron los siguientes filtros: i) número mínimo de poblaciones en las que debe estar presente un locus para procesar un locus (-p: 7), ii) porcentaje mínimo de individuos en una población requerida para procesar un locus para esa población (-r: 0,5), iii) frecuencia de alelo menor mínima requerida para procesar un sitio de nucleótidos en un locus ($0 < \min_maf < 0,5$; --min_maf: 0,05), iv) heterocigosidad máxima observada requerida para procesar un sitio de nucleótidos en un locus (-max_obs_het: 0,8), v) restricción del análisis de datos a solo el primer SNP por locus (--write_single_snp). El análisis en STACKS entrego un total de 1911 loci, los cuales

fueron combinados en formato *Genepop* v4.5.1 (Raymond & Rousset 1995, Rousset 2008) para los análisis poblacionales.

Filtrado de loci SNPs con alto porcentaje de missing data

Una vez obtenido los SNPs utilizando el protocolo de STACKS, se obtuvieron en total 1911 SNPs polimórficos para los 285 individuos. Debido a la presencia de sitios sin información molecular en algunos individuos, fue necesario realizar un análisis y posterior filtrado tanto de individuos como de loci para evitar posteriores sesgos en los posteriores análisis. Las figuras 21 y 22 presentan la distribución de datos faltantes por loci e individuos respectivamente.

Figura 21: Figura 21a Histograma de frecuencias con el porcentaje de datos faltantes en los individuos para cada locus. Figura 21b Gráfico de puntos donde cada punto corresponde al porcentaje de individuos que no tienen información para cada loci.

Figura 22: Figura 22a Histograma de frecuencias con el porcentaje de datos faltantes en los loci para cada individuo. Figura 22b Gráfico de puntos donde cada punto corresponde al porcentaje de loci que no tienen información para cada individuo.

Se removieron 156 individuos debido a que presentaban más de un 30% de loci sin información. Al remover estos individuos se excluyeron del análisis las localidades Bahía Ancud, Caulín, Punta Lavapie, y Yelcho. Utilizando los 129 individuos retenidos para el análisis se estimó nuevamente el número de loci faltantes por individuos (figura 23). Se calculó el porcentaje de información presente en los individuos para cada loci.

Figura 23. Figura 23a Histograma de frecuencia con el porcentaje de datos faltantes en los individuos para cada loci. Figura 23b Gráfico de puntos donde cada punto corresponde al porcentaje de individuos que no tienen información para cada loci; las líneas rojas marcan umbrales de tolerancia de información faltante del 10% al 50% y el número de loci que cumplen con tener un porcentaje de información faltante menor o igual al valor umbral respectivo.

Se decidió a trabajar con dos set de datos. El primer dataset fue construido utilizando como valor umbral de tolerancia de información faltante por loci de hasta un 20%, reteniendo 1520 loci de los 1911 loci iniciales (79.5%). El segundo dataset fue construido utilizando como valor umbral de tolerancia de información faltante por loci de hasta un 10%, reteniendo 627 loci de los 1911 loci iniciales (32.8%). Sólo en el caso del análisis STRUCTURE se evaluó una tercera base de datos con valor umbral de tolerancia de información faltante por loci de hasta un 5%, reteniendo 148 loci.

Diversidad genética en localidades y regiones administrativas basado en marcadores moleculares SNPs

Estadísticos resumen de diversidad genética fueron estimados por localidad y región administrativa analizada. Específicamente, se estimó el promedio de la Heterocigocidad Observada (HO), Esperada (HE), y Riqueza Alélica (RA) para el total de loci considerando un máximo de 10% de datos faltantes (i.e. 627 loci) y un máximo de 20% de datos faltantes (i.e. 1520 loci). Estos estadísticos resumen fueron calculados en el paquete HierFstat v0.04-10 implementado en R, siguiendo las recomendaciones de Goudet (2005).

Parámetro de diversidad genética poblacional basado en marcadores moleculares mitocondriales

La obtención de los parámetros básicos de diversidad genética poblacional como el número de haplotipos (h), diversidad haplotípica (Hd), diversidad nucleotídica (π) y el número de sitios segregados (S) se calcularon utilizando el programa DnaSP v 5.10.01 (Librado & Rozas 2009). Para las estimaciones solo se consideró las posiciones variables, y sitios con ambigüedades o gap fueron excluidos al construir cada haplotipo.

Para ubicar espacialmente la distribución de los haplotipos, se construyó un gráfico de pie donde se representó los haplotipos identificados para cada zona analizada.

Análisis de estructura genética poblacional basado en marcadores moleculares SNPs

Para evaluar la presencia de estructuración poblacional utilizando la aproximación basada en el Índice de Fijación Fst. Se utilizó el programa Arlequin 3.1 (Excoffier & Schneider 2005) para estimar los pares de comparaciones entre: 1) las localidades de estudio, 2) las regiones administrativas, 3) Sexo, y Tallas (Juvenil o Adulto). Estas 4 divisiones fueron realizadas para la base de datos que contenían un 10% y 20% de datos faltantes respectivamente.

Utilizando los dos dataset, con umbrales de 10% y 20% de tolerancia de información faltante, se procedió a realizar análisis de estructura genética poblacional utilizando dos aproximaciones bayesianas. Se agregó un tercer dataset con umbrales de 5% de tolerancia de información faltante, para evaluar el posible sesgo por missing data. Se estimó la presencia y número de grupos genéticos discretos utilizando aproximaciones basadas en individuos y los supuestos poblacionales de equilibrio de Hardy-Weinberg y

equilibrio de ligamiento, implementados en el software STRUCTURE (Pritchard *et al.* 2000). Para este análisis se analizaron los datos, descartando las primeras 50,000 iteraciones como periodo de burning y se analizaron las 250,000 iteraciones posteriores. Se evaluó la probabilidad de que los individuos estudiados perteneciera desde a una a cinco grupos genéticos discretos (parámetro K= 1 a 5) con 10 repeticiones para cada valor de K. Por otra parte, se implementó un Análisis de Discriminante de Componentes Principales (DAPC) (Jombart *et al.* 2010), cuya estimación de número de grupos génicos está basada en la maximización de diferencias genéticas entre grupos y minimizándola dentro de los grupos (método conocido como k-mean) implementado en el paquete "Adegenet" 2.0.0 (Jombart 2008; Jombart & Ahmed 2011). En este análisis se realizó la estimación del número más probable de grupos genéticos reteniendo los primeros 40 componentes principales y 1.000.000.000 de iteraciones. Se evaluó la probabilidad de que los individuos estudiados perteneciera desde a una a cinco grupos genéticos discretos (parámetro K= 1 a 5).

Análisis de estructura genética poblacional basado en marcadores moleculares mitocondriales

Para evaluar la presencia de estructuración poblacional utilizando la aproximación basada en el Índice de Fijación Φ st. Se utilizó el programa Arlequin 3.1 (Excoffier & Schneider 2005) para estimar los pares de comparaciones entre las localidades de estudio calculando el estadístico Φ st (Excoffier et al. 1992) (usando el estadístico-F convencional basado solo en las frecuencias haplotipicas). El índice Φ st estima el grado de estructuración genética presente en la distribución geográfica de la especie en estudio. Valores Φ st cercanos a 1 sugieren una fuerte estructuración genética y aislamiento reproductivo, mientras que índices Φ st cercanos a 0 indicarían una débil estructuración genética y alto flujo génico, siempre y cuando este índice sea estadísticamente significativo, $p \leq 0,01$. La hipótesis nula que se evalúa en este análisis es si el índice Φ st estimado es significativamente distinto de cero.

Detección de estructura poblacional sin información a priori

Para identificar y describir patrones de estructuración genética poblacional se utilizó una aproximación Bayesiana en el programa GENELAND v. 4.0.2 (Guillot et al., 2005a, 2005b; Guillot, 2008) implementado como paquete en R (<u>http://cran.r-project.org/</u>). Este programa utiliza la información genética (haplotipos) y la localización geográfica (coordenadas geográficas) de los individuos muestreados, y permite distinguir el número más probable de poblaciones genéticas (i.e. cluster genéticos), sus límites geográficos, y la incertidumbre de la asignación de individuos a las poblaciones identificadas (Guillot et al., 2005a). Destacando que un cluster genético ha sido definido como un ensamble genético de individuos panmicticos, que comparten variantes genéticas (genotipos más similares) entre sí (Mank & Avise 2004). Para identificar el número más probable de poblaciones (**K**), se testeo un rango de **K** entre 1 a 5 (**K**=1-4), donde **K**=1 significa que los datos genéticos dan cuenta de una sola población (no hay estructuración) y **K**=*n* que los datos dan cuenta de "*n*" poblaciones en el set de datos analizados. Los datos genéticos utilizados correspondieron al haplotipo de cada individuo, de esta manera se excluyeron todas las posiciones nucleotídicas invariantes (no informativas). Teóricamente, dado que el ADN mitocondrial es heredado entero desde parentales a descendencia los nucleótidos que componen cada haplotipo están correlacionados por ser parte del mismo gen (i.e. COI). Sin embargo, dado que GENELAND es un análisis Bayesiano, la inclusión de valores *a priori* son importantes para obtención de resultados precisos, se testeó diferentes modelos de frecuencias alélicas.

Los parámetros de los análisis previos fueron: \mathbf{K} =1-4, usando un modelo de frecuencias alélicas correlacionadas, y luego uno no correlacionadas durante 1 millón de generaciones muestreando cada 100 parámetros. Luego, comparamos el ajuste de ambos modelos por medio de la prueba Factor de Bayes (FB; Gelman et al., 1995; Drummond & Rambaut, 2007) usando el método descrito en el programa Tracerv1.5 (Rambaut et al. 2014). El FB está definido por las Verosimilitudes Marginales de los modelos (pr(D/M)) contrastados. En donde B10 define el logaritmo base 10 de FB que nos permite evaluar qué modelo (M) da cuenta de una mayor proporción de la probabilidad total de los datos. Para interpretar los valores de B10 se usó la clasificación de Raftery (1996: 165), según la cual valores entre 3 y 20 muestran evidencia positiva para el modelo 1, y mayores de 20 una fuerte evidencia. Posteriormente, se volvió a ejecutar el análisis usando el modelo seleccionado y el número de **K** con el valor de convergencia de este modelo. El modelo identificado que presentó mayor evidencia de ajuste a los datos para cada especie fue el modelo de frecuencias alélicas correlacionado (Tabla 10).

La corrida final del programa se realizó por 10 millones de generaciones muestreando cada 1000 parámetros, para estimar a posteriori la probabilidad de asignación de individuos a grupos geográficos basados en su georreferenciación y el haplotipo de los individuos.

Tabla 10. Comparación de modelos de frecuencias alélicas correlacionadas y no correlacionadas obtenido en Geneland mediante el Factor de Bayes. Valores en negrita corresponden a los modelos que muestran mayor evidencia de ajuste a los datos.

Trace	ln P(model	S.E.	MCF.txt	MCV.txt	MNCF.txt	MNCV.txt
	data)					
MCF.txt	-114.712	+/- 0,114	-	-0,118	0,338	0,389
MCV.txt	-114.441	+/- 0,101	0,118	-	0,456	0,507
MNCF.txt	-115.491	+/- 0,093	-0,338	-0,456	-	0,051
MNCV.txt	-115.608	+/- 0,119	-0,389	-0,507	-0,051	-

Relaciones genealógicas: Redes de haplotipos

Con la finalidad de resolver relaciones genealógicas no resueltas, producto de mutaciones o haplotipos no muestreados, utilizamos un algoritmo filogenético ajustado al modelo de evolución de secuencias y a la migración (Salzburger *et al.*, 2011). Esta aproximación fue utilizada en el programa Haploviewer (Salzburger *et al.*, 2011). Para llevar a cabo este análisis, previamente estimamos el modelo de evolución de secuencias que mejor se ajusta al gen Citocromo Oxidasa I. La estimación del modelo de evolución fue llevada a cabo en el programa Jmodeltest 2 (Darriba et al., 2012), utilizando el Criterio de Información de Akaike (Akaike, 1974) como medida de la calidad relativa de los modelos testeados. Paralelo a la estimación del mejor modelo de evolución de secuencia, se estimó una reconstrucción filogenética usando una aproximación de Máxima Verosimilitud para el modelo que mejor se ajustó a nuestros datos en el programa PHYML 3.0 (Guindon *et al.*, 2010). Finalmente, se construyó una representación gráfica de las relaciones genealógicas de cada haplotipo incorporando además la frecuencia de estos.

Morfometría Geométrica del cefalotórax de Jaiba Marmola

Obtención de datos morfométricos del cefalotórax de Jaiba Marmola

De un total de 659 ejemplares provenientes de 11 localidades desde la VIII a la XI región, para fines de morfometría geométrica se utilizaron 581 individuos que poseían una fotografía óptima para la digitalización de hitos morfológicos. El sexo de los individuos fue determinado en base al ancho del abdomen, presencia de poros genitales, y la presencia de apéndices modificados para la reproducción. Se obtuvo un total de 257 hembras y 324 machos para los respectivos análisis. Se realizó un análisis morfométrico que consideró las variaciones atribuidas exclusivamente a la forma, mediante registro fotográfico del área dorsal de los individuos, los que fueron montados en moldes fijos y fotografiados con una cámara Canon Rebel T5, de 18 megapixeles con focos de luz direccionados.

Veintinueve hitos morfológicos fueron digitalizados para cada individuo en base a la anatomía externa, utilizando el programa TpsDig 2.26 (Rohlf 2017) (Figura 24)

Figure 24: Vista dorsal del cefalotorax de Jaiba Marmola (Metacarcinus edwardsii) con 29 hitos (landmarks)

Análisis de forma geométrica del cefalotórax de Jaiba Marmola

Una vez obtenidas las coordenadas XY en la digitalización de hitos (landmarks) 2D para todos los individuos, la información de la forma fue extraída mediante un Análisis de Procrustes fit (Rohlf y Slice 1990; Dryden y Mardia 1998).

El análisis de Procustes tiene la finalidad de remover las propiedades geométricas invariantes con respecto a la variación (e.g. rotación, traslación y escala matemática), normalizando cada muestra a una unidad de tamaño de centroide. Una vez realizado Procrustes los datos en bruto son organizados mediante una matriz de covarianza para poder realizar análisis multivariados.
Estadística de la forma del cefalotórax de Jaiba Marmola

La variación de la forma geométrica fue analizada mediante un análisis de componentes principales (ACP) en base a la matriz de covarianza de individuos, no obstante, para obtener una mejor visualización de la forma la ubicación en el morfoespacio de la forma, se promedió la forma entre localidades y regiones (Jollife 2002).

Debido a al alto número de variables y de forma de obtener una máxima visualización de los resultados se realizaron análisis discriminantes y canónicos por regiones. Estos análisis tienen como objetivo maximizar el valor de las medias aritméticas para resaltar las diferencias morfológicas de los individuos en estudio.

Para descartar la influencia del tamaño sobre la forma geométrica de las Jaibas fue necesario un Análisis de Regresión Multivariada, el cual entrega los resultados de un test de permutación en el que señala cuán influenciada se encuentra la forma por el tamaño, y además permite realizar un nuevo A.C.P. con la información contenida en los archivos residuales (almacenados en una nueva matriz de covarianza) que no contiene la información del tamaño (Monteiro 1999). Todos los análisis fueron realizados mediante el programa morfométrico MorphoJ versión 1.06d (Klingenberg 2011).

Relación entre datos genéticos y morfológicos de Jaiba Marmola

Se evaluó la relación entre los patrones de diferenciación morfológica, obtenidos mediante el análisis de morfometría geométrica, y los patrones de estructura genética, obtenidos a partir del análisis de SNPs. Para este análisis se construyeron dos matrices de datos. La (i) matriz de información morfológica consistió en una matriz triangular de distancia morfológica entre individuos, la cual fue estimada utilizando distancia de mahalanobis entre pares de individuos utilizando el paquete estadístico "vegan" en R (Oksanen *et al.* 2010; R Core Team, 2018). La (ii) matriz de distancia genética consistió en una matriz triangular de distancia, la cual fue estimada utilizando el software para análisis genéticos GENALEX (Peakall & Smouse 2012). Las matrices se correlacionaron para evaluar si la distancia genética entre individuos se correlaciona con la distancia morfológica entre individuos. Este análisis se realizó utilizando un test de mantel implementado en el paquete "vegan" de R. El test de mantel se realizó utilizando el índice de correlación de pearson y su significancia fue evaluada utilizando 9.999 permutaciones.

RESULTADOS

Procedimiento para la extracción de ADN genómico desde ejemplares de Jaiba Marmola y Cuantificaciones de extracciones de ADN genómico

Figura 25. Perfiles de extracción de ADN genómico, comparando 3 tipos de tejidos conservados en congelación.

Tabla 11. Cuantificaciones de ADN genómico de individuos seleccionados de Jaiba Marmola para las librerías genómicas.

Ν	ID	ng/ul	Lugar	Sexo
1	1	33,4	Punta Lavapie	Н
2	9	21,9	Punta Lavapie	Н
3	12	30,1	Punta Lavapie	Н
4	14	26,4	Punta Lavapie	М
5	21	36,3	Punta Lavapie	Н
6	22	28,4	Punta Lavapie	М
7	23	26,1	Punta Lavapie	М
8	36	28,8	Rilán	М
9	45	44,6	Rilán	Н
10	46	51,6	Rilán	Н
11	48	63,9	Rilán	Н
12	49	40,3	Rilán	Н
13	51	55,4	Rilán	Н
14	53	42,6	Rilán	М

15	54	45,1	Rilán	М
16	59	39,2	Rilán	Н
17	60	33,3	Rilán	Н
18	61	37,7	Rilán	Н
19	62	40,2	Rilán	Н
20	63	50	Rilán	Н
21	64	41,6	Rilán	Н
22	65	30,7	Dalcahue	М
23	67	26,6	Dalcahue	М
24	68	37,5	Dalcahue	М
25	69	22,7	Dalcahue	М
26	70	42,6	Dalcahue	Н
27	71	36,7	Dalcahue	Н
28	72	40,9	Dalcahue	Н
29	73	37,6	Dalcahue	Н
30	75	31,7	Dalcahue	М
31	76	22,5	Dalcahue	М
32	77	21,6	Dalcahue	М
33	79	21,3	Dalcahue	М
34	82	34,6	Dalcahue	М
35	83	36,2	Dalcahue	Н
36	84	37,6	Dalcahue	Н
37	85	34,9	Dalcahue	Н
38	86	32	Dalcahue	Н
39	87	32,8	Dalcahue	Н
40	88	32,4	Dalcahue	Н
41	89	34,1	Dalcahue	Н
42	90	36,5	Dalcahue	Н
43	91	35,1	Dalcahue	Н
44	92	24,4	Dalcahue	Н
45	93	26,7	Dalcahue	Н
46	94	29,9	Dalcahue	М
47	98	42,6	Dalcahue	М
48	99	40,1	Dalcahue	М
49	102	40,7	Dalcahue	Н
50	103	73,3	Dalcahue	Н
51	104	65,8	Dalcahue	Н
52	105	62,8	Loncoyen	М
53	107	38,6	Loncoyen	М
54	108	33,3	Loncoyen M	

55	109	38,2	Loncoyen	М		
56	110	32	Loncoyen	М		
57	115	324	Loncoyen	М		
58	116	53 <i>,</i> 9	Loncoyen	М		
59	117	56,5	Loncoyen	М		
60	119	50,5	Loncoyen	Н		
61	120	56,7	Loncoyen	Н		
62	121	52,9	Loncoyen	Н		
63	122	74,9	Loncoyen	Н		
64	123	108,7	Loncoyen	Н		
65	124	94,2	Loncoyen	Н		
66	125	59 <i>,</i> 3	Loncoyen	Н		
67	126	68,4	Loncoyen	Н		
68	127	78,6	Loncoyen	Н		
69	128	58,9	Loncoyen	Н		
70	129	56	Loncoyen	Н		
71	130	47,2	Loncoyen	Н		
72	131	51	Loncoyen	Н		
73	132	57,4	Loncoyen	Н		
74	133	60,6	Loncoyen	Н		
75	136	59 <i>,</i> 6	Loncoyen	М		
76	137	48,6	Loncoyen	М		
77	139	56,4	Loncoyen	М		
78	146	39 <i>,</i> 3	Loncoyen	М		
79	148	31,4	Loncoyen	М		
80	149	37,4	Loncoyen	М		
81	157	42,2	Loncoyen	М		
82	158	38,2	Loncoyen	М		
83	159	36	Loncoyen	М		
84	163	28,3	Encolma	М		
85	165	56,7	Encolma	М		
86	166	50,9	Encolma	М		
87	167	35,4	Encolma	М		
88	170	50,4	Encolma	М		
89	171	78,4	Encolma	М		
90	172	72,8	Encolma	М		
91	175	70,1	Encolma	М		
92	176	59,8	Encolma	М		
93	179	39,5	Encolma	М		
94	180	38,5	Isla Guapi Quilan M			

95	182	34,4	Isla Guapi Quilan	М
96	184	42,5	Isla Guapi Quilan	М
97	186	40,9	Isla Guapi Quilan	М
98	189	51,7	Isla Guapi Quilan	Н
99	190	42,6	Isla Guapi Quilan	Н
100	191	53,4	Isla Guapi Quilan	Н
101	192	52,1	Isla Guapi Quilan	Н
102	193	48,7	Isla Guapi Quilan	Н
103	195	51,9	Isla Guapi Quilan	Н
104	196	103	Isla Guapi Quilan	Н
105	197	84,6	Isla Guapi Quilan	Н
106	198	75,2	Isla Guapi Quilan	Н
107	199	61,1	Isla Guapi Quilan	Н
108	202	43	Yelcho	Н
109	209	24,7	Yelcho	Н
110	210	21,2	Yelcho	М
111	214	38,7	Yelcho	М
112	262	30,1	Yelcho	М
113	263	26,3	Yelcho	М
114	264	35,1	Yelcho	М
115	266	20,4	Yelcho	М
116	267	28,3	Yelcho	Н
117	268	32,8	Yelcho	Н
118	270	25,5	Yelcho	Н
119	271	32,4	Yelcho	Н
120	272	40,7	Yelcho	М
121	273	28	Yelcho	М
122	274	41,5	Yelcho	М
123	275	31,4	Yelcho	Н
124	276	31,6	Yelcho	Н
125	277	35,7	Yelcho	М
126	278	29,6	Yelcho	М
127	279	35,1	Yelcho	Н
128	280	30,2	Yelcho	Н
129	226	89,1	Bahia Ancud	Н
130	228	30,9	Bahia Ancud	Н
131	230	59,9	Bahia Ancud	Н
132	231	30	Bahia Ancud	Н
133	233	37,7	Bahia Ancud	Н
134	234	45,6	Bahia Ancud	М

135	238	33,5	Bahia Ancud	М
136	241	40,1	Bahia Ancud	М
137	242	59 <i>,</i> 4	Bahia Ancud	М
138	243	34,8	Bahia Ancud	М
139	244	41,9	Bahia Ancud	М
140	245	32,9	Bahia Ancud	М
141	246	43,3	Bahia Ancud	Н
142	247	29,5	Bahia Ancud	Н
143	248	31,6	Bahia Ancud	Н
144	249	43,2	Bahia Ancud	М
145	250	35,3	Bahia Ancud	М
146	251	22,8	Bahia Ancud	М
147	252	46,4	Bahia Ancud	М
148	253	30	Bahia Ancud	М
149	254	71,1	Bahia Ancud	Н
150	255	42,1	Bahia Ancud	Н
151	256	21,4	Bahia Ancud	Н
152	258	37,2	Bahia Ancud	Н
153	259	42,8	Bahia Ancud	М
154	260	24,1	Bahia Ancud	Н
155	261	69,7	Bahia Ancud	Н
156	286	25,6	Caulin	М
157	294	43,8	Caulin	Н
158	295	28,7	Caulin	Н
159	296	20,7	Caulin	Н
160	300	33,3	Caulin	Н
161	301	32,8	Caulin	Н
162	309	35,8	Caulin	Н
163	313	28,9	Caulin	Н
164	314	31,4	Caulin	М
165	319	72,8	Caulin	Н
166	329	48,2	Punta Lavapie	М
167	332	21,1	Punta Lavapie	Н
168	333	21,9	Punta Lavapie	Н
169	334	41,6	Punta Lavapie	Н
170	335	37,2	Punta Lavapie	Н
171	338	32,6	Punta Lavapie	Н
172	344	22,5	Punta Lavapie	Н
173	368	21,1	Punta Lavapie	М
174	371	27,3	Punta Lavapie	М

175	389	28,8	Punta Lavapie	М
176	586	35,1	Laraquete	Н
177	587	53,4	Laraquete	Н
178	589	87	Laraquete	Н
179	590	60,3	Laraquete	Н
180	594	45,9	Laraquete	Н
181	601	30,2	Laraquete	Н
182	605	47,9	Laraquete	Н
183	595	27,2	Laraquete	М
184	598	25,6	Laraquete	М
185	599	39,3	Laraquete	М
186	612	22,6	Laraquete	М
187	613	22,7	Laraquete	М
188	614	21,9	Laraquete	М
189	615	49	Laraquete	М
190	625	61	Laraquete	М
191	419	112,8	Puerto Aysén 1	М
192	420	91,7	Puerto Aysén 1	М
193	421	85,1	Puerto Aysén 1	М
194	422	85,6	Puerto Aysén 1	М
195	423	69	Puerto Aysén 1	М
196	424	54,3	Puerto Aysén 1	М
197	426	55,4	Puerto Aysén 1	М
198	428	72,5	Puerto Aysén 1	М
199	431	116	Puerto Aysén 1	Н
200	432	66,3	Puerto Aysén 1	Н
201	433	109,5	Puerto Aysén 2	М
202	435	58,6	Puerto Aysén 2	М
203	436	82,6	Puerto Aysén 2	М
204	437	62	Puerto Aysén 2	М
205	438	64,2	Puerto Aysén 2	М
206	443	37,2	Puerto Aysén 2	Н
207	445	79 <i>,</i> 3	Puerto Aysén 2	Н
208	446	65	Puerto Aysén 2	Н
209	447	123,1	Puerto Aysén 2	Н
210	448	58 <i>,</i> 3	Puerto Aysén 2	Н
211	554	54,5	Puerto Aysén 3	М
212	555	67,1	Puerto Aysén 3	М
213	556	82,9	Puerto Aysén 3	М
214	558	62,5	Puerto Aysén 3 M	

215	559	100,3	Puerto Aysén 3	М
216	561	63,2	Puerto Aysén 3	М
217	562	65,2	Puerto Aysén 3	М
218	565	105,4	Puerto Aysén 3	Н
219	566	77,3	Puerto Aysén 3	Н
220	517	85,7	Puerto Aysén 4	М
221	518	70,4	Puerto Aysén 4	М
222	519	154,1	Puerto Aysén 4	М
223	520	50	Puerto Aysén 4	М
224	521	125,5	Puerto Aysén 4	М
225	531	59,1	Puerto Aysén 4	Н
226	532	81,4	Puerto Aysén 4	Н
227	533	92	Puerto Aysén 4	Н
228	534	97	Puerto Aysén 4	Н
229	535	108,4	Puerto Aysén 4	Н
230	501	87,1	Puerto Aysén 5	М
231	502	132,8	Puerto Aysén 5	М
232	503	61,1	Puerto Aysén 5	М
233	504	52,8	Puerto Aysén 5	М
234	506	109,6	Puerto Aysén 5	М
235	510	125,7	Puerto Aysén 5	Н
236	511	67,9	Puerto Aysén 5	Н
237	512	94,9	Puerto Aysén 5	Н
238	513	82,3	Puerto Aysén 5	Н
239	514	145,6	Puerto Aysén 5	Н
240	515	199,4	Puerto Aysén 5	Н
241	478	79,2	Puerto Aysén 6	М
242	479	107,3	Puerto Aysén 6	М
243	480	92,9	Puerto Aysén 6	М
244	481	62,6	Puerto Aysén 6	М
245	482	85	Puerto Aysén 6	М
246	491	139,9	Puerto Aysén 6	Н
247	492	136,4	Puerto Aysén 6	Н
248	494	115,4	Puerto Aysén 6	Н
249	495	95,9	Puerto Aysén 6	Н
250	496	118,3	Puerto Aysén 6	Н
251	576	91	Puerto Aysén 7	М
252	577	41,5	Puerto Aysén 7	М
253	578	53,6	Puerto Aysén 7	М
254	579	44,5	Puerto Aysén 7	М

255	580	59,3	Puerto Aysén 7	М
256	581	58,1	Puerto Aysén 7	М
257	567	50,4	Puerto Aysén 7	Н
258	568	63,3	Puerto Aysén 7	Н
259	569	60,3	Puerto Aysén 7	Н
260	570	101,3	Puerto Aysén 7	Н
261	571	95,8	Puerto Aysén 7	Н
262	453	48,4	Puerto Aysén 8	М
263	454	136,8	Puerto Aysén 8	М
264	455	129,4	Puerto Aysén 8	М
265	456	88,1	Puerto Aysén 8	М
266	457	74,7	Puerto Aysén 8	М
267	458	103,5	Puerto Aysén 8	М
268	469	65,7	Puerto Aysén 8	Н
269	470	80,6	Puerto Aysén 8	Н
270	471	81,4	Puerto Aysén 8	Н
271	472	111,7	Puerto Aysén 8	Н
272	473	61	Puerto Aysén 8	Н
273	474	148,5	Puerto Aysén 8	Н
274	537	98,8	Puerto Aysén 9	М
275	538	98,1	Puerto Aysén 9	М
276	539	84,6	Puerto Aysén 9	М
277	540	78,3	Puerto Aysén 9	М
278	541	59,9	Puerto Aysén 9	М
279	542	45,5	Puerto Aysén 9	М
280	543	63,6	Puerto Aysén 9	М
281	544	76,6	Puerto Aysén 9	М
282	549	102	Puerto Aysén 9	Н
283	550	73,2	Puerto Aysén 9	Н
284	551	72	Puerto Aysén 9	Н
285	552	97	Puerto Aysén 9	Н

Corroboración de la especie Metacarcinus edwardsii de los ejemplares en estudio

Para determinar que las secuencias de ADN utilizadas para ensayos posteriores a nivel microevolutivo correspondieran a la especie en estudio, el análisis de alineamiento en Genbank-BLAST, arrojo en todas las muestras de la jaiba marmola que su identidad genética correspondía con la secuencia de la región citocromo oxidasa I de 606 pb, código de acceso JN315645.1. Esta secuencia de *Metacarcinus edwardsii* fue depositada por la Universidad Católica del Norte, Chile (Tabla 12).

ID	Maximo	Cobertura	E Valaa	Identidad	Numero de Acceso a
ID	Puntaje	comparada	E value	genética	GenBank
RI_0036_L11	1051	89%	0	100%	JN315645.1
RI_0048_L11	1051	89%	0	100%	JN315645.1
RI_0049_L11	1046	89%	0	99%	JN315645.1
RI_0051_L11	1046	89%	0	99%	JN315645.1
RI_0053_L11	1051	89%	0	100%	JN315645.1
RI_0054_L11	1051	89%	0	100%	JN315645.1
RI_0059_L11	1046	89%	0	99%	JN315645.1
RI_0060_L11	1051	89%	0	100%	JN315645.1
RI_0061_L11	1051	89%	0	100%	JN315645.1
DA_0065_L11	1051	89%	0	100%	JN315645.1
DA_0067_L11	1046	89%	0	99%	JN315645.1
DA_0068_L11	1046	89%	0	99%	JN315645.1
DA_0069_L11	1051	89%	0	100%	JN315645.1
DA_0070_L11	1046	89%	0	99%	JN315645.1
DA_0071_L11	1051	89%	0	100%	JN315645.1
DA_0072_L11	1046	89%	0	99%	JN315645.1
DA_0073_L11	1051	89%	0	100%	JN315645.1
DA_0076_L11	1051	89%	0	100%	JN315645.1
DA_0077_L11	1051	89%	0	100%	JN315645.1
LO_0120_L11	1051	89%	0	100%	JN315645.1

Tabla 12. Tabla resumen de identidad genética de los 114 individuos y sus respectivas secuencias de ADN de la COI, comparadas con las secuencias depositadas en GenBank

LO_0121_L11	1051	89%	0	100%	JN315645.1
LO_0122_L11	1046	89%	0	99%	JN315645.1
LO_0124_L11	1051	89%	0	100%	JN315645.1
LO_0125_L11	1051	89%	0	100%	JN315645.1
LO_0128_L11	1051	89%	0	100%	JN315645.1
LO_0131_L11	1051	89%	0	100%	JN315645.1
LO_0133_L11	1051	89%	0	100%	JN315645.1
LO_0137_L11	1051	89%	0	100%	JN315645.1
LO_0139_L11	1051	89%	0	100%	JN315645.1
YE_0268_L12	1046	89%	0	99%	JN315645.1
YE_0271_L12	1051	89%	0	100%	JN315645.1
YE_0273_L13	1051	89%	0	100%	JN315645.1
YE_0276_L13	1051	89%	0	100%	JN315645.1
YE_0279_L14	1051	89%	0	100%	JN315645.1
YE_0280_L14	1051	89%	0	100%	JN315645.1
PL_0335_L21	1051	89%	0	100%	JN315645.1
PL_0371_L31	1051	89%	0	100%	JN315645.1
PL_0389_L31	1051	89%	0	100%	JN315645.1
GQ_0182_L11	1051	89%	0	100%	JN315645.1
GQ_0184_L11	1051	89%	0	100%	JN315645.1
GQ_0189_L11	1051	89%	0	100%	JN315645.1
GQ_0190_L11	1051	89%	0	100%	JN315645.1
GQ_0191_L11	1051	89%	0	100%	JN315645.1
GQ_0192_L11	1051	89%	0	100%	JN315645.1
GQ_0195_L11	1051	89%	0	100%	JN315645.1
GQ_0196_L11	1051	89%	0	100%	JN315645.1
GQ_0197_L11	1051	89%	0	100%	JN315645.1
BA_0228_L12	1050	89%	0	100%	JN315645.1
BA_0234_L12	1046	89%	0	99%	JN315645.1
BA_0238_L12	1051	89%	0	100%	JN315645.1
BA_0241_L11	1051	89%	0	100%	JN315645.1
BA_0244_L11	1046	89%	0	99%	JN315645.1
BA_0245_L11	1051	89%	0	100%	JN315645.1
BA_0246_L11	1051	89%	0	100%	JN315645.1

BA_0247_L11	1046	89%	0	99%	JN315645.1
BA_0249_L13	1051	89%	0	100%	JN315645.1
BA_0250_L13	1051	89%	0	100%	JN315645.1
EN_0162_L11	1049	89%	0	99%	JN315645.1
EN_0163_L11	1051	89%	0	100%	JN315645.1
EN_0164_L11	1051	89%	0	100%	JN315645.1
EN_0165_L11	1051	89%	0	100%	JN315645.1
EN_0167_L11	1051	89%	0	100%	JN315645.1
EN_0168_L11	1051	89%	0	100%	JN315645.1
EN_0170_L11	1051	89%	0	100%	JN315645.1
EN_0171_L11	1051	89%	0	100%	JN315645.1
EN_0174_L11	1051	89%	0	100%	JN315645.1
AY_0481_L23	1051	89%	0	100%	JN315645.1
AY_0492_L23	1051	89%	0	100%	JN315645.1
AY_0496_L23	1051	89%	0	100%	JN315645.1
AY_0502_L22	1051	89%	0	100%	JN315645.1
AY_0506_L22	1051	89%	0	100%	JN315645.1
AY_0510_L22	1051	89%	0	100%	JN315645.1
AY_518_L21	1046	89%	0	99%	JN315645.1
AY_0519_L21	1046	89%	0	99%	JN315645.1
AY_0520_L21	1051	89%	0	100%	JN315645.1
AY_0521_L21	1051	89%	0	100%	JN315645.1
AY_0453_L32	1051	89%	0	100%	JN315645.1
AY_0537_L33	1051	89%	0	100%	JN315645.1
AY_0577_L31	1051	89%	0	100%	JN315645.1
LA_0586_L21	1051	89%	0	100%	JN315645.1
LA_0587_L21	1051	89%	0	100%	JN315645.1
LA_0589_L21	1051	89%	0	100%	JN315645.1
LA_0590_L21	1051	89%	0	100%	JN315645.1
LA_0592_L21	1046	89%	0	99%	JN315645.1
LA_0594_L21	1051	89%	0	100%	JN315645.1
LA_0595_L21	1051	89%	0	100%	JN315645.1
LA_0599_L21	1051	89%	0	100%	JN315645.1
LA_0600_L21	1051	89%	0	100%	JN315645.1

LA_0605_L21	1051	89%	0	100%	JN315645.1
CA_0286_L11	1046	89%	0	99%	JN315645.1
CA_0294_L11	1051	89%	0	100%	JN315645.1
CA_0295_L11	1051	89%	0	100%	JN315645.1
CA_0296_L11	1051	89%	0	100%	JN315645.1
CA_0300_L11	1051	89%	0	100%	JN315645.1
CA_0301_L11	1051	89%	0	100%	JN315645.1
CA_0314_L12	1051	89%	0	99%	JN315645.1
CA_0313_L13	1046	89%	0	100%	JN315645.1
CA_0316_L12	1046	89%	0	99%	JN315645.1
CA_0317_L12	1046	89%	0	100%	JN315645.1
CA_0318_L12	1051	89%	0	100%	JN315645.1
CA_0319_L12	1051	89%	0	100%	JN315645.1
CA_0320_L12	1051	89%	0	100%	JN315645.1
AY_0421_L11	1051	89%	0	100%	JN315645.1
AY_0423_L11	1051	89%	0	100%	JN315645.1
AY_0426_L11	1051	89%	0	100%	JN315645.1
AY_0433_L12	1051	89%	0	100%	JN315645.1
AY_0435_L12	1051	89%	0	100%	JN315645.1
AY_0436_L12	1051	89%	0	100%	JN315645.1
AY_0446_L12	1051	89%	0	100%	JN315645.1
AY_0554_L13	1046	89%	0	99%	JN315645.1
AY_0555_L13	1046	89%	0	99%	JN315645.1
AY_0556_L13	1051	89%	0	100%	JN315645.1
AY_0561_L13	1051	89%	0	100%	JN315645.1
AY_0565_L13	1051	89%	0	100%	JN315645.1

Desarrollo de los marcadores moleculares SNPs para Metacarcinus edwardsii

Selección de Enzima para Reducción del Genoma de Metacarcinus edwardsii

Los resultados de esta comparación *in silico*, informa sobre dos posibles enzimas a utilizar: *SfbI* y *NotI*. Ambas enzimas tienen similares resultados respecto al número de sitios a lo largo del genoma y número de tag identificados. Por lo que a priori, se podría elegir cualquiera de ellas. No obstante, se utilizó la enzima *Sb/I*, dado que hay antecedentes que ha sido utilizada en Crustáceos para búsqueda de SNP usando metodologías RADseq (e.g. Herrera et al. 2015, Benestan et al. 2015).

Tabla 13. Identificación de las enzimas de restricción adecuadas para la implementación de librerías RADseq en *M. edwardsii*.

Enzima	N° sitios RADSeq	N° de tag RADSeq	Mezcla máxima de individuos en un pool	Se ajusta el pool de individuos en una línea?
SbfI	36407	72815	137	YES
PstI	582520	1165039	9	NO
NsiI	582520	1165039	9	NO
NotI	36407	72815	137	YES
EaeI	2330078	4660156	2	NO
EagI	582520	1165039	9	NO
EcoRI	582520	1165039	9	NO
ApoI	2330078	4660156	2	NO
MfeI	582520	1165039	9	NO
BamHI	582520	1165039	9	NO
BclI	582520	1165039	9	NO
BglII	582520	1165039	9	NO
BstYI	2330078	4660156	2	NO

BbvCI	145630	145630	69	NO

Preparación de librerías genómicas RADseq de Jaiba Marmola

La secuenciación de las tres librerías genómicas en secuenciador Illumina HiSeq4000 generó el siguiente volumen de información:

La librería genómica 1 generó 48.3 gigabytes que corresponden a 594.432.750 secuencias crudas de ADN. La librería genómica 2 generó 64.8 gigabytes que corresponden a 807.813.382 secuencias de ADN crudas, y la librería genómica 3 generó 61.9 gigabytes que corresponden a 775.511.420 secuencias de ADN.

Tabla 14. Orden de las tres placas de ADN genómico para construcción de librerías RADseq, con su respectivo código de barra o barcode.

Posición		N°	Posición		N°	Posición		N°
placa 1	Barcode	muestra	placa 2	Barcode	muestra	placa 3	Barcode	muestra
A01	GGACAAGCTA	1	A01	GGACAAGCTA	184	A01	GGACAAGCTA	419
B01	GGAACAACCA	51	B01	GGAACAACCA	202	B01	GGAACAACCA	436
C01	GGAGATCGCA	69	C01	GGAGATCGCA	272	C01	GGAGATCGCA	559
D01	GGCCGAAGTA	85	D01	GGCCGAAGTA	231	D01	GGCCGAAGTA	533
E01	GGGATAGACA	102	E01	GGGATAGACA	249	E01	GGGATAGACA	514
F01	GGTATCAGCA	120	F01	GGTATCAGCA	286	F01	GGTATCAGCA	576
G01	GGAATGTTGC	132	G01	GGAATGTTGC	333	G01	GGAATGTTGC	454
H01	GGCCATCCTC	165	H01	GGCCATCCTC	594	H01	GGCCATCCTC	538
A02	GGAAACATCG	9	A02	GGAAACATCG	186	A02	GGAAACATCG	420
B02	GGAACCGAGA	53	B02	GGAACCGAGA	209	B02	GGAACCGAGA	437
C02	GGAGCAGGAA	70	C02	GGAGCAGGAA	273	C02	GGAGCAGGAA	561
D02	GGCCGTGAGA	86	D02	GGCCGTGAGA	233	D02	GGCCGTGAGA	534
E02	GGGCCACATA	103	E02	GGGCCACATA	250	E02	GGGCCACATA	515
F02	GGTCCGTCTA	121	F02	GGTCCGTCTA	294	F02	GGTCCGTCTA	577
G02	GGACACTGAC	133	G02	GGACACTGAC	334	G02	GGACACTGAC	455
H02	GGCCGACAAC	166	H02	GGCCGACAAC	601	H02	GGCCGACAAC	539
A03	GGACATTGGC	12	A03	GGACATTGGC	189	A03	GGACATTGGC	421
B03	GGAACGCTTA	54	B03	GGAACGCTTA	210	B03	GGAACGCTTA	438
C03	GGAGTCACTA	71	C03	GGAGTCACTA	274	C03	GGAGTCACTA	562
D03	GGCCTCCTGA	87	D03	GGCCTCCTGA	234	D03	GGCCTCCTGA	535
E03	GGGCGAGTAA	104	E03	GGGCGAGTAA	251	E03	GGGCGAGTAA	478
F03	GGTCTTCACA	122	F03	GGTCTTCACA	295	F03	GGTCTTCACA	578
G03	GGACAGATTC	136	G03	GGACAGATTC	335	G03	GGACAGATTC	456

H03	GGAGTCAAGC	167	H03	GGAGTCAAGC	605	H03	GGAGTCAAGC	540
A04	GGACCACTGT	14	A04	GGACCACTGT	190	A04	GGACCACTGT	422
B04	GGAAGACGGA	59	B04	GGAAGACGGA	214	B04	GGAAGACGGA	443
C04	GGATCCTGTA	72	C04	GGATCCTGTA	275	C04	GGATCCTGTA	565
D04	GGCGAACTTA	88	D04	GGCGAACTTA	238	D04	GGCGAACTTA	501
E04	GGGCTAACGA	105	E04	GGGCTAACGA	252	E04	GGGCTAACGA	479
F04	GGTGAAGAGA	123	F04	GGTGAAGAGA	296	F04	GGTGAAGAGA	579
G04	GGAGATGTAC	137	G04	GGAGATGTAC	338	G04	GGAGATGTAC	457
H04	GGCCTCTATC	170	H04	GGCCTCTATC	595	H04	GGCCTCTATC	541
A05	GGAACGTGAT	21	A05	GGAACGTGAT	192	A05	GGAACGTGAT	423
B05	GGAAGGTACA	60	B05	GGAAGGTACA	263	B05	GGAAGGTACA	445
C05	GGATTGAGGA	73	C05	GGATTGAGGA	277	C05	GGATTGAGGA	566
D05	GGCGACTGGA	89	D05	GGCGACTGGA	242	D05	GGCGACTGGA	502
E05	GGGCTCGGTA	107	E05	GGGCTCGGTA	254	E05	GGGCTCGGTA	480
F05	GGTGGAACAA	124	F05	GGTGGAACAA	301	F05	GGTGGAACAA	580
G05	GGAGCACCTC	139	G05	GGAGCACCTC	368	G05	GGAGCACCTC	458
H05	GGCGACACAC	171	H05	GGCGACACAC	599	H05	GGCGACACAC	542
A06	GGCGCTGATC	22	A06	GGCGCTGATC	191	A06	GGCGCTGATC	424
B06	GGACACAGAA	61	B06	GGACACAGAA	262	B06	GGACACAGAA	446
C06	GGCAACCACA	75	C06	GGCAACCACA	276	C06	GGCAACCACA	517
D06	GGCGCATACA	90	D06	GGCGCATACA	241	D06	GGCGCATACA	503
E06	GGGGAGAACA	108	E06	GGGGAGAACA	253	E06	GGGGAGAACA	481
F06	GGTGGCTTCA	125	F06	GGTGGCTTCA	300	F06	GGTGGCTTCA	581
G06	GGAGCCATGC	146	G06	GGAGCCATGC	344	G06	GGAGCCATGC	469
H06	GGCGGATTGC	172	H06	GGCGGATTGC	598	H06	GGCGGATTGC	543
A07	GGCAGATCTG	23	A07	GGCAGATCTG	193	A07	GGCAGATCTG	426
B07	GGACAGCAGA	62	B07	GGACAGCAGA	264	B07	GGACAGCAGA	447
C07	GGCAAGACTA	76	C07	GGCAAGACTA	278	C07	GGCAAGACTA	518
D07	GGCTCAATGA	91	D07	GGCTCAATGA	243	D07	GGCTCAATGA	504
E07	GGGGTGCGAA	109	E07	GGGGTGCGAA	255	E07	GGGGTGCGAA	482
F07	GGTGGTGGTA	126	F07	GGTGGTGGTA	309	F07	GGTGGTGGTA	567
G07	GGAGGCTAAC	148	G07	GGAGGCTAAC	371	G07	GGAGGCTAAC	470
H07	GGCTAAGGTC	175	H07	GGCTAAGGTC	612	H07	GGCTAAGGTC	544
A08	GGATGCCTAA	36	A08	GGATGCCTAA	195	A08	GGATGCCTAA	428
B08	GGACCTCCAA	63	B08	GGACCTCCAA	266	B08	GGACCTCCAA	448
C08	GGCAATGGAA	77	C08	GGCAATGGAA	279	C08	GGCAATGGAA	519
D08	GGCTGAGCCA	92	D08	GGCTGAGCCA	244	D08	GGCTGAGCCA	506
E08	GGGTACGCAA	110	E08	GGGTACGCAA	256	E08	GGGTACGCAA	491
F08	GGTTCACGCA	127	F08	GGTTCACGCA	313	F08	GGTTCACGCA	568
G08	GGATAGCGAC	149	G08	GGATAGCGAC	389	G08	GGATAGCGAC	471
H08	GGGAACAGGC	176	H08	GGGAACAGGC	613	H08	GGGAACAGGC	549

A09	GGAACGAACG	45	A09	GGAACGAACG	196	A09	GGAACGAACG	431
B09	GGACGCTCGA	64	B09	GGACGCTCGA	267	B09	GGACGCTCGA	554
C09	GGCACTTCGA	79	C09	GGCACTTCGA	280	C09	GGCACTTCGA	520
D09	GGCTGGCATA	93	D09	GGCTGGCATA	245	D09	GGCTGGCATA	510
E09	GGGTCGTAGA	115	E09	GGGTCGTAGA	258	E09	GGGTCGTAGA	492
F09	GGACACGAGA	128	F09	GGACACGAGA	314	F09	GGACACGAGA	569
G09	GGACGACAAG	157	G09	GGACGACAAG	586	G09	GGACGACAAG	472
H09	GGGACAGTGC	179	H09	GGGACAGTGC	614	H09	GGGACAGTGC	550
A10	GGAGTACAAG	46	A10	GGAGTACAAG	197	A10	GGAGTACAAG	432
B10	GGACGTATCA	65	B10	GGACGTATCA	268	B10	GGACGTATCA	555
C10	GGCAGCGTTA	82	C10	GGCAGCGTTA	226	C10	GGCAGCGTTA	521
D10	GGGAATCTGA	94	D10	GGGAATCTGA	246	D10	GGGAATCTGA	511
E10	GGGTCTGTCA	116	E10	GGGTCTGTCA	259	E10	GGGTCTGTCA	494
F10	GGAAGAGATC	129	F10	GGAAGAGATC	319	F10	GGAAGAGATC	570
G10	GGATTGGCTC	158	G10	GGATTGGCTC	587	G10	GGATTGGCTC	473
H10	GGGAGTTAGC	180	H10	GGGAGTTAGC	615	H10	GGGAGTTAGC	551
A11	GGCATCAAGT	48	A11	GGCATCAAGT	198	A11	GGCATCAAGT	433
B11	GGACTATGCA	67	B11	GGACTATGCA	270	B11	GGACTATGCA	556
C11	GGCATACCAA	83	C11	GGCATACCAA	228	C11	GGCATACCAA	531
D11	GGGACTAGTA	98	D11	GGGACTAGTA	247	D11	GGGACTAGTA	512
E11	GGGTGTTCTA	117	E11	GGGTGTTCTA	260	E11	GGGTGTTCTA	495
F11	GGAAGGACAC	130	F11	GGAAGGACAC	329	F11	GGAAGGACAC	571
G11	GGCAAGGAGC	159	G11	GGCAAGGAGC	589	G11	GGCAAGGAGC	474
H11	GGGATGAATC	182	H11	GGGATGAATC	625	H11	GGGATGAATC	552
A12	GGAGTGGTCA	49	A12	GGAGTGGTCA	199	A12	GGAGTGGTCA	435
B12	GGAGAGTCAA	68	B12	GGAGAGTCAA	271	B12	GGAGAGTCAA	558
C12	GGCCAGTTCA	84	C12	GGCCAGTTCA	230	C12	GGCCAGTTCA	532
D12	GGGAGCTGAA	99	D12	GGGAGCTGAA	248	D12	GGGAGCTGAA	513
E12	GGTAGGATGA	119	E12	GGTAGGATGA	261	E12	GGTAGGATGA	496
F12	GGAATCCGTC	131	F12	GGAATCCGTC	332	F12	GGAATCCGTC	453
G12	GGCACCTTAC	163	G12	GGCACCTTAC	590	G12	GGCACCTTAC	blank
H12	GGGCCAAGAC	blank	H12	GGGCCAAGAC	blank	H12	GGGCCAAGAC	537

Figura 26. Electroferograma obtenido del BioAnalyzer desde la librería genómica bRADseq final de Jaiba Marmola para la placa 1. Se observa un tamaño promedio de ADN óptimo de 400 pb.

Revisión cualitativa de librerías genómicas

Se secuenció un total de 2.177.757.552 lecturas para todas las librerías. El rango de lecturas por librería fue de 297216375 – 403906691 para la librería 1 y 2 respectivamente. No se observaron secuencias de baja calidad, el largo total de las lecturas fue de 151 pares de bases y el contenido de Guanina-Citocina osciló entre 49 – 51 por ciento (Tabla 15). La calidad de las secuencias por nucleótidos muestra que la calidad de los nucleótidos está dentro de lo normal para una secuenciación de alto rendimiento (i.e. área verde; Figura 27). Donde la varianza aumenta en los últimos nucleótidos, lo cual es esperable en secuenciación de alto rendimiento (Minoche et al. 2011).

Librería	Secuenciación	Secuencias Totales	Secuencias de Baja Calidad	Largo Secuencias (pb)	%GC
Librería 1	Forward	297216375	0	151	50
	Reverse	297216375	0	151	51
Librería 2	Forward	403906691	0	151	51
	Reverse	403906691	0	151	51
Librería 3	Forward	387755710	0	151	49
	Reverse	387755710	0	151	49
Total		2177757552	0	151	49-51

Tabla 15. Parámetros básicos por librería obtenidos desde secuenciación de alto rendimiento.

Figura 27: Calidad de las secuencias obtenidas por base nitrogenada para cada librería y dirección de secuenciación.

Selección de parámetros para la identificación de SNPs

Las lecturas crudas fueron pre-procesadas en el programa *STACKS* v1.45 (Catchen et al. 2011, Catchen et al. 2013) con la finalidad de obtener el mejor ajuste de los parámetros que entreguen un trade-off entre número de SNPs y parámetros. Considerando que no hay un genoma de referencia, se realizó un *De Novo Analysis* descritos en Rochette & Catchen (2017). Específicamente, las lecturas obtenidas mediante secuenciación fueron clasificadas individualmente utilizando el código de barra individual de 10 pb, utilizado en la construcción de las librerías. Este procedimiento de clasificación y ordenamiento de lecturas por individuo fue llevado a cabo utilizando el programa *process_radtags* en *STACKS*. Esto, con la finalidad de capturar la mayor cantidad de SNPs para posteriores análisis.

Limpieza de la base de datos de secuenciación masiva de ADN foráneo

Del total de lecturas de ADN analizadas, 754.092.444 lecturas, un 66% correspondió a lecturas de ADN de Jaiba Marmola y un 34% a especies bacterianas asociadas a los ejemplares y tejidos utilizados para la toma de muestra con fines genéticos (Tabla 16).

Código de la muestra	Número de lecturas totales	Lecturas de Bacterias	Lecturas no- bacterias	% de lecturas jaibas
AY_0419_L11	3156389	44534	3111855	98.59%
AY_0420_L11	4977691	237027	4740664	95.24%
AY_0421_L11	1991486	185123	1806363	90.70%
AY_0422_L11	3052428	210280	2842148	93.11%
AY_0423_L11	1985159	108436	1876723	94.54%
AY_0424_L11	1513490	63125	1450365	95.83%
AY_0426_L11	1789422	156142	1633280	91.27%
AY_0428_L11	1054192	69580	984612	93.40%
AY_0431_L11	2385195	285638	2099557	88.02%
AY_0432_L11	4365460	860214	3505246	80.29%
AY_0433_L12	188055	30683	157372	83.68%
AY_0435_L12	1699513	80878	1618635	95.24%
AY_0436_L12	728455	68688	659767	90.57%
AY_0437_L12	435813	80089	355724	81.62%
AY_0438_L12	1095634	118831	976803	89.15%

Tabla 16. Porcentaje de lecturas de ADN foráneo identificadas por individuo de Jaiba Marmola secuenciado.

AY_0443_L12	2064070	328666	1735404	84.08%
AY_0445_L12	513625	210014	303611	59.11%
AY 0446 L12	1363343	170665	1192678	87.48%
AY 0447 L12	718689	90092	628597	87.46%
AY 0448 12	960883	66916	893967	93 04%
AY 0453 132	18486	1375	17111	92 56%
AV 0454 132	3000123	119653	2070/70	96 14%
AV 0455 122	104074	2669	101206	08 12%
AT_0455_L52	700007	00047	791300	90.127
AY_0456_L32	798927	03817	735110	92.01%
AY_0457_L32	488172	9584	478588	98.04%
AY_0458_L32	2082188	37431	2044757	98.20%
AY_0469_L32	852969	69861	783108	91.81%
AY_0470_L32	1536670	101307	1435363	93.41%
AY_0471_L32	1153092	17205	1135887	98.51%
AY_0472_L32	3408750	142747	3266003	95.81%
AY_0473_L32	2418289	216729	2201560	91.04%
AY_0474_L32	3242350	92825	3149525	97.14%
AY_0478_L23	1843673	377121	1466552	79.55%
AY_0479_L23	3918214	133885	3784329	96.58%
AY_0480_L23	1962836	353930	1608906	81.97%
AY_0481_L23	2348296	848343	1499953	63.87%
AY_0482_L23	3259167	364818	2894349	88.81%
AY_0491_L23	2847698	414354	2433344	85.45%
AY_0492_L23	2515882	374519	2141363	85.11%
AY_0494_L23	1723370	733673	989697	57.43%
AY_0495_L23	1126783	304338	822445	72.99%
AY_0496_L23	875327	202438	672889	76.87%
AY_0501_L22	3438959	244371	3194588	92.89%
AY_0502_L22	3347312	305316	3041996	90.88%
AY_0503_L22	3924826	295816	3629010	92.46%
AY_0504_L22	2177292	115216	2062076	94.71%
AY_0506_L22	2031299	58496	1972803	97.12%
AY_0510_L22	4811012	760765	4050247	84.19%
AY_0511_L22	3240601	338111	2902490	89.57%
AY_0512_L22	4602831	716853	3885978	84.43%
AY_0513_L22	2390232	447254	1942978	81.29%
AY_0514_L22	5132304	827324	4304980	83.88%
AY_0515_L22	4457261	98973	4358288	97.78%
AY_0517_L21	3664428	435809	3228619	88.11%
AY_0518_L21	2068552	105007	1963545	94.92%
AY_0519_L21	2876889	101046	2775843	96.49%
AY_0520_L21	2518084	166738	2351346	93.38%
AY_0521_L21	4392993	221001	4171992	94.97%

AY_0531_L21	1174444	207759	966685	82.31%
AY_0532_L21	2699649	807591	1892058	70.09%
AY_0533_L21	5161560	136644	5024916	97.35%
AY_0534_L21	1411287	221235	1190052	84.32%
AY 0535 L21	1461117	163071	1298046	88.84%
AY 0537 L33	5890	490	5400	91.68%
AY 0538 L33	1892716	36771	1855945	98.06%
AY 0539 L33	879961	16340	863621	98.14%
AY 0540 L33	481708	14736	466972	96.94%
AY_0541_L33	1967496	55173	1912323	97.20%
AY_0542_L33	1077431	24174	1053257	97.76%
AY 0543 L33	6353634	94225	6259409	98.52%
AY_0544_L33	5859854	109624	5750230	98.13%
AY_0549_L33	4878291	89082	4789209	98.17%
AY 0550 L33	3227215	119822	3107393	96.29%
AY_0551_L33	3203701	143443	3060258	95.52%
AY_0552_L33	3193340	472991	2720349	85.19%
AY 0554 L13	2804154	113246	2690908	95.96%
AY 0555 L13	7124327	356924	6767403	94.99%
AY_0556_L13	1500168	120948	1379220	91.94%
AY 0558 L13	2611256	276096	2335160	89.43%
AY_0559_L13	1441499	47070	1394429	96.73%
AY_0561_L13	1829504	56884	1772620	96.89%
AY_0562_L13	2343585	368104	1975481	84.29%
AY_0565_L13	5176919	563087	4613832	89.12%
AY_0566_L13	3661256	498202	3163054	86.39%
AY_0567_L31	687756	47079	640677	93.15%
AY_0568_L31	4348560	96212	4252348	97.79%
AY_0569_L31	3310648	669749	2640899	79.77%
AY_0570_L31	7080228	915324	6164904	87.07%
AY_0571_L31	114993	8448	106545	92.65%
AY_0576_L31	2694173	154731	2539442	94.26%
AY_0577_L31	1410711	82573	1328138	94.15%
AY_0578_L31	1984256	38764	1945492	98.05%
AY_0579_L31	2140923	254894	1886029	88.09%
AY_0580_L31	3065004	78666	2986338	97.43%
AY_0581_L31	2867213	86791	2780422	96.97%
BA_0226_L12	2677105	218544	2458561	91.84%
BA_0228_L12	2916531	1859858	1056673	36.23%
BA_0230_L12	3246188	959548	2286640	70.44%
BA_0231_L12	7917537	5188455	2729082	34.47%
BA_0233_L12	1283305	840658	442647	34.49%
BA_0234_L12	1180449	588438	592011	50.15%
BA_0238_L12	2554992	1381235	1173757	45.94%
BA_0241_L11	5093388	4097014	996374	19.56%
BA_0242_L11	8644403	6160893	2483510	28.73%
BA_0243_L11	5178870	4388425	790445	15.26%
BA_0244_L11	7409042	5098903	2310139	31.18%

BA_0245_L11	7462989	5928623	1534366	20.56%
BA_0246_L11	10796509	9028863	1767646	16.37%
BA_0247_L11	5439641	4488639	951002	17.48%
BA_0248_L11	17247133	14947305	2299828	13.33%
BA_0249_L13	11118476	9389223	1729253	15.55%
BA_0250_L13	5565397	4069417	1495980	26.88%
BA_0251_L13	7711213	6325069	1386144	17.98%
BA_0252_L13	4159245	2986536	1172709	28.20%
BA_0253_L13	2322659	1879615	443044	19.07%
BA_0254_L13	4944232	2944975	1999257	40.44%
BA_0255_L13	7713103	6578328	1134775	14.71%
BA_0256_L13	4069527	2934599	1134928	27.89%
BA_0258_L13	4879955	4165057	714898	14.65%
BA_0259_L14	3617104	2741387	875717	24.21%
BA_0260_L14	4540547	3546045	994502	21.90%
BA_0261_L14	3142399	1216716	1925683	61.28%
CA_0286_L11	2441052	1762410	678642	27.80%
CA_0294_L11	977661	177063	800598	81.89%
CA_0295_L11	1940618	209896	1730722	89.18%
CA_0296_L11	723404	105808	617596	85.37%
CA_0300_L11	1171358	419413	751945	64.19%
CA_0301_L11	1665628	308148	1357480	81.50%
CA_0309_L13	1209442	702867	506575	41.89%
CA_0313_L13	1679083	781811	897272	53.44%
CA_0314_L12	11980	1745	10235	85.43%
CA_0319_L12	1659255	112134	1547121	93.24%
DA_0065_L11	3708349	190877	3517472	94.85%
DA_0067_L11	1201824	37074	1164750	96.92%
DA_0068_L11	2717395	61800	2655595	97.73%
DA_0069_L11	1931121	92369	1838752	95.22%
DA_0070_L11	3868737	153898	3714839	96.02%
DA_0071_L11	576084	59765	516319	89.63%
DA_0072_L11	3878838	128396	3750442	96.69%
DA_0073_L11	1340303	46303	1294000	96.55%
DA_0075_L11	1696049	95933	1600116	94.34%
DA_0076_L11	355679	18765	336914	94.72%
DA_0077_L11	195989	5612	190377	97.14%
DA_0079_L11	586683	42120	544563	92.82%
DA_0082_L11	3477088	166692	3310396	95.21%
DA_0083_L11	1469296	78929	1390367	94.63%
DA_0084_L11	1087425	66394	1021031	93.89%
DA_0085_L11	844215	44402	799813	94.74%
DA_0086_L11	555942	38590	517352	93.06%
DA_0087_L11	1090286	58753	1031533	94.61%
DA_0088_L11	1870741	85956	1784785	95.41%
DA_0089_L11	4439840	385784	4054056	91.31%
DA_0090_L11	1200117	60484	1139633	94.96%
DA_0091_L11	1929645	111829	1817816	94.20%

DA_0092_L11	739145	59205	679940	91.99%
DA_0093_L11	979005	63400	915605	93.52%
DA_0094_L11	4688615	201502	4487113	95.70%
DA_0098_L11	2160106	54974	2105132	97.46%
DA_0099_L11	728037	20702	707335	97.16%
DA_0102_L11	1670088	93091	1576997	94.43%
DA_0103_L11	5276205	122307	5153898	97.68%
DA_0104_L11	2383557	162608	2220949	93.18%
EN_0163_L11	3058246	469067	2589179	84.66%
EN_0165_L11	3368181	178900	3189281	94.69%
EN_0166_L11	174675	23010	151665	86.83%
EN_0167_L11	561952	51154	510798	90.90%
EN_0170_L11	1586688	62079	1524609	96.09%
EN_0171_L11	2358147	45798	2312349	98.06%
EN_0172_L11	1447947	114292	1333655	92.11%
EN_0175_L11	199421	12425	186996	93.77%
EN_0176_L11	2119523	111732	2007791	94.73%
EN_0179_L11	441234	37582	403652	91.48%
GQ_0180_L11	1122754	60341	1062413	94.63%
GQ_0182_L11	1531097	150820	1380277	90.15%
GQ_0184_L11	1962503	171915	1790588	91.24%
GQ_0186_L11	1556801	81931	1474870	94.74%
GQ_0189_L11	1620334	128002	1492332	92.10%
GQ_0190_L11	1058436	87724	970712	91.71%
GQ_0191_L11	3573292	208366	3364926	94.17%
GQ_0192_L11	962302	45090	917212	95.31%
GQ_0193_L11	1526793	133890	1392903	91.23%
GQ_0195_L11	1678567	129037	1549530	92.31%
GQ_0196_L11	7275588	207801	7067787	97.14%
GQ_0197_L11	852252	34446	817806	95.96%
GQ_0198_L11	1124474	84539	1039935	92.48%
GQ_0199_L11	1576696	177087	1399609	88.77%
LA_0586_L21	1131093	105294	1025799	90.69%
LA_0587_L21	589205	34355	554850	94.17%
LA_0589_L21	1640940	73012	1567928	95.55%
LA_0590_L21	211015	18005	193010	91.47%
LA_0594_L21	2264838	181799	2083039	91.97%
LA_0595_L21	1221106	94840	1126266	92.23%
LA_0598_L21	1172504	87512	1084992	92.54%
LA_0599_L21	3571579	209263	3362316	94.14%
LA_0601_L21	229579	23064	206515	89.95%
LA_0605_L21	664179	33671	630508	94.93%
LA_0612_L21	298253	22763	275490	92.37%
LA_0613_L21	1258512	67488	1191024	94.64%
LA_0614_L21	690890	81091	609799	88.26%
LA_0615_L21	4686980	405610	4281370	91.35%
LA_0625_L21	1597434	44057	1553377	97.24%
LO_0105_L11	1553550	44792	1508758	97.12%

LO_0107_L11	838405	64774	773631	92.27%
LO_0108_L11	1005612	96283	909329	90.43%
LO_0109_L11	1060280	61452	998828	94.20%
LO_0110_L11	761525	68167	693358	91.05%
LO_0115_L11	673332	35768	637564	94.69%
LO_0116_L11	3005293	45792	2959501	98.48%
LO_0117_L11	766493	49533	716960	93.54%
LO_0119_L11	2424904	147052	2277852	93.94%
LO_0120_L11	2380122	103562	2276560	95.65%
LO_0121_L11	33162	2469	30693	92.55%
LO_0122_L11	3413419	291386	3122033	91.46%
LO_0123_L11	5702067	139093	5562974	97.56%
LO_0124_L11	2641935	337454	2304481	87.23%
LO_0125_L11	3381391	625477	2755914	81.50%
LO_0126_L11	1866203	111049	1755154	94.05%
LO_0127_L11	6804391	246357	6558034	96.38%
LO_0128_L11	1706849	176273	1530576	89.67%
LO_0129_L11	1531211	189522	1341689	87.62%
LO_0130_L11	20959	1863	19096	91.11%
LO_0131_L11	1917329	195163	1722166	89.82%
LO_0132_L11	52757	4868	47889	90.77%
LO_0133_L11	2338755	327711	2011044	85.99%
LO_0136_L11	953503	38273	915230	95.99%
LO_0137_L11	721125	40972	680153	94.32%
LO_0139_L11	378298	33652	344646	91.10%
LO_0146_L11	823806	91070	732736	88.95%
LO_0148_L11	803708	59533	744175	92.59%
LO_0149_L11	1561029	189350	1371679	87.87%
LO_0157_L11	1625720	500889	1124831	69.19%
LO_0158_L11	1048013	91763	956250	91.24%
LO_0159_L11	93187	25115	68072	73.05%
PL_0001_L11	2448866	206160	2242706	91.58%
PL_0009_L11	174426	12705	161721	92.72%
PL_0012_L11	182694	22699	159995	87.58%
PL_0014_L11	9685292	1449290	8236002	85.04%
PL_0021_L11	3320262	236258	3084004	92.88%
PL_0022_L11	2887836	213752	2674084	92.60%
PL_0023_L11	37123	2659	34464	92.84%
PL_0329_L21	449475	49788	399687	88.92%
PL_0332_L21	1147354	413687	733667	63.94%
PL_0333_L21	1053934	56530	997404	94.64%
PL_0334_L21	500528	73035	427493	85.41%
PL_0335_L21	176528	104518	72010	40.79%
PL_0338_L21	431046	140710	290336	67.36%
PL_0344_L21	931276	486753	444523	47.73%
PL_0368_L31	874383	91626	782757	89.52%
PL_0371_L31	357219	72743	284476	79.64%
PL_0389_L31	1589551	156603	1432948	90.15%

RI_0036_L11	1301610	58081	1243529	95.54%
RI_0045_L11	1510366	86338	1424028	94.28%
RI_0046_L11	1175759	70857	1104902	93.97%
RI_0048_L11	672152	81763	590389	87.84%
RI_0049_L11	33384	3379	30005	89.88%
RI_0051_L11	12586636	2406671	10179965	80.88%
RI_0053_L11	109987	31512	78475	71.35%
RI_0054_L11	8902630	1275079	7627551	85.68%
RI_0059_L11	715051	30136	684915	95.79%
RI_0060_L11	1092410	90268	1002142	91.74%
RI_0061_L11	2755179	170203	2584976	93.82%
RI_0062_L11	58961	4661	54300	92.09%
RI_0063_L11	841046	36555	804491	95.65%
RI_0064_L11	1648546	154488	1494058	90.63%
YE_0202_L11	2025836	292323	1733513	85.57%
YE_0209_L11	708559	49765	658794	92.98%
YE_0210_L11	838059	417160	420899	50.22%
YE_0214_L11	921739	42476	879263	95.39%
YE_0262_L12	4552170	4128561	423609	9.31%
YE_0263_L12	3475413	2530335	945078	27.19%
YE_0264_L12	3547747	2767859	779888	21.98%
YE_0266_L12	3091612	2638565	453047	14.65%
YE_0267_L12	5333908	4716993	616915	11.57%
YE_0268_L12	8977127	7081317	1895810	21.12%
YE_0270_L12	6511803	5701063	810740	12.45%
YE_0271_L12	4722487	4092507	629980	13.34%
YE_0272_L13	10423036	9236682	1186354	11.38%
YE_0273_L13	5188465	4534358	654107	12.61%
YE_0274_L13	7507233	6407581	1099652	14.65%
YE_0275_L13	3789483	3134696	654787	17.28%
YE_0276_L13	12336143	10926455	1409688	11.43%
YE_0277_L14	7084365	6067857	1016508	14.35%
YE_0278_L14	5749069	5312602	436467	7.59%
YE_0279_L14	7969055	6720417	1248638	15.67%
YE_0280_L14	10919928	9081844	1838084	16.83%
Total	754092444	255472730	498619714	66%

Selección e identificación de SNPs

El análisis en *STACKS* entrego un total de 1911 loci, los cuales fueron combinados en formato *Genepop* v4.5.1 (Raymond & Rousset 1995, Rousset 2008) para posteriores análisis de missing data, y análisis poblacionales.

Filtrado de loci SNPs con alto porcentaje de missing data

Una vez obtenido los SNPs utilizando el protocolo de *STACKS*, se obtuvieron en total 1911 SNPs polimórficos para los 285 individuos. Debido a la presencia de sitios sin información molecular en algunos individuos (missing data por individuo Tabla 17; y missing data por loci Tabla 18), fue necesario realizar un análisis y posterior filtrado tanto de individuos como de loci con missinf data para evitar sesgos en los resultados.

Finalmente para los análisis estadísticos poblacionales se trabajó con dos set de datos con la finalidad de evaluar si existiría algún sesgo por mayor o menos presencia de missing data. El primer dataset fue construido utilizando como valor umbral de tolerancia de información faltante por loci de hasta un 20%, reteniendo 1520 loci de los 1911 loci iniciales (79.5%). El segundo dataset fue construido utilizando como valor umbral de tolerancia de información faltante por loci de los 1911 loci iniciales (32.8%). Sólo en el caso del análisis STRUCTURE se evaluó una tercera base de datos con valor umbral de tolerancia de información faltante por loci de hasta un 5%, reteniendo 148 loci.

Tabla 17. Datos faltantes (r	missing data)	por individuo y	y por localidad	de muestreo.
------------------------------	---------------	-----------------	-----------------	--------------

Localidad	ID	Missing data
1	1	0,081109367
1	2	0,129774987
1	3	0,214024071
1	4	0,218733647
1	5	0,14599686
1	6	0,13762428
1	7	0,146520147
1	8	0,568288854
1	9	0,14599686
1	10	0,133437991
1	11	0,183673469
1	12	0,646258503
1	13	0,338566196
1	14	0,51596023
1	15	0,209314495
1	16	0,290423862
1	17	0,238095238
1	18	0,128728414
1	19	0,785975929
1	20	0,463631606

1	21	0.132914704
1	22	0.757195186
1	23	0 206698064
1	24	0 149659864
1	25	0 115122972
1	26	0 367346939
1	2.7	0 122972266
1	28	0 222919937
1	20	0 116169545
1	30	0 161172161
1	31	0 354264783
1	32	0 114599686
1	33	0 132391418
1	34	0 162218734
1	35	0 5572998/3
1	36	0.67451596
1	37	0.438513867
1	38	0.138670853
1	20	0.131868133
1	40	0.208215504
1	40	0,508215394
1	41	0,131733009
1	42	0,14399080
1	43	0,110930082
1	44	0,119832348
1	45	0,11/21011/
1	40	0,1/38241/0
1	4/	0,148090005
1	48	0,123493532
l	49	0,130298273
l	50	0,182103611
1	51	0,1140/64
l	52	0,107/96965
1	53	0,139194139
1	54	0,226582941
1	55	0,46310832
1	56	0,133961277
1	57	0,465724751
1	58	0,200941915
1	59	0,1140764
1	60	0,176347462
1	61	0,34903192
1	62	0,15018315
1	63	0,166405024

1	64	0,232862376
1	65	0,148613291
1	66	0,161172161
1	67	0,139717425
1	68	0,14181057
1	69	0,14181057
1	70	0,112506541
1	71	0,188383046
1	72	0,124542125
1	73	0,106227106
1	74	0,119832548
1	75	0,135007849
1	76	0,126635269
1	77	0,116169545
1	78	0,105180534
1	79	0,512297227
1	80	0,135531136
1	81	0,876504448
1	82	0,124542125
1	83	0,134484563
1	84	0,19047619
1	85	0,126635269
1	86	0,447933019
1	87	0,102564103
1	88	0,081632653
2	89	0,974358974
2	90	0,987964417
2	91	0,976452119
2	92	0,975405547
2	93	0,973312402
2	94	0,975405547
2	95	0,976975406
2	96	0,974882261
2	97	0,976975406
2	98	0,967556253
2	99	0,972789116
2	100	0,979591837
2	101	0,991104134
2	102	0,98744113
2	103	0,980115123
2	104	0,98325484
2	105	0,978545264
2	106	0,990580848

2	107	0,972265829
2	108	0,972265829
2	109	0,984824699
2	110	0,982731554
2	111	0,982731554
2	112	0,976975406
2	113	0,968602826
2	114	0,983778127
2	115	0,986394558
3	116	0,949764521
3	117	0,766614338
3	118	0,904238619
3	119	0,863945578
3	120	0,779696494
3	121	0,93877551
3	122	0,863422292
3	123	0,766091052
3	124	0,764521193
4	125	0,367346939
4	126	0,178963893
4	127	0,110936682
4	128	0,239665097
4	129	0,142857143
4	130	0,900052329
4	131	0,160125589
4	132	0,162218734
4	133	0,267922554
4	134	0,562532705
4	135	0,150706436
4	136	0,227106227
4	137	0,32967033
4	138	0,301412873
4	139	0,620094192
4	140	0,295656724
4	141	0,177394035
4	142	0,193615908
4	143	0,297749869
4	144	0,192046049
4	145	0,800627943
4	146	0,434850863
4	147	0,167451596
4	148	0,105180534
4	149	0,231292517

4	150	0,205651491
4	151	0,186813187
4	152	0,135531136
5	153	0,851909995
5	154	0,162218734
5	155	0,748822606
5	156	0,115646259
5	157	0,16274202
5	158	0,189429618
5	159	0,146520147
5	160	0,697017268
6	161	0,143380429
6	162	0,684981685
6	163	0,132914704
6	164	0,126111983
6	165	0,175824176
6	166	0,331763475
6	167	0,10151753
6	168	0,154892726
6	169	0,266875981
6	170	0,20303506
6	171	0,113553114
6	172	0,180010466
6	173	0,271585557
6	174	0,839351125
7	175	0,564102564
7	176	0,453689168
7	177	0,185766614
7	178	0,418105704
7	179	0,379905808
7	180	0,267399267
7	181	0,143380429
7	182	0,40188383
7	183	0,165881737
7	184	0,563579278
7	185	0,976975406
7	186	0,183150183
8	187	0,164835165
8	188	0,922030351
8	189	0,849293564
8	190	0,253793825
8	191	0,424385139
8	192	0,48403977

8	193	0,149659864
8	194	0,318158032
8	195	0,242804814
8	196	0,185243328
8	197	0,154892726
8	198	0,218733647
8	199	0,613814757
8	200	0,927263213
8	201	0,173731031
8	202	0,254317111
8	203	0,407116693
8	204	0,354788069
8	205	0,173731031
8	206	0,394034537
8	207	0,253793825
8	208	0,355311355
8	209	0,537938252
8	210	0,457875458
8	211	0,608581894
8	212	0,230769231
8	213	0,342229199
9	214	0,42700157
9	215	0,747252747
9	216	0,903715332
9	217	0,652537938
9	218	0,43118786
9	219	0,388801675
9	220	0,624280481
9	221	0,512297227
9	222	0,563055992
9	223	0,639979069
10	224	0,222919937
10	225	0,294086866
10	226	0,374672946
10	227	0,68707483
10	228	0,210361068
10	229	0,186289901
10	230	0,527995814
10	231	0,552066981
10	232	0,222919937
10	233	0,287807431
10	234	0,573521716
11	235	0,984301413

11	236	0,986394558
11	237	0,986917844
11	238	0,991104134
11	239	0,984824699
11	240	0,988487703
11	241	0,985347985
11	242	0,986917844
11	243	0,99162742
11	244	0,994767138
11	245	0,992673993
11	246	0,984824699
11	247	0,98744113
11	248	0,993720565
11	249	0,996336996
11	250	0,986917844
11	251	0,990057561
11	252	0,985347985
11	253	0,993720565
11	254	0,993720565
11	255	0,990580848

Tabla 18. Datos faltantes (missing data) por loci.

ID	Missing data locus
1	0,415686275
2	0,42745098
3	0,42745098
4	0,368627451
5	0,415686275
6	0,356862745
7	0,423529412
8	0,517647059
9	0,48627451
10	0,396078431
11	0,494117647
12	0,454901961
13	0,396078431
14	0,498039216
15	0,37254902
16	0,517647059
17	0,505882353
18	0,729411765
19	0,447058824
20	0,470588235
21	0,439215686
22	0,42745098
23	0,309803922
24	0,494117647
25	0,470588235
26	0,529411765
27	0,466666667
28	0,423529412
29	0,490196078
30	0,423529412
31	0,533333333
32	0,454901961
33	0,454901961
34	0,466666667
35	0,454901961
36	0,494117647
37	0,4
38	0,364705882
39	0,4

40	0,403921569
41	0,482352941
42	0,403921569
43	0,396078431
44	0,439215686
45	0,396078431
46	0,509803922
47	0,51372549
48	0,478431373
49	0,423529412
50	0,466666667
51	0,423529412
52	0,517647059
53	0,356862745
54	0,403921569
55	0,501960784
56	0,42745098
57	0,411764706
58	0,419607843
59	0,454901961
60	0,454901961
61	0,396078431
62	0,48627451
63	0,509803922
64	0,419607843
65	0,337254902
66	0,462745098
67	0,458823529
68	0,376470588
69	0,337254902
70	0,549019608
71	0,443137255
72	0,498039216
73	0,396078431
74	0,364705882
75	0,482352941
76	0,443137255
77	0,474509804
78	0,564705882
79	0,431372549
80	0,537254902
81	0,509803922
82	0,419607843
83	0,447058824
-----	-------------
84	0,490196078
85	0,435294118
86	0,454901961
87	0,454901961
88	0,415686275
89	0,407843137
90	0,494117647
91	0,454901961
92	0,498039216
93	0,423529412
94	0,521568627
95	0,454901961
96	0,568627451
97	0,384313725
98	0,443137255
99	0,349019608
100	0,48627451
101	0,376470588
102	0,352941176
103	0,474509804
104	0,470588235
105	0,380392157
106	0,388235294
107	0,431372549
108	0,509803922
109	0,305882353
110	0,443137255
111	0,470588235
112	0,447058824
113	0,443137255
114	0,494117647
115	0,439215686
116	0,462745098
117	0,443137255
118	0,396078431
119	0,396078431
120	0,380392157
121	0,411764706
122	0,407843137
123	0,454901961
124	0,447058824
125	0,407843137

126	0,309803922
127	0,545098039
128	0,419607843
129	0,474509804
130	0,509803922
131	0,470588235
132	0,505882353
133	0,509803922
134	0,694117647
135	0,454901961
136	0,380392157
137	0,505882353
138	0,462745098
139	0,447058824
140	0,545098039
141	0,411764706
142	0,454901961
143	0,407843137
144	0,470588235
145	0,580392157
146	0,435294118
147	0,498039216
148	0,521568627
149	0,376470588
150	0,392156863
151	0,454901961
152	0,423529412
153	0,454901961
154	0,376470588
155	0,482352941
156	0,431372549
157	0,647058824
158	0,376470588
159	0,435294118
160	0,51372549
161	0,396078431
162	0,4666666667
163	0,517647059
164	0,454901961
165	0,356862745
166	0,533333333
167	0,529411765
168	0,482352941

169	0,454901961
170	0,345098039
171	0,435294118
172	0,580392157
173	0,474509804
174	0,462745098
175	0,415686275
176	0,345098039
177	0,349019608
178	0,556862745
179	0,474509804
180	0,376470588
181	0,411764706
182	0,478431373
183	0,458823529
184	0,48627451
185	0,325490196
186	0,470588235
187	0,482352941
188	0,462745098
189	0,423529412
190	0,682352941
191	0,537254902
192	0,474509804
193	0,517647059
194	0,423529412
195	0,4
196	0,384313725
197	0,42745098
198	0,48627451
199	0,396078431
200	0,439215686
201	0,317647059
202	0,4
203	0,396078431
204	0,494117647
205	0,411764706
206	0,423529412
207	0,396078431
208	0,376470588
209	0,407843137
210	0,48627451
211	0,411764706

212	0,360784314
213	0,384313725
214	0,443137255
215	0,423529412
216	0,501960784
217	0,419607843
218	0,48627451
219	0,478431373
220	0,454901961
221	0,431372549
222	0,462745098
223	0,439215686
224	0,482352941
225	0,376470588
226	0,447058824
227	0,690196078
228	0,490196078
229	0,4
230	0,517647059
231	0,494117647
232	0,474509804
233	0,368627451
234	0,525490196
235	0,490196078
236	0,501960784
237	0,42745098
238	0,450980392
239	0,474509804
240	0,403921569
241	0,450980392
242	0,462745098
243	0,474509804
244	0,360784314
245	0,435294118
246	0,458823529
247	0,447058824
248	0,470588235
249	0,403921569
250	0,494117647
251	0,423529412
252	0,403921569
253	0,364705882
254	0,415686275

255	0,439215686
256	0,380392157
257	0,388235294
258	0,537254902
259	0,450980392
260	0,462745098
261	0,478431373
262	0,411764706
263	0,517647059
264	0,529411765
265	0,705882353
266	0,482352941
267	0,505882353
268	0,592156863
269	0,423529412
270	0,470588235
271	0,592156863
272	0,435294118
273	0,356862745
274	0,439215686
275	0,349019608
276	0,415686275
277	0,450980392
278	0,482352941
279	0,4
280	0,419607843
281	0,356862745
282	0,380392157
283	0,423529412
284	0,462745098
285	0,435294118
286	0,431372549
287	0,4
288	0,407843137
289	0,470588235
290	0,352941176
291	0,431372549
292	0,431372549
293	0,458823529
294	0,388235294
295	0,403921569
296	0,37254902
297	0,6666666667

298	0,498039216
299	0,494117647
300	0,349019608
301	0,470588235
302	0,4
303	0,403921569
304	0,435294118
305	0,396078431
306	0,407843137
307	0,525490196
308	0,384313725
309	0,419607843
310	0,435294118
311	0,48627451
312	0,443137255
313	0,498039216
314	0,376470588
315	0,443137255
316	0,317647059
317	0,470588235
318	0,4
319	0,443137255
320	0,501960784
321	0,48627451
322	0,541176471
323	0,470588235
324	0,501960784
325	0,415686275
326	0,42745098
327	0,454901961
328	0,443137255
329	0,341176471
330	0,407843137
331	0,447058824
332	0,349019608
333	0,584313725
334	0,482352941
335	0,388235294
336	0,31372549
337	0,501960784
338	0,498039216
339	0,494117647
340	0,360784314

341	0,466666667
342	0,4
343	0,4
344	0,392156863
345	0,407843137
346	0,419607843
347	0,42745098
348	0,521568627
349	0,447058824
350	0,403921569
351	0,349019608
352	0,305882353
353	0,458823529
354	0,443137255
355	0,48627451
356	0,450980392
357	0,31372549
358	0,48627451
359	0,501960784
360	0,439215686
361	0,447058824
362	0,450980392
363	0,466666667
364	0,454901961
365	0,431372549
366	0,505882353
367	0,329411765
368	0,376470588
369	0,4
370	0,407843137
371	0,466666667
372	0,490196078
373	0,498039216
374	0,356862745
375	0,384313725
376	0,537254902
377	0,403921569
378	0,466666667
379	0,450980392
380	0,549019608
381	0,458823529
382	0,482352941
383	0,443137255

384	0,450980392
385	0,498039216
386	0,368627451
387	0,42745098
388	0,470588235
389	0,498039216
390	0,4
391	0,564705882
392	0,454901961
393	0,376470588
394	0,329411765
395	0,42745098
396	0,447058824
397	0,376470588
398	0,51372549
399	0,470588235
400	0,407843137
401	0,42745098
402	0,388235294
403	0,478431373
404	0,454901961
405	0,341176471
406	0,482352941
407	0,423529412
408	0,466666667
409	0,447058824
410	0,368627451
411	0,450980392
412	0,478431373
413	0,431372549
414	0,466666667
415	0,478431373
416	0,435294118
417	0,525490196
418	0,549019608
419	0,478431373
420	0,549019608
421	0,450980392
422	0,494117647
423	0,37254902
424	0,48627451
425	0,517647059
426	0,4

427	0,439215686
428	0,478431373
429	0,521568627
430	0,517647059
431	0,419607843
432	0,407843137
433	0,415686275
434	0,403921569
435	0,411764706
436	0,384313725
437	0,388235294
438	0,474509804
439	0,501960784
440	0,419607843
441	0,509803922
442	0,482352941
443	0,392156863
444	0,501960784
445	0,458823529
446	0,42745098
447	0,458823529
448	0,447058824
449	0,423529412
450	0,478431373
451	0,376470588
452	0,482352941
453	0,494117647
454	0,474509804
455	0,368627451
456	0,533333333
457	0,51372549
458	0,435294118
459	0,462745098
460	0,435294118
461	0,301960784
462	0,498039216
463	0,423529412
464	0,360784314
465	0,498039216
466	0,396078431
467	0,517647059
468	0,341176471
469	0,376470588

470	0,478431373
471	0,431372549
472	0,341176471
473	0,494117647
474	0,478431373
475	0,443137255
476	0,545098039
477	0,4
478	0,356862745
479	0,482352941
480	0,407843137
481	0,388235294
482	0,356862745
483	0,494117647
484	0,529411765
485	0,407843137
486	0,415686275
487	0,352941176
488	0,494117647
489	0,482352941
490	0,462745098
491	0,494117647
492	0,392156863
493	0,407843137
494	0,458823529
495	0,37254902
496	0,443137255
497	0,407843137
498	0,48627451
499	0,368627451
500	0,454901961
501	0,368627451
502	0,51372549
503	0,4
504	0,454901961
505	0,415686275
506	0,42745098
507	0,509803922
508	0,435294118
509	0,380392157
510	0,462745098
511	0,388235294
512	0,411764706

513	0,443137255
514	0,431372549
515	0,447058824
516	0,466666667
517	0,439215686
518	0,462745098
519	0,443137255
520	0,384313725
521	0,462745098
522	0,423529412
523	0,505882353
524	0,423529412
525	0,403921569
526	0,329411765
527	0,447058824
528	0,48627451
529	0,411764706
530	0,309803922
531	0,439215686
532	0,42745098
533	0,396078431
534	0,360784314
535	0,423529412
536	0,466666667
537	0,490196078
538	0,368627451
539	0,454901961
540	0,356862745
541	0,490196078
542	0,388235294
543	0,403921569
544	0,470588235
545	0,37254902
546	0,388235294
547	0,431372549
548	0,494117647
549	0,447058824
550	0,4
551	0,470588235
552	0,505882353
553	0,411764706
554	0,470588235
555	0,501960784

556	0,462745098
557	0,356862745
558	0,360784314
559	0,450980392
560	0,458823529
561	0,474509804
562	0,470588235
563	0,419607843
564	0,458823529
565	0,333333333
566	0,4
567	0,419607843
568	0,529411765
569	0,376470588
570	0,454901961
571	0,360784314
572	0,454901961
573	0,478431373
574	0,552941176
575	0,443137255
576	0,458823529
577	0,396078431
578	0,48627451
579	0,454901961
580	0,419607843
581	0,411764706
582	0,529411765
583	0,466666667
584	0,360784314
585	0,51372549
586	0,482352941
587	0,403921569
588	0,423529412
589	0,541176471
590	0,529411765
591	0,431372549
592	0,556862745
593	0,435294118
594	0,388235294
595	0,333333333
596	0,458823529
597	0,396078431
598	0,470588235

599	0,37254902
600	0,411764706
601	0,360784314
602	0,431372549
603	0,580392157
604	0,411764706
605	0,419607843
606	0,478431373
607	0,490196078
608	0,568627451
609	0,443137255
610	0,48627451
611	0,403921569
612	0,450980392
613	0,411764706
614	0,4
615	0,447058824
616	0,439215686
617	0,407843137
618	0,431372549
619	0,4
620	0,388235294
621	0,498039216
622	0,454901961
623	0,498039216
624	0,435294118
625	0,435294118
626	0,392156863
627	0,411764706
628	0,48627451
629	0,482352941
630	0,450980392
631	0,505882353
632	0,458823529
633	0,454901961
634	0,48627451
635	0,549019608
636	0,364705882
637	0,384313725
638	0,356862745
639	0,368627451
640	0,392156863
641	0,450980392

642	0,462745098
643	0,462745098
644	0,42745098
645	0,396078431
646	0,498039216
647	0,482352941
648	0,419607843
649	0,533333333
650	0,57254902
651	0,439215686
652	0,368627451
653	0,462745098
654	0,501960784
655	0,490196078
656	0,501960784
657	0,501960784
658	0,352941176
659	0,341176471
660	0,462745098
661	0,431372549
662	0,325490196
663	0,48627451
664	0,501960784
665	0,443137255
666	0,325490196
667	0,51372549
668	0,411764706
669	0,447058824
670	0,4
671	0,419607843
672	0,364705882
673	0,360784314
674	0,392156863
675	0,474509804
676	0,494117647
677	0,352941176
678	0,470588235
679	0,431372549
680	0,458823529
681	0,380392157
682	0,388235294
683	0,443137255
684	0,415686275

685	0,450980392
686	0,443137255
687	0,380392157
688	0,509803922
689	0,447058824
690	0,349019608
691	0,482352941
692	0,423529412
693	0,325490196
694	0,447058824
695	0,407843137
696	0,42745098
697	0,482352941
698	0,482352941
699	0,494117647
700	0,341176471
701	0,407843137
702	0,533333333
703	0,376470588
704	0,501960784
705	0,431372549
706	0,423529412
707	0,411764706
708	0,42745098
709	0,419607843
710	0,415686275
711	0,392156863
712	0,419607843
713	0,352941176
714	0,447058824
715	0,4
716	0,356862745
717	0,529411765
718	0,411764706
719	0,360784314
720	0,462745098
721	0,419607843
722	0,337254902
723	0,4
724	0,431372549
725	0,360784314
726	0,533333333
727	0,423529412

728	0,403921569
729	0,419607843
730	0,411764706
731	0,450980392
732	0,380392157
733	0,478431373
734	0,439215686
735	0,392156863
736	0,360784314
737	0,364705882
738	0,490196078
739	0,450980392
740	0,360784314
741	0,439215686
742	0,525490196
743	0,478431373
744	0,48627451
745	0,321568627
746	0,48627451
747	0,537254902
748	0,462745098
749	0,407843137
750	0,435294118
751	0,478431373
752	0,447058824
753	0,498039216
754	0,478431373
755	0,509803922
756	0,478431373
757	0,407843137
758	0,450980392
759	0,505882353
760	0,447058824
761	0,411764706
762	0,309803922
763	0,376470588
764	0,458823529
765	0,501960784
766	0,498039216
767	0,439215686
768	0,345098039
769	0,537254902
770	0,388235294

771	0,380392157
772	0,517647059
773	0,403921569
774	0,376470588
775	0,482352941
776	0,42745098
777	0,474509804
778	0,435294118
779	0,349019608
780	0,443137255
781	0,435294118
782	0,42745098
783	0,415686275
784	0,447058824
785	0,458823529
786	0,388235294
787	0,415686275
788	0,415686275
789	0,423529412
790	0,407843137
791	0,490196078
792	0,396078431
793	0,490196078
794	0,42745098
795	0,37254902
796	0,384313725
797	0,325490196
798	0,447058824
799	0,458823529
800	0,674509804
801	0,545098039
802	0,478431373
803	0,501960784
804	0,454901961
805	0,454901961
806	0,447058824
807	0,337254902
808	0,482352941
809	0,458823529
810	0,380392157
811	0,478431373
812	0,443137255
813	0,525490196

814	0,490196078
815	0,431372549
816	0,525490196
817	0,42745098
818	0,415686275
819	0,447058824
820	0,454901961
821	0,509803922
822	0,4
823	0,705882353
824	0,388235294
825	0,490196078
826	0,525490196
827	0,450980392
828	0,380392157
829	0,447058824
830	0,376470588
831	0,337254902
832	0,478431373
833	0,443137255
834	0,443137255
835	0,482352941
836	0,352941176
837	0,4
838	0,42745098
839	0,454901961
840	0,568627451
841	0,360784314
842	0,552941176
843	0,494117647
844	0,403921569
845	0,368627451
846	0,470588235
847	0,403921569
848	0,498039216
849	0,478431373
850	0,501960784
851	0,439215686
852	0,435294118
853	0,368627451
854	0,419607843
855	0,447058824
856	0,415686275

857	0,450980392
858	0,525490196
859	0,411764706
860	0,494117647
861	0,450980392
862	0,411764706
863	0,454901961
864	0,341176471
865	0,454901961
866	0,462745098
867	0,37254902
868	0,57254902
869	0,478431373
870	0,431372549
871	0,407843137
872	0,505882353
873	0,478431373
874	0,439215686
875	0,490196078
876	0,352941176
877	0,466666667
878	0,450980392
879	0,462745098
880	0,517647059
881	0,337254902
882	0,37254902
883	0,478431373
884	0,360784314
885	0,392156863
886	0,368627451
887	0,4
888	0,462745098
889	0,454901961
890	0,435294118
891	0,592156863
892	0,396078431
893	0,501960784
894	0,411764706
895	0,525490196
896	0,478431373
897	0,403921569
898	0,439215686
899	0,368627451

900	0,396078431
901	0,439215686
902	0,360784314
903	0,447058824
904	0,376470588
905	0,474509804
906	0,415686275
907	0,321568627
908	0,450980392
909	0,396078431
910	0,458823529
911	0,403921569
912	0,454901961
913	0,435294118
914	0,360784314
915	0,545098039
916	0,407843137
917	0,356862745
918	0,411764706
919	0,439215686
920	0,509803922
921	0,556862745
922	0,392156863
923	0,470588235
924	0,435294118
925	0,345098039
926	0,458823529
927	0,478431373
928	0,525490196
929	0,525490196
930	0,423529412
931	0,407843137
932	0,42745098
933	0,458823529
934	0,462745098
935	0,360784314
936	0,388235294
937	0,411764706
938	0,317647059
939	0,545098039
940	0,309803922
941	0,545098039
942	0,384313725

943	0,482352941
944	0,478431373
945	0,490196078
946	0,31372549
947	0,447058824
948	0,447058824
949	0,458823529
950	0,384313725
951	0,388235294
952	0,498039216
953	0,505882353
954	0,384313725
955	0,384313725
956	0,494117647
957	0,48627451
958	0,419607843
959	0,415686275
960	0,380392157
961	0,407843137
962	0,431372549
963	0,490196078
964	0,384313725
965	0,376470588
966	0,458823529
967	0,431372549
968	0,443137255
969	0,501960784
970	0,48627451
971	0,431372549
972	0,384313725
973	0,42745098
974	0,392156863
975	0,439215686
976	0,415686275
977	0,407843137
978	0,462745098
979	0,392156863
980	0,392156863
981	0,478431373
982	0,517647059
983	0,450980392
984	0,447058824
985	0,470588235

986	0,57254902
987	0,470588235
988	0,592156863
989	0,435294118
990	0,435294118
991	0,521568627
992	0,423529412
993	0,466666667
994	0,454901961
995	0,435294118
996	0,435294118
997	0,392156863
998	0,470588235
999	0,443137255
1000	0,439215686
1001	0,623529412
1002	0,411764706
1003	0,450980392
1004	0,403921569
1005	0,396078431
1006	0,521568627
1007	0,501960784
1008	0,4
1009	0,396078431
1010	0,403921569
1011	0,4
1012	0,42745098
1013	0,325490196
1014	0,376470588
1015	0,490196078
1016	0,447058824
1017	0,498039216
1018	0,384313725
1019	0,443137255
1020	0,51372549
1021	0,439215686
1022	0,411764706
1023	0,352941176
1024	0,431372549
1025	0,360784314
1026	0,482352941
1027	0,48627451
1028	0,450980392

1029	0,533333333
1030	0,447058824
1031	0,384313725
1032	0,352941176
1033	0,529411765
1034	0,337254902
1035	0,556862745
1036	0,368627451
1037	0,466666667
1038	0,450980392
1039	0,443137255
1040	0,337254902
1041	0,517647059
1042	0,415686275
1043	0,368627451
1044	0,411764706
1045	0,443137255
1046	0,403921569
1047	0,345098039
1048	0,466666667
1049	0,698039216
1050	0,498039216
1051	0,51372549
1052	0,564705882
1053	0,447058824
1054	0,384313725
1055	0,435294118
1056	0,356862745
1057	0,447058824
1058	0,403921569
1059	0,380392157
1060	0,447058824
1061	0,360784314
1062	0,454901961
1063	0,37254902
1064	0,498039216
1065	0,450980392
1066	0,396078431
1067	0,4
1068	0,458823529
1069	0,470588235
1070	0,48627451
1071	0,498039216

1072	0,450980392
1073	0,345098039
1074	0,466666667
1075	0,364705882
1076	0,450980392
1077	0,470588235
1078	0,4
1079	0,388235294
1080	0,329411765
1081	0,396078431
1082	0,51372549
1083	0,4
1084	0,447058824
1085	0,419607843
1086	0,474509804
1087	0,388235294
1088	0,533333333
1089	0,388235294
1090	0,415686275
1091	0,419607843
1092	0,415686275
1093	0,458823529
1094	0,396078431
1095	0,42745098
1096	0,317647059
1097	0,439215686
1098	0,447058824
1099	0,458823529
1100	0,419607843
1101	0,450980392
1102	0,447058824
1103	0,376470588
1104	0,466666667
1105	0,447058824
1106	0,48627451
1107	0,564705882
1108	0,439215686
1109	0,603921569
1110	0,462745098
1111	0,384313725
1112	0,407843137
1113	0,498039216
1114	0,419607843

1115	0,745098039
1116	0,364705882
1117	0,415686275
1118	0,462745098
1119	0,458823529
1120	0,48627451
1121	0,380392157
1122	0,439215686
1123	0,478431373
1124	0,439215686
1125	0,37254902
1126	0,337254902
1127	0,462745098
1128	0,392156863
1129	0,415686275
1130	0,482352941
1131	0,470588235
1132	0,4
1133	0,549019608
1134	0,439215686
1135	0,423529412
1136	0,501960784
1137	0,521568627
1138	0,470588235
1139	0,388235294
1140	0,482352941
1141	0,403921569
1142	0,454901961
1143	0,447058824
1144	0,407843137
1145	0,756862745
1146	0,517647059
1147	0,450980392
1148	0,407843137
1149	0,42745098
1150	0,403921569
1151	0,380392157
1152	0,494117647
1153	0,6666666667
1154	0,517647059
1155	0,525490196
1156	0,419607843
1157	0,411764706

1158	0,364705882
1159	0,407843137
1160	0,349019608
1161	0,431372549
1162	0,517647059
1163	0,443137255
1164	0,478431373
1165	0,482352941
1166	0,498039216
1167	0,494117647
1168	0,443137255
1169	0,48627451
1170	0,51372549
1171	0,48627451
1172	0,447058824
1173	0,415686275
1174	0,341176471
1175	0,423529412
1176	0,42745098
1177	0,443137255
1178	0,505882353
1179	0,4
1180	0,376470588
1181	0,376470588
1182	0,435294118
1183	0,37254902
1184	0,447058824
1185	0,541176471
1186	0,576470588
1187	0,478431373
1188	0,443137255
1189	0,435294118
1190	0,462745098
1191	0,458823529
1192	0,392156863
1193	0,411764706
1194	0,392156863
1195	0,494117647
1196	0,474509804
1197	0,525490196
1198	0,341176471
1199	0,407843137
1200	0,4

1201	0,356862745
1202	0,48627451
1203	0,541176471
1204	0,490196078
1205	0,454901961
1206	0,462745098
1207	0,474509804
1208	0,388235294
1209	0,4
1210	0,415686275
1211	0,454901961
1212	0,450980392
1213	0,466666667
1214	0,752941176
1215	0,490196078
1216	0,51372549
1217	0,345098039
1218	0,537254902
1219	0,521568627
1220	0,482352941
1221	0,470588235
1222	0,419607843
1223	0,592156863
1224	0,462745098
1225	0,419607843
1226	0,415686275
1227	0,360784314
1228	0,450980392
1229	0,443137255
1230	0,403921569
1231	0,490196078
1232	0,380392157
1233	0,525490196
1234	0,349019608
1235	0,458823529
1236	0,450980392
1237	0,474509804
1238	0,552941176
1239	0,368627451
1240	0,462745098
1241	0,568627451
1242	0,431372549
1243	0,454901961

1244	0,4
1245	0,552941176
1246	0,368627451
1247	0,466666667
1248	0,498039216
1249	0,415686275
1250	0,454901961
1251	0,411764706
1252	0,376470588
1253	0,419607843
1254	0,403921569
1255	0,439215686
1256	0,615686275
1257	0,549019608
1258	0,380392157
1259	0,439215686
1260	0,380392157
1261	0,51372549
1262	0,4
1263	0,498039216
1264	0,607843137
1265	0,482352941
1266	0,549019608
1267	0,435294118
1268	0,388235294
1269	0,466666667
1270	0,396078431
1271	0,521568627
1272	0,396078431
1273	0,392156863
1274	0,419607843
1275	0,501960784
1276	0,380392157
1277	0,388235294
1278	0,525490196
1279	0,419607843
1280	0,564705882
1281	0,407843137
1282	0,396078431
1283	0,392156863
1284	0,364705882
1285	0,474509804
1286	0,4

1287	0,462745098
1288	0,435294118
1289	0,584313725
1290	0,564705882
1291	0,4
1292	0,415686275
1293	0,541176471
1294	0,423529412
1295	0,37254902
1296	0,670588235
1297	0,545098039
1298	0,352941176
1299	0,509803922
1300	0,501960784
1301	0,458823529
1302	0,48627451
1303	0,458823529
1304	0,552941176
1305	0,447058824
1306	0,415686275
1307	0,392156863
1308	0,443137255
1309	0,525490196
1310	0,364705882
1311	0,447058824
1312	0,262745098
1313	0,447058824
1314	0,490196078
1315	0,494117647
1316	0,450980392
1317	0,478431373
1318	0,364705882
1319	0,392156863
1320	0,42745098
1321	0,733333333
1322	0,466666667
1323	0,447058824
1324	0,776470588
1325	0,474509804
1326	0,411764706
1327	0,349019608
1328	0,443137255
1329	0,380392157

1330	0,435294118
1331	0,447058824
1332	0,509803922
1333	0,462745098
1334	0,341176471
1335	0,458823529
1336	0,356862745
1337	0,42745098
1338	0,458823529
1339	0,498039216
1340	0,396078431
1341	0,360784314
1342	0,415686275
1343	0,478431373
1344	0,443137255
1345	0,415686275
1346	0,462745098
1347	0,396078431
1348	0,415686275
1349	0,384313725
1350	0,368627451
1351	0,411764706
1352	0,37254902
1353	0,509803922
1354	0,466666667
1355	0,541176471
1356	0,415686275
1357	0,388235294
1358	0,37254902
1359	0,403921569
1360	0,509803922
1361	0,560784314
1362	0,376470588
1363	0,431372549
1364	0,403921569
1365	0,423529412
1366	0,51372549
1367	0,564705882
1368	0,42745098
1369	0,435294118
1370	0,560784314
1371	0,498039216
1372	0,490196078

1373	0,37254902
1374	0,415686275
1375	0,435294118
1376	0,509803922
1377	0,443137255
1378	0,407843137
1379	0,431372549
1380	0,415686275
1381	0,380392157
1382	0,384313725
1383	0,396078431
1384	0,482352941
1385	0,529411765
1386	0,756862745
1387	0,454901961
1388	0,498039216
1389	0,384313725
1390	0,447058824
1391	0,431372549
1392	0,415686275
1393	0,431372549
1394	0,415686275
1395	0,596078431
1396	0,364705882
1397	0,42745098
1398	0,749019608
1399	0,388235294
1400	0,505882353
1401	0,490196078
1402	0,470588235
1403	0,556862745
1404	0,415686275
1405	0,490196078
1406	0,396078431
1407	0,42745098
1408	0,403921569
1409	0,325490196
1410	0,439215686
1411	0,415686275
1412	0,454901961
1413	0,541176471
1414	0,42745098
1415	0,458823529

1416	0,392156863
1417	0,525490196
1418	0,423529412
1419	0,458823529
1420	0,392156863
1421	0,403921569
1422	0,341176471
1423	0,341176471
1424	0,51372549
1425	0,443137255
1426	0,42745098
1427	0,443137255
1428	0,474509804
1429	0,458823529
1430	0,474509804
1431	0,443137255
1432	0,470588235
1433	0,368627451
1434	0,494117647
1435	0,478431373
1436	0,345098039
1437	0,458823529
1438	0,439215686
1439	0,4
1440	0,392156863
1441	0,4
1442	0,447058824
1443	0,364705882
1444	0,48627451
1445	0,396078431
1446	0,443137255
1447	0,462745098
1448	0,498039216
1449	0,466666667
1450	0,435294118
1451	0,48627451
1452	0,419607843
1453	0,454901961
1454	0,521568627
1455	0,4
1456	0,439215686
1457	0,509803922
1458	0,431372549

1459	0,384313725
1460	0,439215686
1461	0,482352941
1462	0,580392157
1463	0,470588235
1464	0,521568627
1465	0,490196078
1466	0,396078431
1467	0,478431373
1468	0,392156863
1469	0,403921569
1470	0,521568627
1471	0,470588235
1472	0,419607843
1473	0,458823529
1474	0,51372549
1475	0,509803922
1476	0,447058824
1477	0,48627451
1478	0,407843137
1479	0,458823529
1480	0,556862745
1481	0,705882353
1482	0,407843137
1483	0,494117647
1484	0,474509804
1485	0,490196078
1486	0,423529412
1487	0,411764706
1488	0,470588235
1489	0,450980392
1490	0,458823529
1491	0,439215686
1492	0,403921569
1493	0,48627451
1494	0,545098039
1495	0,568627451
1496	0,396078431
1497	0,423529412
1498	0,454901961
1499	0,423529412
1500	0,576470588
1501	0,490196078

1502	0,505882353
1503	0,529411765
1504	0,490196078
1505	0,509803922
1506	0,498039216
1507	0,4
1508	0,509803922
1509	0,396078431
1510	0,360784314
1511	0,407843137
1512	0,392156863
1513	0,396078431
1514	0,474509804
1515	0,443137255
1516	0,392156863
1517	0,392156863
1518	0,403921569
1519	0,411764706
1520	0,501960784
1521	0,431372549
1522	0,356862745
1523	0,521568627
1524	0,37254902
1525	0,435294118
1526	0,470588235
1527	0,356862745
1528	0,458823529
1529	0,439215686
1530	0,376470588
1531	0,490196078
1532	0,529411765
1533	0,435294118
1534	0,415686275
1535	0,525490196
1536	0,48627451
1537	0,482352941
1538	0,419607843
1539	0,494117647
1540	0,462745098
1541	0,552941176
1542	0,474509804
1543	0,431372549
1544	0,37254902

1545	0,419607843
1546	0,364705882
1547	0,447058824
1548	0,349019608
1549	0,462745098
1550	0,407843137
1551	0,352941176
1552	0,341176471
1553	0,505882353
1554	0,470588235
1555	0,517647059
1556	0,352941176
1557	0,376470588
1558	0,309803922
1559	0,470588235
1560	0,776470588
1561	0,431372549
1562	0,458823529
1563	0,423529412
1564	0,419607843
1565	0,423529412
1566	0,454901961
1567	0,509803922
1568	0,42745098
1569	0,392156863
1570	0,415686275
1571	0,450980392
1572	0,376470588
1573	0,411764706
1574	0,517647059
1575	0,521568627
1576	0,490196078
1577	0,447058824
1578	0,411764706
1579	0,349019608
1580	0,509803922
1581	0,450980392
1582	0,470588235
1583	0,431372549
1584	0,384313725
1585	0,501960784
1586	0,396078431
1587	0,470588235

1588	0,415686275
1589	0,545098039
1590	0,364705882
1591	0,51372549
1592	0,443137255
1593	0,501960784
1594	0,403921569
1595	0,384313725
1596	0,392156863
1597	0,517647059
1598	0,505882353
1599	0,450980392
1600	0,360784314
1601	0,376470588
1602	0,435294118
1603	0,482352941
1604	0,431372549
1605	0,435294118
1606	0,450980392
1607	0,415686275
1608	0,796078431
1609	0,419607843
1610	0,423529412
1611	0,509803922
1612	0,396078431
1613	0,392156863
1614	0,525490196
1615	0,392156863
1616	0,450980392
1617	0,509803922
1618	0,368627451
1619	0,498039216
1620	0,48627451
1621	0,443137255
1622	0,51372549
1623	0,415686275
1624	0,396078431
1625	0,533333333
1626	0,4
1627	0,435294118
1628	0,376470588
1629	0,556862745
1630	0,4
1631	0,478431373
------	-------------
1632	0,474509804
1633	0,384313725
1634	0,341176471
1635	0,498039216
1636	0,4
1637	0,419607843
1638	0,466666667
1639	0,360784314
1640	0,505882353
1641	0,384313725
1642	0,42745098
1643	0,37254902
1644	0,388235294
1645	0,490196078
1646	0,37254902
1647	0,450980392
1648	0,380392157
1649	0,376470588
1650	0,435294118
1651	0,447058824
1652	0,474509804
1653	0,521568627
1654	0,37254902
1655	0,552941176
1656	0,490196078
1657	0,403921569
1658	0,407843137
1659	0,376470588
1660	0,411764706
1661	0,376470588
1662	0,462745098
1663	0,458823529
1664	0,411764706
1665	0,454901961
1666	0,396078431
1667	0,482352941
1668	0,466666667
1669	0,517647059
1670	0,474509804
1671	0,505882353
1672	0,541176471
1673	0,415686275

1674	0,509803922
1675	0,431372549
1676	0,364705882
1677	0,498039216
1678	0,470588235
1679	0,443137255
1680	0,556862745
1681	0,396078431
1682	0,435294118
1683	0,423529412
1684	0,384313725
1685	0,478431373
1686	0,501960784
1687	0,474509804
1688	0,533333333
1689	0,376470588
1690	0,478431373
1691	0,384313725
1692	0,537254902
1693	0,419607843
1694	0,352941176
1695	0,423529412
1696	0,490196078
1697	0,411764706
1698	0,454901961
1699	0,42745098
1700	0,376470588
1701	0,447058824
1702	0,447058824
1703	0,470588235
1704	0,556862745
1705	0,396078431
1706	0,411764706
1707	0,384313725
1708	0,403921569
1709	0,423529412
1710	0,380392157
1711	0,352941176
1712	0,415686275
1713	0,364705882
1714	0,329411765
1715	0,4
1716	0,462745098

1717	0,729411765
1718	0,349019608
1719	0,541176471
1720	0,482352941
1721	0,380392157
1722	0,756862745
1723	0,48627451
1724	0,423529412
1725	0,439215686
1726	0,376470588
1727	0,533333333
1728	0,415686275
1729	0,490196078
1730	0,478431373
1731	0,494117647
1732	0,349019608
1733	0,450980392
1734	0,450980392
1735	0,380392157
1736	0,4
1737	0,458823529
1738	0,509803922
1739	0,470588235
1740	0,6666666667
1741	0,462745098
1742	0,494117647
1743	0,419607843
1744	0,635294118
1745	0,564705882
1746	0,443137255
1747	0,376470588
1748	0,403921569
1749	0,482352941
1750	0,545098039
1751	0,443137255
1752	0,364705882
1753	0,415686275
1754	0,419607843
1755	0,384313725
1756	0,470588235
1757	0,494117647
1758	0,462745098
1759	0,537254902

1760	0,415686275
1761	0,435294118
1762	0,423529412
1763	0,525490196
1764	0,490196078
1765	0,443137255
1766	0,490196078
1767	0,450980392
1768	0,431372549
1769	0,458823529
1770	0,462745098
1771	0,352941176
1772	0,494117647
1773	0,537254902
1774	0,470588235
1775	0,517647059
1776	0,403921569
1777	0,494117647
1778	0,384313725
1779	0,533333333
1780	0,407843137
1781	0,403921569
1782	0,470588235
1783	0,37254902
1784	0,494117647
1785	0,462745098
1786	0,317647059
1787	0,505882353
1788	0,396078431
1789	0,431372549
1790	0,490196078
1791	0,505882353
1792	0,423529412
1793	0,352941176
1794	0,482352941
1795	0,349019608
1796	0,509803922
1797	0,537254902
1798	0,42745098
1799	0,4
1800	0,470588235
1801	0,349019608
1802	0,517647059

1803	0,537254902
1804	0,478431373
1805	0,552941176
1806	0,352941176
1807	0,541176471
1808	0,556862745
1809	0,592156863
1810	0,490196078
1811	0,447058824
1812	0,447058824
1813	0,768627451
1814	0,42745098
1815	0,4
1816	0,701960784
1817	0,356862745
1818	0,529411765
1819	0,552941176
1820	0,364705882
1821	0,545098039
1822	0,482352941
1823	0,749019608
1824	0,549019608
1825	0,411764706
1826	0,466666667
1827	0,462745098
1828	0,403921569
1829	0,588235294
1830	0,505882353
1831	0,498039216
1832	0,454901961
1833	0,419607843
1834	0,494117647
1835	0,37254902
1836	0,4
1837	0,450980392
1838	0,407843137
1839	0,364705882
1840	0,505882353
1841	0,556862745
1842	0,560784314
1843	0,533333333
1844	0,541176471
1845	0,784313725

1846	0,635294118
1847	0,450980392
1848	0,443137255
1849	0,360784314
1850	0,392156863
1851	0,337254902
1852	0,337254902
1853	0,509803922
1854	0,482352941
1855	0,643137255
1856	0,549019608
1857	0,662745098
1858	0,411764706
1859	0,37254902
1860	0,345098039
1861	0,721568627
1862	0,474509804
1863	0,380392157
1864	0,509803922
1865	0,498039216
1866	0,403921569
1867	0,494117647
1868	0,68627451
1869	0,57254902
1870	0,419607843
1871	0,466666667
1872	0,725490196
1873	0,474509804
1874	0,564705882
1875	0,556862745
1876	0,580392157
1877	0,607843137
1878	0,737254902
1879	0,564705882
1880	0,48627451
1881	0,545098039
1882	0,603921569
1883	0,71372549
1884	0,749019608
1885	0,635294118
1886	0,670588235
1887	0,756862745
1888	0,42745098

1889	0,741176471
1890	0,737254902
1891	0,752941176
1892	0,721568627
1893	0,501960784
1894	0,564705882
1895	0,560784314
1896	0,529411765
1897	0,741176471
1898	0,450980392
1899	0,552941176
1900	0,580392157
1901	0,725490196
1902	0,764705882
1903	0,760784314
1904	0,505882353
1905	0,68627451
1906	0,709803922
1907	0,733333333
1908	0,576470588
1909	0,631372549
1910	0,733333333
1911	0,552941176

Diversidad genética en localidades y regiones administrativas basado en marcadores moleculares SNPs

Estadísticos resumen de diversidad genética promedio, para cada localidad analizada mostró rangos de Riqueza Alélica entre 1,402 - 1,429 y 1,246 - 1,266, para la base de datos con un máximo de 10% y 20% de datos faltantes, respectivamente. Los valores de Riqueza Alélica en la base de datos con un máximo de 10% de datos faltantes fueron cualitativamente mayores que la de 20% de datos faltantes (Tabla 19). La Heterocigosidad Observada osciló entre 0,176 - 0,215 y 0,196 - 0,241, para la base de datos con un máximo de 10% y 20% de datos faltantes, respectivamente. La Heterocigosidad Esperada osciló entre 0,221 - 0,231 y 0,253 - 0,267, para la base de datos con un máximo de 10% y 20% de datos faltantes, respectivamente. En ambas bases de dato se observó que las heterocigocidades observadas fueron menores que las esperadas (Tabla 19).

		<10% missing data			<20% missing data		
Рор	Ν	AR	НО	HE	AR	НО	HE
AY	69	1,429	0,215	0,231	1,266	0,241	0,267
DA	21	1,408	0,176	0,221	1,257	0,205	0,259
EN	5	1,418	0,195	0,228	1,259	0,221	0,264
GQ	11	1,409	0,190	0,222	1,256	0,213	0,259
LA	5	1,415	0,197	0,227	1,252	0,219	0,257
LO	12	1,409	0,190	0,222	1,260	0,216	0,262
RI	6	1,402	0,178	0,221	1,246	0,196	0,253
EN GQ LA LO RI	5 11 5 12 6	1,418 1,409 1,415 1,409 1,402	0,195 0,190 0,197 0,190 0,178	0,228 0,222 0,227 0,222 0,221	1,259 1,256 1,252 1,260 1,246	0,221 0,213 0,219 0,216 0,196	0,264 0,259 0,257 0,262 0,253

Tabla 19. Estadísticos resumen promedio de diversidad genética por cada localidad analizada para una base de datos considerando un máximo de 10% y 20% de datos faltantes.

Por otro lado, para cada región administrativa analizada la Riqueza Alélica osciló entre 1,529 – 1,777 y 1,462 – 1,489, para la base de datos con un máximo de 10% y 20% de datos faltantes, respectivamente. Los valores de Riqueza Alélica en la base de datos con un máximo de 10% de datos faltantes fueron cualitativamente mayores que la de 20% de datos faltantes (Tabla 20). La Heterocigosidad Observada osciló entre 0,186 – 0,321 y 0,208 – 0,241, para la base de datos con un máximo de 10% y 20% de datos faltantes, respectivamente. La Heterocigosidad Esperada osciló entre 0,221 – 0,339 y 0,257 – 0,267, para la base de datos con un máximo de 10% y 20% de datos faltantes, respectivamente. La Heterocigosidad Esperada osciló entre 0,221 – 0,339 y 0,257 – 0,267, para la base de datos con un máximo de 10% y 20% de datos faltantes, respectivamente. Al igual que para el análisis por localidades, en ambas bases de dato se observó que las heterocigocidades observadas fueron menores que las esperadas (Tabla 20).

Tabla 20. Estadísticos resumen promedio de diversidad genética por cada región administrativa analizada para una base de datos considerando un máximo de 10% y 20% de datos faltantes.

		<10% n	nissing dat	a	<20% missing data		
Región	Ν	AR	НО	HE	AR	НО	HE
VIII	5	1,777	0,321	0,339	1,462	0,219	0,257
XIV	12	1,609	0,232	0,257	1,477	0,216	0,262
Х	43	1,529	0,186	0,221	1,475	0,208	0,259
XI	69	1,548	0,216	0,229	1,489	0,241	0,267

Parámetro de diversidad genética poblacional basado en marcadores moleculares mitocondriales

Para el segmento de la Citocromo Oxidasa I (COI) analizado se identificaron 10 sitios polimórficos y un total de 12 haplotipos. El mayor número de haplotipos por localidad se registró para la localidad de Aysen (h=5). La diversidad haplotípica (Hd) fue más alta para la localidad de Dalcahue con un valor de 0.644 y la más baja fue para las localidades de Isla guapiquilan y Punta Lavapie con un valor de 0.000. La diversidad nucleotídica (π) osciló entre los 0.000 – 0.00119 (Tabla 21).

Tabla 21. Índices de diversidad molecular por localidades estudiadas para el marcador COI Número de muestras (N); número de sitios segregados (S); número de haplotipos (h); diversidad haplotípica (Hd); diversidad nucleotídica (π).

Total	114	10	12	0.347 ± 0.058	0.0006±0.00011
Aysen	25	4	5	0.300 ± 0.118	0.00050 ± 0.00021
Encolma	9	1	2	0.222 ± 0.166	0.00035±0.00026
Isla Guapiquilan	9	0	1	0.000 ± 0.000	0.000 ± 0.000
Yelcho	6	1	2	0.333 ± 0.215	0.00053±0.00034
Caulin	13	4	5	0.538 ± 0.161	0.00097±0.00035
Dalcahue	10	3	4	0.644±0.152	0.00119±0.00036
Rilan	9	2	3	0.556 ± 0.165	0.00096±0.00034
Bahia Ancud	10	3	4	0.533±0.180	0.00095±0.00037
Loncoyen	10	1	2	0.200 ± 0.154	0.00032±0.00024
Laraquete	10	1	2	0.200 ± 0.154	0.00032±0.00024
Punta Lavapie	3	0	1	0.000 ± 0.000	0.000 ± 0.000
Localidad	Ν	S	h	Hd	π

Para la diversidad genética analizada por regiones se identificó que el mayor número de sitios segregantes y número de haplotipos por región lo obtuvo la X región con un S=9 y un h=10. De igual forma la diversidad haplotípica (Hd) más alta la obtuvo la X región con un 0.422, seguido por la XI región con un valor de 0.300. La diversidad nucleotidica (π) osciló entre los valores de 0.00024 para la VIII región y de 0.00074 para la XI región (Tabla 22).

Tabla 22. Índices de diversidad molecular por regiones administrativas para el marcador COI Número de muestras (N); número de sitios segregados (S); número de haplotipos (h); diversidad haplotípica (Hd); diversidad nucleotídica (π).

Total	114	10	12	0.347 ± 0.058	0.0006±0.00011
XI	25	4	5	0.300 ± 0.180	0.00050 ± 0.00021
Х	66	9	10	0.422 ± 0.076	0.00074 ± 0.00015
XIV	10	1	2	0.200 ± 0.154	0.00032±0.00024
VIII	13	1	2	0.154 ± 0.126	0.00024±0.00020
REGIÓN	Ν	S	h	Hd	π

Identificación y distribución espacial de haplotipos

Un total de 12 haplotipos fueron identificados para el total de individuos de jaiba marmola (Tabla 23), en donde la XIV Región mostró el menor número de haplotipos (N_H =1) en comparación con las otras tres regiones (Figura 28). Se observó haplotipos compartidos entre las regiones X y XI (i.e. H1, H2, H4, H8, y H10). El haplotipo más frecuente correspondió a H1, el cual fue representado por ~70.0% de los individuos en las 4 regiones.

Figura 28. Distribución espacial de haplotipos de la COI por regiones administrativas para Metacarcinus edwardsii.

Haplotipo	Secuencia	VIII Región	XIV Región	X Región	XI Región
Haplotipo 1	GCGGGATCCA	12	9	50	21
Haplotipo 2	GCGGGATCCT	0	0	5	1
Haplotipo 3	GCGGGATCTA	0	0	3	0
Haplotipo 4	GCGGGGTCCA	0	0	2	1
Haplotipo 5	GCGAGATCCA	0	0	1	0
Haplotipo 6	GCAGGATCCA	1	0	0	0
Haplotipo 7	GCGGAATCCA	0	0	1	0
Haplotipo 8	ACGGGATCCA	0	0	1	1
Haplotipo 9	GCGGGACCCA	0	0	1	0
Haplotipo 10	GCGGGATTCA	0	0	1	1
Haplotipo 11	CCGGGATCCA	1	0	0	0
Haplotipo 12	GTGGGATCCA	0	0	1	0
TOTAL		14	9	66	25

Tabla 23. Haplotipos identificados para la jaiba marmola Metacarcinus edwardsii por regiones administrativas.

Análisis de estructura genética poblacional basado en marcadores moleculares SNPs

Índice de Fijación o estructuración genética poblacional Fst

En la evaluación de estructuración genética poblacional con marcadores moleculares SNPs los valores del índice de fijación por pares de comparaciones para todas las bases de datos (localidades, regiones, sexo y talla) fueron cercanos a cero, y no se evidencio ninguna comparación estadísticamente significativa. (Tablas 24-31). Tampoco hubo diferencias significativas entre la base de datos con un 10% o 20% de datos faltantes.

Índice de estructuración genética poblacional para la base de datos con 10% de datos faltantes

Tabla 24. Índice de estructuración genética poblacional Fst por pares de localidades 10% de datos faltantes. Sobre la diagonal el valor de probabilidad asociado, bajo la diagonal el valor de Fst. Ningún par significativo.

	Aysen	Dalcahue	Encolma	Isla Guapiquilan	Laraquete	Loncoyen	Rilan
Aysen	*	0.50293	0.67383	0.66797	0.87305	0.97949	0.99707
Dalcahue	0.00044	*	0.3877	0.17285	0.92578	0.16309	0.92578
Encolma	-0.00046	0.0082	*	0.54297	0.83008	0.46387	0.97852
Isla Guapiquilan	-0.00032	0.00636	0.00458	*	0.94043	0.82812	0.64648
Laraquete	-0.00422	-0.00251	-0.00016	0.00673	*	0.39844	0.9707
Loncoyen	-0.00347	0.00586	0.005	-0.0015	0.00572	*	0.88184
Rilan	-0.01125	-0.00114	-0.00785	0.00245	-0.0057	-0.00244	*

Tabla 25. Índice de estructuración genética poblacional Fst por pares de regiones administrativas 10% de datos faltantes. Sobre la diagonal el valor de probabilidad asociado, bajo la diagonal el valor de Fst. Ningún par significativo.

	VIII	XIV	Х	XI
VIII	*	0.85449	0.93945	0.38574
XIV	-0.00422	*	0.86523	0.97168
X	-0.00407	-0.00043	*	0.6377
XI	0.00572	-0.00347	0.00119	*

Tabla 26. Índice de estructuración genética poblacional Fst para el sexo con 10% de datos faltantes. Sobre la diagonal el valor de probabilidad asociado, bajo la diagonal el valor de Fst. Ningún par significativo.

	Macho	Hembra
Macho	*	0.99316
Hembra	-0.0013	*

Tabla 27. Índice de estructuración genética poblacional Fst por pares de Talla (Juvenil <120 mm Longitud Cefalotoraxica, Adulto > 120 mm LC) 10% de datos faltantes. Sobre la diagonal el valor de probabilidad asociado, bajo la diagonal el valor de Fst. Ningún par significativo.

	Juvenil	Adulto
Juvenil	*	0.13184
Adulto	0.00145	*

Índice de estructuración genética poblacional para la base de datos con 20% de datos faltantes

Tabla 28. Índice de estructuración genética poblacional Fst por pares de localidades 20% de datos faltantes. Sobre la diagonal el valor de probabilidad asociado, bajo la diagonal el valor de Fst. Ningún par significativo.

	Aysen	Dalcahue	Encolma	Isla Guapiquilan	Laraquete	Loncoyen	Rilan
Aysen	*	0.99707	0.96875	0.92676	0.99902	0.99902	0.99902
Dalcahue	-0.00346	*	0.90527	0.38086	0.99902	0.92285	0.99902
Encolma	-0.0081	-0.00367	*	0.82031	0.99902	0.99414	0.99902
Isla Guapiquilan	-0.00254	0.00266	-0.00053	*	0.99902	0.99609	0.99902
Laraquete	-0.02526	-0.02141	-0.03013	-0.01631	*	0.99902	0.99902
Loncoyen	-0.00887	-0.01009	-0.01009	-0.00644	-0.02539	*	0.99902
Rilan	-0.0388	-0.02733	-0.02733	-0.02733	-0.0503	-0.03706	*

Tabla 29. Índice de estructuración genética poblacional Fst por pares de regiones administrativas 20% de datos faltantes. Sobre la diagonal el valor de probabilidad asociado, bajo la diagonal el valor de Fst. Ningún par significativo.

	VIII	XIV	Х	XI
VIII	*	0.99902	0.99609	0.99902
XIV	-0.02539	*	0.99609	0.99902
Х	-0.0208	-0.00484	*	0.99902
XI	-0.02526	-0.00887	-0.00321	*

Tabla 30. Índice de estructuración genética poblacional Fst por pares de sexo 20% de datos faltantes. Sobre la diagonal el valor de probabilidad asociado, bajo la diagonal el valor de Fst. Ningún par significativo.

	Macho	Hembra
Macho	*	0.98145
Hembra	-0.00097	*

Tabla 31. Índice de estructuración genética poblacional Fst por pares de Talla (Juvenil <120 mm Longitud Cefalotoraxica, Adulto > 120 mm LC) 20% de datos faltantes. Sobre la diagonal el valor de probabilidad asociado, bajo la diagonal el valor de Fst. Ningún par significativo.

	Juvenil	Adulto
Juvenil	*	0.7168
Adulto	-0.0021	*

Análisis de inferencia bayesiana STRUCTURE

Los análisis realizados en STRUCTURE para la estimación del número más probable de poblaciones presentaron una amplia variación entre las repeticiones corridas para un mismo valor de K para los tres set de datos, 10%, 20% y 5% de tolerancia de datos faltantes (Figura 29, 30 y 31 respectivamente). Se graficaron los valores de probabilidad de asignación individual para k=2 para ambos set de datos, para así explorar la presencia de algún patrón espacial (Figura 32). No se observó estructura espacial para los datos genéticos analizados, observándose una probabilidad por sitio de muestreo cercano al 50% de pertenecer a cada grupo genético. Los valores de probabilidades observados y su distribución espacial son evidencia de la falta de estructura genética poblacional en los individuos estudiados.

Figura 29. Gráfico de los valores de probabilidad asociado a los valores de K estudiados. La figura presenta el promedio y desviación estándar de los valores de probabilidad estimados por STRUCTURE entre K= 1 y 5 utilizado el set de datos con tolerancia de 10% de datos faltantes.

Figura 30. Gráfico de los valores de probabilidad asociado a los valores de K estudiados. La figura presenta el promedio y desviación estándar de los valores de probabilidad estimados por STRUCTURE entre K= 1 y 5 utilizado el set de datos con tolerancia de 20% de datos faltantes.

Figura 31. Gráfico de los valores de probabilidad asociado a los valores de K estudiados. La figura presenta el promedio y desviación estándar de los valores de probabilidad estimados por STRUCTURE entre K= 1 y 5 utilizado el set de datos con tolerancia de 5% de datos faltantes.

Figura 32. Gráfico de la probabilidad de asignación individual para K=2 para cada uno de los tres set de datos utilizando STRUCTURE. Cada columna representa un individuo y su color representa al grupo genético al que fue asignado.

Adegenet

Los análisis realizados en ADEGENET para la estimación del número más probable de poblaciones presentaron una alta probabilidad de que la estructura genética de las muestras correspondiera a una sola población, esto representado por el bajo valor de Criterio de Información Bayesiano (BIC; Figura 33). Se graficaron los valores de probabilidad de asignación individual para los dataset del 10 y 20% de missing data, para así explorar la presencia de algún patrón espacial (Figura 34). No se observó estructura espacial para los datos analizados, observándose que individuos muestreados en un mismo sitio podrían pertenecer a cualquier otro de los sitios muestreados.

Figura 33. Gráfico del valor del Criterio de Información Bayesiano (BIC) entre K=1 y 2 obtenido utilizando ADEGENT.

Figura 34. Gráfico de la probabilidad de asignación individual para K=2 para ambos set de datos utilizando ADEGENET. Cada columna representa un individuo y su color representa al grupo genético al que fue asignado.

Análisis de estructura genética poblacional basado en marcadores moleculares mitocondriales

En la evaluación de estructuración genética poblacional los valores del índice de fijación por pares de comparaciones, fueron cercanos a cero, y no se evidencio ninguna comparación estadísticamente significativa en la evaluación por regiones. (Tabla 32).

Tabla 32. Índice de estructuración genética poblacional Øst por pares de regiones. Sobre la diagonal el valor de probabilidad asociado, bajo la diagonal el valor de Øst. Ningún par significativo.

	VIII	XIV	Х	XI
VIII	*	0,99902	0,23047	0,625
XIV	-0,04285	*	0,4541	0,99902
Х	0,01088	-0,00654	*	0,67285
XI	-0,02064	-0,03448	-0,01181	*

Detección de estructura poblacional sin información a priori respecto al origen poblacional de los ejemplares analizados

El análisis de estructuración genética poblacional sin información a priori de localidades (i.e. por regiones) e incorporando la coordenada espacial de cada individuo no mostró más de un cluster genético. El análisis identificó un cluster genético (K=1) en la distribución geográfica analizada (Figura 35). Las isolíneas de probabilidad para este cluster fueron superior a 0.6. SI identificar quiebres genéticos, ni límites espaciales significativos.

Figura 35. Densidad de probabilidades de K en COI. Densidad de probabilidades para identificar el número de poblaciones más probable (K) para los datos genéticos de la COI del ADN mitocondrial. Se utilizó el modelo correlacionado, incluyendo las coordenadas geográficas.

Relaciones genealógicas: Redes de haplotipos

Las relaciones genealógicas entre haplotipos para la jaiba marmola mostraron un haplotipo central altamente dominante. La mayoría de los haplotipos se separaron por solo un paso mutacional (Figura 36).

Figura 36. Relaciones genealógicas entre haplotipos para la jaiba marmola *M. edwardsii* utilizando secuencias de la COI en este estudio. El tamaño de los círculos corresponde a la frecuencia relativa de los haplotipos presente en cada área.

Resultados Morfometría Geométrica

Los resultados del respectivo análisis de Procustes para 29 hitos y posteriormente Análisis de Componentes Principales (A.C.P.) obtuvieron 54 dimensiones que explican la variabilidad morfológica dorsal del cefalotórax. Los tres primeros componentes principales explicaron la mayor variabilidad de la forma geométrica en los presentes análisis, siendo el Componente Principal 1 el que explica el 48.82% de la varianza, el Componente Principal 2 un 10.9%, y el Componente Principal 3 un 8.6% lo que suma un 68,3% entre los tres primeros componentes (Figura 37, Tabla 33).

Figura 37. Porcentaje de varianza explicado para cada componente principal en base a la forma del cefalotórax con 29 hitos morfológicos

Tabla 33: Resumen de las primeras 11 dimensiones de 54 dimensiones de la forma con sus Eigenvalues (valor referencial de forma) y su porcentaje acumulado en cada dimensión

Shape Dimensions	Eigenvalues	% Variance	Cumulative %
1.	0,00075982	48,821	48,821
2.	0,00017	10,923	59,744
3.	0,00013389	8,603	68,347
4.	0,00012355	7,939	76,285
5.	0,0000603	3,875	80,16
6.	0,00004481	2,879	83,039
7.	0,00003146	2,021	85,061
8.	0,00002622	1,685	86,745
9.	0,00002236	1,437	88,182
10.	0,000022	1,414	89,596
11.	0,00001465	0,941	90,537

La diferenciación de la forma corporal de los individuos se destacó particularmente en la variación de los hitos morfológicos 12,13, 23 y 24 los cuales conforman la zona cefalotoraxica posterior de la Jaibas Marmolas, las variaciones vectoriales de los hitos de esta zona denotan un fenotipo más dilatado o estrecho. Esta diferenciación fue observada entre las Jaibas entre diferentes regiones donde las Jaibas de la XI Región mostro un cefalotórax más delgado y estirado a diferencia de los individuos que habitan en las regiones más al norte donde el fenotipo es más ancho. De la misma manera se observó un importante patrón de dimorfismo sexual de la forma del cefalotórax donde la diferenciación se observó claramente mediante el componente principal 2 (Figura 38).

Figura 38. Análisis de componentes principales para destacar la presencia de dimorfismo sexual de la forma del cefalotórax en los individuos de *Metacarcinus edwardsii* (Jaiba Marmola). Puntos rojos representan formas de hembra y puntos azules formas de machos.

Dentro de las regiones no fue clara la diferenciación mediante un ACP, por lo tanto, para observar de forma más gráfica, un análisis discriminante de componentes canónicas, generó nuevos ejes donde la máxima variación de la geometría del cefalotórax fue pronunciada mostrando que los individuos pertenecientes a la región de Aysén se alejan claramente de las demás regiones del centro sur de Chile (Figura 39).

Figura 39. Análisis de componentes canónicos entre regiones para la forma del cefalotórax de *Metacarcinus* edwardsii (Jaiba Marmola) con sus respectivos promedios de forma geométrica por regiones.

Para las localidades, distancias morfológicas fueron calculadas usando las variables morfométricas, para esto se usaron distancias de Mahalanobis (Tabla 34) y se evaluaron las relaciones morfométricas entre las 11 localidades. Después de un test de permutación con 10000 repeticiones, diferencias significativas (p<0.001) fueron encontradas entre cada localidad excepto entre Encolma y Caulín, donde las diferencias fueron no significativas (p= 0,113).

	Ancud	Aysen	<u>Caulin</u>	Dalcahue	<u>Encolma</u>	Guapi Quilan	Laraquete	Lavapie	Loncoyen	Rilan
Aysen	4.9337									
<u>Caulin</u>	2.4026	5.499								
Dalcahue	2.9282	3.0534	3.8207							
Encolma	3.2551	4.6461	3.3622	3.4619						
Guapi Quilan	2.9523	4.5857	3.4358	2.8436	2.7277					
<u>Laraquete</u>	2.5365	4.9435	2.8436	3.0216	3.1191	2.7273				
<u>Lavapie</u>	2.6697	4.3527	2.6747	2.7275	2.9783	2.651	2.3095			
Loncoyen	2.5612	4.674	3.0672	2.9042	3.0667	3.0362	2.5955	1.8922		
Rilan	3.3272	3.9163	3.2814	2.6377	3.4166	3.2559	3.3275	2.0938	2.6426	
Yelcho	2.9358	5.0954	2.5137	3.6671	3.4023	3.4203	2.7266	2.4439	3.0203	3.0732

Tabla 34: Distancias de Mahalanobis calculadas para 11 localidades y las VIII, X, XI y XIV Regiones estudiadas

	VIII	х	XI
Х	1.3709		
XI	3.9037	3.4921	
XIV	1.8529	2.0152	4.2317

Entre regiones se evaluaron diferencias morfometricas utilizando analisis discriminantes, el cual compara en pares de regiones las relaciones morfometricas, obteniendo un histograma de frecuencias (Figura 40). Se pudo observar que las comparaciones entre muestras de la VIII – X, VIII – XIV y X – XIV tienen un alto grado de similitud en su forma geometrica, a diferencia de las demas poblaciones con la region de Aysén.

Figura 40. Análisis discriminante de la forma del cefalotórax entre regiones administrativas en *Metacarcinus* edwardsii (Jaiba Marmola)

Se calculo la influencia del tamaño en la forma mediante una regresion multivariada encontrando solo un 3.8% de alometria, por lo tanto no habría una gran influencia del tamaño en las variables morfometricas encontradas, no obstante fue posible determinar que el cefalotorax de machos poseia una mayor variacion de tamaño en comparacion a las hembras. Asi, en los machos existe una mayor tendencia en que si el landmark 1 se hunde, el cefalotorax se hace más ancho (Figura 41).

Figura 41. Regresión multivariada de la forma geométrica del cefalotórax en *Metacarcinus edwardsii* (Jaiba Marmola) puntos negros representan a los machos y puntos morados representan a las hembras conjunto a dos representaciones de formas con tamaños extremos de hembras y machos.

Relación entre datos genéticos y morfológicos

El análisis de correlación entre la información genética y morfológica para los individuos estudiados de jaiba marmola reveló la ausencia de una relación. Los valores de significancia para la pendiente tanto para el análisis realizado con el set de datos con un 10% y 20% de información faltante no fueron significativamente distintas de cero (r = -0.04 y p = 0.069; r = -0.08 y p = 0.54 respectivamente), lo que se presenta en las Figuras 42 y 43 respectivamente.

Distancia morfológica vs distancia genética loci < 10% datos faltantes

Figura 42. Correlación entre la distancia morfológica individual y distancia genética individual utilizando loci con información faltante ≤ 10%.

Distancia morfológica vs distancia genética loci < 20% datos faltantes

Figura 43. Correlación entre distancia morfológica individual y distancia genética individual utilizando loci con información faltante $\leq 20\%$.

Para dar cumplimiento al objetivo específico 2.3 "Estimar el grado de conectividad entre unidades poblacionales de la X Región, y entre unidades de la X Región y otras de regiones colindantes: XIV y XI Regiones" es necesario contar con estimaciones de diferenciación genética significativas en algún nivel de comparación. Al no evidenciar diferencias genéticas significativas no se procede con estimaciones de dirección y magnitud de la conectividad genética e identificación de migrantes entre agrupaciones genéticas.

ANÁLISIS Y DISCUSIÓN DE LOS RESULTADOS

La información histórica registrada en el marco del Programa de Seguimiento de las Principales Pesquerías Bentónicas, con énfasis en la pesquería artesanal de jaiba marmola, permitió la implementación de un Modelo Lineal Generalizado (GLM), a partir del cual fue posible evidenciar estructuración espacial en la CPUE (kg/trampa), para la zona de aguas interiores de la X Región.

Debido a que el levantamiento de información sobre captura y esfuerzo de pesca en esta pesquería artesanal, no está diseñado para analizar los cambios espaciales en la CPUE, la aplicación de modelos de regresión lineal múltiple, obliga a prescindir de una proporción de la información registrada en tales programas de seguimiento. Lo anterior se tradujo en no poder utilizar los datos de varias procedencias (i.e. zonas de pesca), años, y meses.

La estructuración espacial de la CPUE guarda bastante relación con los polígonos de pesca definidos por Molinet et al. (2007), según los cuales se identificaba 3 polígonos importantes para jaiba marmola en aguas de la X Región: Ancud (2), Dalcahue (4), y Quellón (5). Según los resultados obtenidos con la información de seguimiento, el polígono asociado a Dalcahue exhibe los mayores valores de CPUE, cuya mediana varió entre 35 y 70 kg/trampa. En el polígono asociado al sector de Ancud, la CPUE mediana presentó valores en torno a los 10 kg/trampas; mientras que en el polígono que engloba al sector sur de Quellón, la CPUE mediana es cercana a 20 kg/trampa.

Al interior de polígono del sector Dalcahue, la zona de pesca Achao exhibió diferencias significativas con las otras procedencias de esa macrozona, a pesar de que la CPUE no fue marcadamente diferente. Tal diferencia significativa puede guardar relación con la mayor variabilidad de la CPUE en Achao, la cual se manifestó por un alto número de observaciones atípicas. A su vez, la procedencia Isla Guaipiquilan mostró valore de CPUE similares al polígono Dalcahue, lo que podría indicar estructuración espacial de la CPUE a una escala menor.

Finalmente, el diseño de muestreo propuesto e implementado para la colecta de muestras de jaiba marmola, se correspondió con la estructuración espacial evidenciada en el presente análisis, la cual, adicionalmente, fue validada y apoyada por los representantes de la pesca artesanal que dirige esfuerzo de pesca a la captura de jaiba marmola en aguas de la X Región.

Tal diseño de muestreo fue expuesto y discutido en el taller de trabajo y posteriormente validado en la 8° sesión del Comité de Manejo de Crustáceos bentónicos, Provincia de Chiloé en Dalcahue, junto a representantes del Comité, representantes de la Dirección Zonal de la Subsecretaría de Pesca y Acuicultura, la Gobernación

marítima de Castro, y representantes del Servicio Nacional de pesca y Acuicultura de la X Región de Los Lagos. Como parte del diseño de muestreo para fines genéticos y morfométricos se comprometieron 10 zonas de pesca, ejecutando finalmente el muestreo en 11 zonas de pesca, desde la VIII a la XI región, mejorando sustantivamente el número de muestras comprometidas a analizar para cada aproximación. En el caso de los aspectos genéticos, se analizaron 450 en vez de 300 ejemplares, y en el caso de morfometría geométrica se analizaron 581 ejemplares en vez de 120 (Figura 14).

Como evidencia genética se comprometieron marcadores moleculares del tipo SNPs, y de manera complementaria, para verificar la especie en estudio, y robustecer los resultados con SNPs, se analizó el marcador molecular Citocromo Oxidasa I del ADN mitocondrial.

Durante la etapa del desarrollo de marcadores moleculares SNPs un aspecto crítico para una adecuada construcción de las librerías genómicas, y los mejores resultados en la secuenciación masiva, fue el trabajar con ADN de alto peso molecular, y en concentración adecuada para tales fines. Es así que variados métodos y protocolos fueron ensayados para tales fines (Figura 25, Tabla 11). Resultando finalmente en extracciones de ADN adecuadas para la construcción de las tres librerías RADseq (Figura 26), y posterior secuenciación en tecnología Illumina HiSeq4000. Producto de la secuenciación masiva se obtuvo un total de 2.177.757.552 millones de secuencias crudas (Tabla 15), el control de calidad indica que se trata de secuencias de ADN de alta calidad, y longitud que promedian los 151 pares de bases nitrogenadas, lo que es óptimo para la identificación y selección de loci SNPs. Un aspecto importante que se debe destacar, es el alto porcentaje de ADN foráneo presente en las muestras seleccionadas para el desarrollo de SNPs. Este ADN foráneo es principalmente de origen bacteriano, y el alto porcentaje de este en algunas muestras, repercute en el número de muestras finalmente analizadas en un contexto poblacional. De 285 ejemplares incluidos en las librerías genómicas, se analizaron en un contexto poblacional 129 ejemplares para 1911 loci SNPs.

Destacamos que al explorar el origen bacteriano de este ADN foráneo, una alta proporción de las secuencias correspondían a bacterias marinas del género *Pseudoalteromonas*, en particular a *Pseudoalteromonas nigrifaciens* (Tabla 16), reportadas como típicas bacterias causantes de ulceras cutáneas en organismos marinos cultivados (Wang et al., 2006). *Metacarcinus edwardsii* no es una especie sobre la que se realice cultivo.

El análisis de los índices de diversidad genética de SNPs por localidad y por región administrativa, indican Heterocigosidades observadas entre 0,176 y 0,321, y Heterocigosidades esperadas entre 0,221 a 0,339, observándose que las Heterocigosidades observadas fueron menores a las esperadas, pero no lo suficiente para evidenciar desequilibrio de Hardy Weinberg, o desequilibrio por ligamiento físico, siendo los SNPs propicios para estudios poblacionales (Tabla 19 y Tabla 20).

En el caso del segmento de la COI bajo estudio se identificó un total de 12 haplotipos para los 114 ejemplares de Jaiba Marmola (Tabla 21), siendo la localidad de muestreo de Puerto Aysén la más diversa, con 5 haplotipos para 25 ejemplares. En análisis a nivel de regiones administrativas indica que es la X región la que presenta mayor número de variantes haplotipicas, con una diversidad haplotípica de 10, con un claro sesgo debido al tamaño muestreal (Tabla 22, Figura 28). El haplotipo más frecuente, H1, lo comparten todas las regiones administrativas sobre un 70%, haplotipos compartidos se observan principalmente entre la X y XI regiones, con la particularidad de que dos de los tres haplotipos de la VIII región, no se comparten con el resto de regiones (Figura 28). Esto podría estar informando acerca de un mayor flujo génico entre la X y XI regiones.

Como parte del análisis estadístico poblacional de las bases de datos de loci SNPs, se evaluaron los resultados para distintos porcentajes de missing data presentes en las bases de datos, esto con la finalidad de detectar sesgos en los resultados debido a esta información faltante.

Independiente que la base de datos de SNPs analizada sea con un umbral del 5%, 10% o 20% de missing data, los resultados no evidencian un patrón de estructura genética espacial en los sitios estudiados, ya sea entre las cuatro regiones administrativas o entre las 11 localidades de estudio (Tabla 24, 25, 28 y 29). Este patrón de homogeneidad genética es confirmado por el análisis de la Citocromo oxidasa I (Tabla 32, Figura 35). Esta no significativa estructura genética sugiere la existencia de suficiente flujo génico entre las localidades en estudio como para prevenir la diferenciación espacial, así como tampoco divergencias genéticas relacionadas con filopatrias, o migraciones sesgadas por el sexo.

Los resultados de la diferenciación genética entre sexos (Tabla 26, Tabla 30), y tallas (Tabla 27, Tabla 31) para los marcadores moleculares SNPs tampoco indican algún grado de diferenciación genética a este nivel, confirmando el patrón de homogeneidad genética aquí evidenciado.

La homogeneidad genética espacial descrita en el presente estudio es consistente con el largo desarrollo de larvas pelágicas de esta especie, que tiene una duración de tres meses (a 14 ± 0.5 ° C) con cinco estadios larvales de zoea y una etapa de megalopa (Quintal, 1983).

Rojas-Hernandez et al. en el año 2016 analizando 8 loci microsatélites a lo largo de 700 km de costa chilena encontró que para *M. edwardsii* los análisis no mostraron evidencia de patrones espaciales en la estructura genética, lo que sugiere una alta conectividad genética entre los sitios de muestreo, incluyendo sitios entre la VIII a la X región, un área de muestreo más restringida que la del presente estudio.

Este mismo resultado ha sido reportado para otras especies de crustáceos que no presentan estructuración genética debido a la duración de los estadios larvales en la columna de agua, lo que les permite mantener una amplia dispersión dentro de su rango de distribución y poder mantener la conectividad genética a lo largo del tiempo. Algunos ejemplos son crustáceos del género *Cancer: Cancer magister* (Jackson & O'Malley, 2017) y *Cancer pagurus* (Ungfors et al. 2009).

Esta falta de estructura está relacionada con la capacidad de dispersión de las larvas, especialmente durante sus primeras fases de desarrollo. Shanks et al. (2003) informaron las distancias de dispersión de diferentes crustáceos, en particular, *Carcinus maen*as, presenta un período de larva de 80 días, pudiendo dispersarse entre 63 a 173 km dependiendo de la zona estudiada.

En el análisis de morfometría geométrica se pudo comprobrar que las herramientas de morfometría geometrica son útiles para diferenciar formas con pequeña variacion cuantificable (e.g. forma del cefalotórax de Jaiba Marmola entre regiones administrativas y entre localidades). El efecto de la diferenciación corporal de los individuos se destacó particularmente en la variación de los hitos de la zona posterior del cefalotórax, confirmando una extensión de la forma corporal, principalmente para individuos de la región de Aysén. Esto podría ser explicado como una expresión de una característica de la historia de vida diferencial entre hembras y machos; por ejemplo, almacenaje de huevos en hembras y/o diferencias en la calidad alimenticia durante el desarrollo ontogenético debido a un componente ecologico asociado al ambiente entre el sur de Chile y las zonas centro - sur.

Los resultados confirmaron la existencia de diferencias significativas entre la variación de la forma entre las distintas localidades, aunque estas diferencias no conforman grupos discretos como para diferenciar subespecies o tipos morfológicos (Tabla 34), resultados que a su vez fueron corroborados utilizando variables genéticas.

Silva y Paula (2008) utilizando dos especies de cangrejos *Pachygrapsus marmoratus* y *Carcinus maenas* evaluaron diferenciacion poblacional utilizando variables morfométricas de quelas y cefalotorax, no pudiendo corroborar los resultados obtenidos con el gen mitocondrial COI. Años mas tarde Silva et al (2010) analiza la estructura de las poblaciones de la costa sudoeste de Inglaterra con mayor detalle en el cangrejo *Carcinus maenas* y ampliando el uso de marcadores moleculares y morfométricos, la variación en ocho loci de microsatélites sugirio que los individuos muestreados en esas regiones constituyen una única población genética y que el flujo genético entre ellos no es limitado, sin embargo los Fst para algunas poblaciones difieren de otras, pero no pueden ser explicadas por aislamiento por distancia, siendo la morfometria geometrica una herramienta que corroboro variaciones genéticas entre dichas poblaciones. Estudios de dimorfismo sexual en cangrejos utilizando morfometria evaluaron el uso de morfometria geometrica de un lado del cefalotorax en *Liocarcinus depurator*

(Rufino et al 2004) y la combinatoria de quelas y cefalotorax en *Uca* (Rosenberg 2002), no obstante el uso de un lado del cefalotorax podria no tener toda la informacion geometrica asociada al sexo (Cardini 2017). Un utilizando la forma corporal completa del cefalotorax fue evaluado en *C. maenas* mediante analisis elipticos de Fourier (Ledesma et al 2010). En nuestros resultados el dimorfismo sexual fue claro mediante el uso de hitos en el cefalotórax completo (Figura 39), observando ademas una alta varianza en el tamaño de machos a diferencia de hembras, pero con una clara tendencia a tener hembras con una forma corporal mas ovalada (Figura 41).

Se destaca que las variaciones encontradas en la forma corporal en la Jaiba Marmola y que indican diferencias significativas entre sexo y localidades de colecta podrian estar asociadas directamente a presiones ambientales influenciadas durante el desarrollo ontogenetico en su estado larvario, ademas también pueden favorecer a estos cambios encontrados diferenciaciones intraespecíficas, donde las poblaciones que habitan distintos ambientes soportarían diferentes presiones selectivas modeladas por plasticidad geográfica o ambiental, variables que pueden ser decifradas de mejor manera mediante la fase de integracion de análisis genómicos de SNPs.

El análisis de correlación entre la distancia morfológica y genética individual no es significativa (Figura 42, Figura 43), no evidenciando alguna base genética a las diferencias morfológicas evidenciadas.

CONCLUSIONES

- Se analizó la estructuración espacial de la información histórica de captura y esfuerzo de pesca, a la forma de captura por unidad de esfuerzo (CPUE, kg/trampa), proveniente del programa de seguimiento de pesquerías bentónicas, con énfasis en la pesquería de jaiba marmola, a cargo del Instituto de Fomento Pesquero (IFOP).
- Se establece, en base al sistema de polígonos, postulado por Molinet et al. (2007), la existencia de tres macrozonas de pesca: a) una norte en torno a las áreas de Bahía Ancud y Calbuco;b) un centro correspondiente al área de Dalcahue, y c) una sur relacionada con el área de Quellón.
- La estructuración espacial detectada para la CPUE guarda relación con los polígonos de pesca definidos por Molinet *et al. (op cit.*), registrando el polígono 2 (Ancud) valores de CPUE mediana en torno a los 10 kg/trampa; el polígono 4 (Dalcahue) valores de CPUE mediana entre 35 y 70 kg/trampa; y el polígono 6 (Quellón), donde la CPUE mediana llega a 20 kg/trampa.
- El diseño propuesto e implementado para la colecta de muestras de jaiba marmola, se correspondió con la estructuración espacial evidenciada en el presente análisis, lo cual permitió utilizarla como base para la implementación del diseño de muestreo en la colecta de individuos de jaiba marmola, para los propósitos del análisis genético y morfométrico dirigido hacia la identificación de unidades poblacionales al interior de la X Región, y en regiones contiguas.
- La información histórica registrada en el Programa de Seguimiento de las Principales Pesquerías Bentónicas, con énfasis en la pesquería artesanal de jaiba marmola, permitió la implementación de un Modelo Lineal Generalizado (GLM), a partir del cual fue posible evidenciar estructuración espacial en la CPUE (kg/trampa), para la zona de aguas interiores de la X Región.
- La estructuración espacial de la CPUE guarda bastante relación con los polígonos de pesca definidos por Molinet et al. (2007), según los cuales se identificaba 3 polígonos importantes para jaiba marmola en aguas de la X Región: Ancud (2), Dalcahue (4), y Quellón (5). Según los resultados obtenidos con la información de seguimiento, el polígono asociado a Dalcahue exhibe los mayores valores de CPUE, cuya mediana varió entre 35 y 70 kg/trampa. En el polígono asociado al sector de Ancud, la CPUE mediana presentó valores en torno a los 10 kg/trampas; mientras que en el polígono que engloba al sector sur de Quellón, la CPUE mediana es cercana a 20 kg/trampa.
- Al interior de polígono del sector Dalcahue, la zona de pesca Achao exhibió diferencias significativas con las otras procedencias de esa macrozona, a pesar de que la CPUE no fue marcadamente diferente. Tal diferencia significativa puede guardar relación con la mayor variabilidad de la CPUE en Achao, la
cual se manifestó por un alto número de observaciones atípicas. A su vez, la procedencia Isla Guaipiquilan mostró valore de CPUE similares al polígono Dalcahue, lo que podría indicar estructuración espacial de la CPUE a una escala menor.

- El diseño de muestreo propuesto e implementado para la colecta de muestras de jaiba marmola, se correspondió con la estructuración espacial evidenciada en el presente análisis, la cual, adicionalmente, fue validada y apoyada por los representantes de la pesca artesanal que dirige esfuerzo de pesca a la captura de jaiba marmola en aguas de la X Región.
- El diseño de muestreo fue expuesto y discutido en el taller de trabajo y posteriormente validado en la 8° sesión del Comité de Manejo de Crustáceos bentónicos, Provincia de Chiloé en Dalcahue, junto a representantes del Comité, representantes de la Dirección Zonal de la Subsecretaría de Pesca y Acuicultura, la Gobernación marítima de Castro, y representantes del Servicio Nacional de pesca y Acuicultura de la X Región de Los Lagos.
- Como parte del diseño de muestreo para fines genéticos y morfométricos se comprometieron 10 zonas de pesca, ejecutando finalmente el muestreo en 11 zonas de pesca, desde la VIII a la XI región, mejorando sustantivamente el número de muestras comprometidas a analizar para cada aproximación. En el caso de los aspectos genéticos, se analizaron 450 en vez de 300 ejemplares, y en el caso de morfometría geométrica se analizaron 581 ejemplares en vez de 120.
- Como evidencia genética se comprometieron y desarrollaron marcadores moleculares del tipo SNPs, y
 de manera complementaria, con la finalidad de verificar la especie en estudio, y robustecer los
 resultados con SNPs, se analizó el marcador molecular Citocromo Oxidasa I del ADN mitocondrial.
- Durante la etapa del desarrollo de marcadores moleculares SNPs un aspecto crítico para una adecuada construcción de las librerías genómicas, y los mejores resultados en la secuenciación masiva, fue el trabajar con ADN de alto peso molecular, y en concentración adecuada para tales fines. Es así que variados métodos y protocolos fueron ensayados para tales fines. Resultando finalmente en extracciones de ADN adecuadas para la construcción de las tres librerías RADseq, y posterior secuenciación en tecnología Illumina HiSeq4000.
- Producto de la secuenciación masiva se obtuvo un total de 2.177.757.552 millones de secuencias crudas, el control de calidad indica que se trata de secuencias de ADN de alta calidad, y longitud que promedian los 151 pares de bases nitrogenadas, lo que es óptimo para la identificación y selección de loci SNPs. Un aspecto importante que se debe destacar, es el alto porcentaje de ADN foráneo presente en las muestras seleccionadas para el desarrollo de SNPs.
- El ADN foráneo identificado y eliminado de la base de datos es principalmente de origen bacteriano, y está presente en distintos porcentajes en todas las muestras de Jaiba Marmoa, repercutiendo en el número de muestras finalmente analizadas en un contexto poblacional.

- De 285 ejemplares incluidos en las librerías genómicas, se analizaron en un contexto poblacional 129 ejemplares para 1911 loci SNPs.
- El análisis de los índices de diversidad genética de SNPs por localidad y por región administrativa, indican que las Heterocigosidades observadas fueron menores a las esperadas, pero no lo suficiente para evidenciar desequilibrio de Hardy Weinberg, o desequilibrio por ligamiento físico, siendo los SNPs propicios para estudios poblacionales.
- En el caso de la COI el análisis a nivel de regiones administrativas indica que es la X región la que presenta mayor número de variantes haplotipicas, con una diversidad haplotípica de 10, con un claro sesgo debido al tamaño muestreal.
- El haplotipo más frecuente de la COI, H1, lo comparten todas las regiones administrativas sobre un 70%, haplotipos compartidos se observan principalmente entre la X y XI regiones, con la particularidad de que dos de los tres haplotipos de la VIII región, no se comparten con el resto de regiones. Esto podría estar informando acerca de un mayor flujo génico entre la X y XI regiones.
- Como parte del análisis estadístico poblacional de las bases de datos de loci SNPs, se evaluaron los resultados para distintos porcentajes de missing data presentes en las bases de datos, esto con la finalidad de detectar sesgos en los resultados debido a esta información faltante.
- Independiente de los umbrales de missing data de las bases de datos de SNPs, los resultados no evidencian un patrón de estructura genética espacial entre las localidades o sitios estudiados. Este patrón de homogeneidad genética es confirmado por el análisis de la Citocromo oxidasa I.
- Esta no significativa estructura genética espacial sugiere la existencia de suficiente flujo génico entre las localidades en estudio como para prevenir la diferenciación.
- Tampoco se evidencias divergencias genéticas significativas relacionadas con el sexo y con las tallas, no pudiendo establecerse hipótesis relacionadas con filopatrias, o migraciones sesgadas por el sexo.
- El patrón aquí descrito confirma evidencia anterior en base a loci microsatélites, donde a lo largo de 700 km de costa chilena no se evidencio patrones espaciales en la estructura genética para *M. edwardsii*, sugiriendo una alta conectividad genética entre los sitios de muestreo.
- Este mismo resultado ha sido reportado para otras especies de crustáceos que no presentan estructuración genética debido a la duración de los estadios larvales en la columna de agua, lo que les permite mantener una amplia dispersión dentro de su rango de distribución y poder mantener la conectividad genética a lo largo del tiempo.

- La homogeneidad genética espacial descrita en el presente estudio es consistente con el largo desarrollo de larvas pelágicas de esta especie, que tiene una duración de tres meses con cinco estadios larvales de zoea y una etapa de megalopa, y a su alta capacidad de dispersión durante este periodo.
- En el análisis de morfometría geométrica destaca el efecto de la diferenciación corporal de los individuos, particularmente en la variación de los hitos de la zona posterior del cefalotórax, confirmando una extensión de la forma corporal, principalmente para individuos de la región de Aysén.
- Esto podría ser explicado como una expresión de una característica de la historia de vida diferencial entre hembras y machos; por ejemplo, almacenaje de huevos en hembras y/o diferencias en la calidad alimenticia durante el desarrollo ontogenético debido a un componente ecologico asociado al ambiente entre el sur de Chile y las zonas centro sur.
- Se confirmo la existencia de diferencias significativas entre la variación de la forma entre las distintas localidades, aunque estas diferencias no conforman grupos discretos como para diferenciar subespecies o tipos morfológicos.
- El dimorfismo sexual fue claro mediante el uso de hitos en el cefalotórax completo, observando ademas una alta varianza en el tamaño de machos a diferencia de hembras, pero con una clara tendencia a tener hembras con una forma corporal más ovalada.
- Se destaca que las variaciones encontradas en la forma corporal en la Jaiba Marmola y que indican diferencias significativas entre sexo y localidades de colecta podrian estar asociadas directamente a presiones ambientales influenciadas durante el desarrollo ontogenetico en su estado larvario.
- El análisis de correlación entre la distancia morfológica y genética individual no es significativa, no evidenciando alguna base genética a las diferencias morfológicas evidenciadas.
- En términos de manejo pesquero de la especie, se recomienda implementar medidas que permitan mantener la variabilidad genética, así como el intercambio genético a lo largo de la distribución geográfica de *M. edwardsii*, en especial en aquellas zonas donde se observa mayor variabilidad genética, y/o variantes génicas únicas. Estas variantes genéticas pueden ser adaptativas y una reducción de la variabilidad genética, debido a la aplicación de ineficientes estrategias de manejo, puede resultar en la incapacidad de los organismos para responder a cambios ambientales futuros, sean estos de origen natural o antrópicos.

Un aspecto muy importante a considerar en las evaluaciones de stocks pesqueros y la identificación de cohortes o grupos etarios en una población natural bajo explotación, es el desarrollo de métodos adecuados para la determinación de la edad. En este contexto, y como una sobre oferta se propuso llevar a cabo un análisis sobre estructuras corporales en la Jaiba Marmola factibles de ser utilizadas para la determinación de la edad.

ANÁLISIS DEL MOLINILLO GÁSTRICO EN LA JAIBA MARMOLA COMO POSIBLE ESTRUCTURA PARA LA DETERMINACIÓN DE EDAD

Hasta no más de una década y media, la determinación precisa de la edad en crustáceos era un problema sin resolver. Los intentos de responder preguntas sobre la edad en crustáceos buscaron métodos basados en el análisis de la distribución de tallas y la acumulación del pigmento llamado lipofuccina. Así surgieron varios trabajos que utilizaron el mencionado pigmento con variados niveles de éxito, que sirvieron para evidenciar las dificultades de la variabilidad y estandarización (Wahale et al, 1966; Bluhm, 2001; Peixoto et al., 2002; Puckett et al., 2008).

Es en el 2012 cuando Kilada et al., reportan haber estudiado varias estructuras duras en distintos crustáceos, incluyendo una prueba experimental con marcaje, pudiendo demostrar que líneas de crecimiento eran evidenciadas con éxito (a pesar de las naturales mudas) en los pedúnculos oculares y especialmente en el molinillo gástrico. Incluso se prueba que esto es también aplicable en algunas especies de agua dulce (Clore, 2014).

Recientemente, tres especies de crustáceos de aguas chilenas (dos langostinos y el camarón nylon) fueron objeto de este tipo de estudio con buenos resultados (Kilada & Acuña, 2015). Al parecer la calidad de las lecturas son más confiables en el molinillo gástrico que en los pedúnculos oculares (Leland et al., 2015).

METODOLOGÍA DE ANÁLISIS DEL MOLINILLO GÁSTRICO DE JAIBA MARMOLA

Con la finalidad de estudiar las estructuras correspondientes a osículos del molinillo gástrico, se han muestreado 80 ejemplares de jaibas marmolas provenientes de las localidades de muestreo de Punta Lavapie, Laraquete y Valdivia, entre un rango de talla entre 10 a 17 cm de longitud del cefalotórax.

La metodología de muestreo se detalla en la página Tabla 9. Luego de extraídas las estructuras del molinillo gástrico, pedúnculo ocular, y mandíbula, se limpian cuidadosamente en agua destilada para retirar cualquier resto de tejido, y se almacenan en un buffer de 60% etanol/ 30% glicerol/ 10% agua destilada.

Posterior al almacenamiento, antes de ser incluidas en resina, las muestras son muy bien secadas al aire libre, y luego incluidas en resina ENTELLAN y xilol, en una proporción 1:1.

RESULTADOS DE LA DESCRIPCION DEL MOLINILLO GÁSTRICO DE JAIBA MARMOLA

En los crustáceos existe una amplia variedad de hábitos alimenticios y consumen diversos tipos de alimentos, aunque en su mayoría combinan la alimentación depredatoria con la carroñera. Casi todas las especies dulceacuícolas, así como las formas marinas, son herbívoras. Los hábitos herbívoros y carroñeros ceden paso a los detritívoros. El consumo de detritos hace lo propio con la alimentación por filtración.

En los crustáceos, la boca ventral de los decápodos está circundada por los apéndices de función alimentaría (Figura 44 Figura 45), donde su complejo aparato digestivo comienza en la boca y se continúa con un corto esófago al que le sigue el estómago que puede ser dividido en dos partes, una amplia parte anterior o estómago cardíaco (o cámara cardiaca) y una región posterior o pilórica de menor tamaño (o cámara pilórica), ambas porciones separadas por una válvula (Figura 46).

El estómago cardiaco en crustáceos decápodos está compuesto por un complejo muscular y nervioso llamado molinillo gástrico (Meiss and Norman 1977), donde un sistema de musculatura estriada mueve los elementos del esqueleto, compuesto por numerosas piezas quitinosas llamadas osículos, para en conjunto trabajar en moler las grandes partículas de alimento en la cámara cardiaca (Figura 47). Estos osículos refuerzan la estructura y sirven como puntos externos de inserción muscular, algunos de ellos dan origen hacia el exterior a un diente dorsal medio

y a dos laterales, uno a cada lado del diente medio. Estos tres dientes se localizan internamente en la región posterior de la cámara cardiaca formando el molino gástrico, dentro del cual el alimento se degrada de manera mecánica.

El esqueleto principal del molinillo gástrico consiste de los siguientes osículos: mesocardio, pterocardio (Figura 48, Figura 50), pilórico, exopilórico, zygocardio que soporta dentículos laterales (Figura 49), propilórico, y urocardiaco (Factor 1989). Estos osículos junto con soportar el esqueleto gástrico, asisten en triturar y filtrar durante el proceso de alimentación.

Figura 44. Vista antero dorsal de un ejemplar de Jaiba Marmola, indicando la ubicación del molinillo gástrico.

Figura 45. Vista dorsal de un ejemplar de Jaiba Marmola, indicando la ubicación del molinillo gástrico.

Figura 46. Vista ventral interna mostrando la posición del estómago o cámara cardiaca que contiene el molinillo gástrico en un ejemplar de Jaiba Marmola.

Figura 47. Vista dorsal con abdomen removido para exponer el estómago cardíaco que contiene el molinillo gástrico, y las mandíbulas de un ejemplar de Jaiba Marmola.

Figura 48. Vista del molinillo gástrico de *Metacarcinus edwardsii*, que muestra la disposición y el arreglo estructural de los osiculos llamados; mesocardio (m), un par de zigocardios (z), y un par de pterocardios (p). Las placas de dentículos del mesocardio (md) y zigocardio (zd) están ubicados distalmente, y son utilizados para moler alimento.

Figura 49. Acercamiento de las placas de dentículos del A) zygocardio, y B) mesocardio, que muestra la región de las crestas de lo dentículos.

Figura 50. Vista de los pterocardios del molinillo gástrico de Jaiba Marmola.

Cortes y tinciones histológicas de las muestras de molinillos gástricos

Las muestras de molinillos gástricos fueron almacenadas en una mezcla de alcohol-glicerol-agua. El primer paso consistió en traspasar a un fijador-descalcificador por 24 horas (formalina-ácido nítrico-agua destilada).

Luego de 24 horas en el fijador descalcificador se lavan en agua y se comienza el proceso de deshidratación convencional usado para histología, luego se incluyen en histosec. Para los bloques y tallado de cada una de las muestras, se realizaron corte de 12 micras.

Después de dejar secar por 24 horas, se procedió a la batería de tinción. Después de varias pruebas se utilizó azul de toluidina acuoso, específico para tejido cartilagenoso. Finalmente se deshidrato y monto.

Resultados

En una primera etapa, luego de identificadas las estructuras que serían objeto de las técnicas histológicas, el material se dejó en las soluciones preservantes indicadas en Materiales y Métodos.

Los primeros ensayos con métodos corrientes de inclusión y teñido, resultaron totalmente insatisfactorios, tanto por la rotura de los cortes como la nula diferenciación de las potenciales estructuras a analizar. En los ensayos posteriores, y luego de someter las estructuras (oscículos) a soluciones descalcificadoras los resultados mejoraron definitivamente.

Así como la solución descalcificadora permitió mejorar la calidad de los cortes, manteniendo la integridad estructural de los tejidos, la prueba de distintos colorantes también contribuyó a la calidad final de las preparaciones, en particular la tinción de Azul de Toluidina, utilizada habitualmente para tejidos de tipo cartilaginoso.

En total, se confeccionaron 117 preparaciones histológicas, ensayando varias en las distintas piezas de un mismo individuo para luego elegir aquellas en donde pudieran visualizarse las bandas de crecimiento. Para los fines del presente informe, se seleccionaron aquellas preparaciones que reunieron las mejores condiciones y corresponde a una docena de individuos (ver fotografías). Las imágenes utilizadas fueron procesadas con el programa Paint 3D, colocando puntos blancos en las bandas oscuras para facilitar los potenciales recuentos.

Dependiendo de la estructura, se contaron entre 7 y más de 30 bandas.

De acuerdo a la literatura más reciente (Kilada & Driscoll, 2017), el recuento de bandas en los oscículos del molinillo gástrico y/o en los pedúnculos oculares resultaban ser el único método directo para determinar la edad en crustáceos. Desde su aparición, esta nueva metodología surgió generando grandes expectativas pareciendo que al fin se había encontrado un método altamente confiable y que solucionaba definitivamente el problema. Pero también en los últimos años se informó de resultados contradictorios (Sheridan *et al,* 2015 y 2016) que ponen en duda los supuestos centrales del método: que los oscículos permanecían en el animal y que no se perdían en las mudas por las que deben pasar los crustáceos en su crecimiento, situación que incluso es reconocida en la revisión de Kilada & Driscoll (2017). En un trabajo aparecido hace algunas semanas, Sheridan & O'Connor (2018) parecen dar el golpe de gracia al informar que la jaiba verde europea (*Carcinus maenas*) en realidad pierde completamente los oscículos en cada muda.

Todos los autores citados coinciden en que la variabilidad parece ser alta en esos aspectos entre las distintas especies, por lo que se hace fundamental aplicar las técnicas de validación, ya sea marcaje a partir de estados tempranos (juveniles) y/o la mantención de ejemplares de edad conocida en cautiverio y luego hacer la comparación.

En la presente oportunidad, se ha podido demostrar la existencia de las bandas de crecimiento, restando en consecuencia continuar con las etapas de validación y estimación de la variabilidad en la especie que se considere estudiar, en este caso, la jaiba marmola. Pasando a la etapa experimental de marcaje químico y la mantención en condiciones de cautiverio.

Figura 51. Fotografía de un corte histológico de bandas de crecimiento identificadas, indicadas por puntos, en una sección longitudinal de osiculos del mesocardio del molinillo gástrico de un macho de 112 cm LC en *Metacarcinus edwardsii*.

Figura 52. Fotografía de un corte histológico de bandas de crecimiento identificadas, indicadas por puntos, en una sección longitudinal de osiculos del mesocardio del molinillo gástrico de una hembra de 127 cm LC en *Metacarcinus edwardsii*.

TALLER DE DIFUSION DE RESULTADOS

A continuación se exponen las principales consideraciones respecto a los resultados y conclusiones del proyecto, que fueron discutidas durante el taller de difusión de resultados. Este taller se realizó el día 28 de noviembre en la Universidad de Concepción. A continuación se muestra la invitación general distribuida, le programa del taller, y la lista de asistencia.

UNIVERSIDAD DE CONCEPCIÓN Facultad de Ciencias Naturales y Oceanográficas Departamento de Oceanografía

Junto con saludar, y a través de la presente se invita al público general a participar del taller de difusión de resultados del proyecto FIPA N°2017-67 "IDENTIFICACION DE UNIDADES POBLACIONALES DE JAIBA MARMOLA, X REGION".

Este taller se realizará el día miércoles 28 de noviembre, en la Universidad de Concepción, Facultad de Ciencias Naturales y Oceanográficas, Sala Minera Escondida, entre las 09:30 horas a las 13:00 horas.

Nombre	Institución	e-mail	Firma	
Victorico Hennera	U. d. Concepción	hildrichten of orgen wil um	analing Haros	
Guisella MUNOZ	SSPA	2 MUNOZO SUBRISCO CI	had in	
Lilian Travicoso	Valec	lit hours a grail on	1 0	
Ricardo gallegully	UDEC	noally a user il	ALL	
Daniel Johnes Uchide	UDEC	domezioudec d		
Sandrad > ampertegu	Udo C	stampertequiðudec al	Sall	
sleutine Gonzalis ferriondes	VdeC	Valenting Souse @ vde - cl	Dilator	
Tanusca Bistamark Bustamark	Udec	frankustamante @udec.cl	Bustamante	
and Blaced	CMP5		le so/	
JOSUFA PIND AGUILLERA	UDEC	p.pinoogoilera @ gmal com	the with	
RRAULIO TAPIN AWARES	UNEC	10. BRATAP @ GMAIL COM	ZUDEN	
LAURA VICTORIAND HABIT	UDEC	LVICTORIAND ZOIS @ STORC.CI	ist.	
Josquin Concomo Gollonolo	UDEC	CARCAMOL JOAQUIN @ GMAIL COM	Jees	
Rocio Barros Figueros	UdiC	rbarrios @ judac. cl	Hours BD	
Selim Musch Vege	VdeC	semisleh@anoril con	MARK 1	
areo botamad	V de C	marveton a volte of	hil	
CIRO DYARZUN G.	Vdec	coyarzuneudec.el	70 101.3	
dith Montero Campos	Vese	enable campos @ hotaval w-	EDIT	
Outro Acto	Udec	gentra, red il gonzili com	Lat	

Taller de Resultados FIPA 2017-67: IDENTIFICACION DE UNIDADES POBLACIONALES DE JAIBA MARMOLA, X REGION 28.11.2018

Taller de Resultados FIPA 2017-67: IDENTIFICACION DE UNIDADES POBLACIONALES DE JAIBA MARMOLA, X REGION 28.11.2018

Nombre	Institución	e-mail	Firma	
Rodrigo Contreras S.	CONSULTOR INDEPENDIEN	k rocostyerasan@amoil.c	Jan'	
Miguel Yonez A	Univ. del Bio-Bis	myantzo ubiobio	en fort	
Érusin Berria J.	U. Concepción	envinbanie@ amail. com	Canino	
CRISTIAN E. HEANANDEZ U	V DE CONCEPCIÓN	CEHERMAND G GRAIL COM	TAN	
Sandra Ferraila Juitos	UDEC	steraded de l	0	
1 1				

"IDENTIFICACION DE UNIDADES POBLACIONALES DE JAIBA MARMOLA, X REGION",

Proyecto FIPA 2017-67

Taller de Discusión y Difusión Sala Minera Escondida Facultad de Ciencias Naturales y Oceanográficas Universidad de Concepción Miércoles 28 de noviembre de 2018

- ✓ 09:30 10:00: Bienvenida, Descripción del proyecto y objetivos. Expone Sandra Ferrada Fuentes. Universidad de Concepción.
- ✓ 10:00 10:20: Revisión de bases de datos de captura y esfuerzo pesquero de jaiba marmola para un diseño de muestreo espacial adecuado. Expone Gustavo Aedo. Universidad de Concepción.
- ✓ 10:30 10:50: Diseño, implementación y ejecución de muestreo. Expone Sandra Ferrada Fuentes. Universidad de Concepción.
- ✓ 11:00-11:20: Identificación de unidades poblacionales desde aproximaciones genéticas. Expone Cristian Canales Aguirre. Universidad de Los Lagos.
- ✓ Coffe Break 11:30 11:40
- ✓ 11:50 12:10: Identificación de unidades poblacionales desde aproximaciones morfológicas. Expone Hugo Benítez. Universidad de Tarapacá.
- ✓ 12:20 12:40: Molinillo gástrico como posible estructura para determinación de edad. Expone Ciro Oyarzún. Universidad de Concepción.
- ✓ 12:40 13:00: Discusión y Conclusiones.

Consultas acuigen@udec.cl

Al taller asistieron 25 personas, entre ellos, representantes de pescadores de jaiba de la región de Los Lagos, Puerto Montt, sectorialista de la Subsecretaría de Pesca y Acuicultura, Guisella Muñoz, Unidad Crustáceos, División Administración Pesquera, además de investigadores, docentes, y alumnos de pre y postgrado.

Entre los tópicos más discutidos se encuentra:

Se destaca los esfuerzos de muestreo realizados por el equipo de trabajo, y el apoyo obtenido por el Instituto de Fomento Pesquero, los pescadores artesanales, y el CIEP de Aysén, tanto en el ámbito de muestreo como la facilitación de datos biológicos pesqueros. Se destaca la rigurosidad y traslado de las muestras.

Se destaca el esfuerzo en recolectar y analizar muestras de jaibas marmolas, más allá de lo solicitado y comprometido en la oferta técnica del proyecto.

En el análisis de morfometría geométrica se sugiere explora con mayor detalle las diferencias observadas entre la región de Aysén y el resto del área de muestreo. Con la finalidad de identificar y describir mecanismos que generen estas diferencias. En particular en zonas de fiordos y canales patagónicos, incorporando variables ambientales al estudio, como temperatura, clorofila, oxigeno, entre otros.

Se sugiere explorar otros marcadores moleculares en búsqueda de las bases genéticas de las diferencias morfométricas evidenciadas, y relacionar estos marcadores moleculares con variables ambientales al estudio, como temperatura, clorofila, oxigeno, entre otros.

Se destaca la necesidad de evaluar la relación entre el RPA para la jaiba marmola y su relación con los desembarques de la especie en cada región.

Se destaca la necesidad de explorar con mayor detalle la alta presencia de bacterias relacionadas con procesos de cultivos en la zona norte de la isla de Chiloé.

Se indica que la información generada en este proyecto de investigación es clave para la implementación de los modelos de evaluación de stock, y las posteriores medidas de manejo que evalúen las autoridades.

REFERENCIAS BIBLIOGRAFÍCAS

- Abello, P., Guerao, G. 1999. Temporal variability in the vertical and mesoscale spatial mdistribution of Crab Megalopae (Crustacea: Decapoda) in the Northwestern Mediterranean. Estuar Coast Shelf Science. 49:129-139.
- Adams, D.C., Rohlf, F.J., Slice, D.E., 2013. A field comes of age: geometric morphometrics in the 21st century. Hystrix-Italian Journal of Mammalogy 24, 7-14.
- Akaike, H. 1974. A new look at the statistical model identification. IEEE transactions on automatic control. 19(6): 716-723.
- Andrews, S. 2010. FastQC: a quality control tool for high throughput sequence data.
- Avise, J.C. 1998. The Genetic Gods: Evolution and Belief in Human Affairs. Harvard University Press, Cambridge, MA. 279 pp.
- Baird, N. A., Etter, P. D., Atwood, T. S., Currey, M. C., Shiver, A. L., Lewis, Z. A., Selker, E. U., Cresko, W. A. & Johnson, E. A. 2008. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PloS ONE 3(10): e3376.
- Benestan, L., Gosselin, T., Perrier, C., Sainte-Marie, B., Rochette, R., & Bernatchez, L. 2015. RAD genotyping reveals fine-scale genetic structuring and provides powerful population assignment in a widely distributed marine species, the american lobster (*Homarus americanus*). Molecular Ecology, 24(13), 3299-3315.
- Benítez, H.A., Püschel, T.A., 2014. Modelando la varianza de la forma: morfometría geométrica aplicaciones en biología evolutiva. International Journal of Morphology 32, 998-1008.
- Bjorndal, K & Bolten, A. 2008. Annual variation in source contributions to a mixed stock: implications for quantifying connectivity. Molecular Ecology 17: 2185 2193.
- Cadenasso, M., Pickett, A. & Grove, J. 2006. Dimensions of ecosystems complexity: heterogeneity, connectivity and history. Ecological Complexity 3: 1-12.
- Canales-Aguirre, C.B., Ferrada, S., Hernández, C.E. & Galleguillos. R. 2010. Population structure and demographic history of *Genypterus blacodes* using microsatellite loci. Fishery Research. 106: 102-106.
- Cardini, A., 2017. Left, right or both? Estimating and improving accuracy of one-side-only geometric morphometric analyses of cranial variation. Journal of Zoological Systematics and Evolutionary Research 55, 1-10.
- Catchen, J. M., Amores, A., Hohenlohe, P., Cresko, W., &Postlethwait, J. H. 2011. Stacks: building and genotyping loci de novo from short-read sequences. G3: Genes, Genemes, Genetics 1(3): 171-182.
- Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A., & Cresko, W. A. 2013. Stacks: an analysis tool set for population genomics. Molecular Ecology 22(11): 3124-3140.
- Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature methods. 9(8): 772-772.

- Drummond, A.J. & Rambaut, A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology. 7: 214.
- Dryden, I.L., Mardia, K.V., 1998. Statistical shape analysis. Wiley Chichester.
- Everett, M. V., Miller, M. R., & Seeb, J. E. 2012. Meiotic maps of sockeye salmon derived from massively parallel DNA sequencing. BMC Genomics 13(1): 521.
- Excoffier, L., Laval, G. & Schneider, S. 2005. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online. 1:47–50.
- Excoffier, L., Smouse, P. E. & Quattro, J. M. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics. 131: 479- 491.
- Ferrada, S., K. Hernández, R. Montoya & Galleguillos. R. 2002. Estudio poblacional del recurso anchoveta (*Engraulis ringens* Jenyns 1842) (Clupeiforme, Engraulidae), mediante análisis de ADN. Gayana 66 (2): 243 – 249.
- Folmer, O., Black, M., Hoeh, W., Lutz, R., Vrijenhoek, R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit 1 from diverse metazoan invertebrates. Mol. Mar. Biol. Biotech. 3(5): 294-299.
- Gelman, A., Carlin, J.B., Stern, H.S. & Rubin, D.B. 1995. Bayesian Data Analysis. Chapman and Hall, London.
- Guillot, G. 2008. Inference of structure in subdivided populations at low levels of genetic differentiation—the correlated allele frequencies model revisited. Bioinformatics. 24 (19): 2222-2228.
- Guillot, G., Estoup, A., Mortier, F., Cosson, J.F. 2005a. A spatial statistical model for landscape genetics. Genetics. 170: 1261–1280.
- Guillot, G., Mortier, F., Estoup, A. 2005b. Geneland: a computer package for landscape genetics. MolEcol Notes. 5: 712–715.
- Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W. & Gascuel, O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic biology. 59(3): 307-321.
- Guisan, A., Edwards, T.C. & Hastie, T. 2002. Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological Modelling 157:89- 100.
- Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. 41: 95-98.
- Hedgecock D., Barber P. & S. Edmands. 2007. Genetics approaches to measuring connectivity. Oceanography 20(3): 70-79.
- Herrera, S., Watanabe, H., & Shank, T. M. 2015. Evolutionary and biogeographical patterns of barnacles from deep-sea hydrothermal vents. Molecular ecology 24(3): 673-689.

- Hutchings, J., Swain, D., Rowe, S., Eddington, J., Puvanendran, V. & Brown, J. 2007. Genetic variation in lifehistory reaction norms in a marine fish. Proceedings of The Royal Society B 27: 1693-1699.
- Jackson, T.M., O'Malley, K.G. 2017. Comparing genetic connectivity among Dungeness crab (*Cancer magister*) inhabiting Puget Sound and coastal Washington. Marine Biology. 164:123.
- Jolliffe, I.T., 2002. Principal component analysis, 2nd edition ed. Springer-Verlag, New York.
- Jombart T .2008. adegenet: a R package for the multivariate analysis of genetic markers. *Bioinformatics*, 24, 1403–1405.
- Jombart T, Ahmed I .2011. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics
- Jombart T, Devillard S, Balloux F .2010. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. *BMC genetics*, **11**, 94.
- Kilada, R. & J.G. Driscoll. 2017. Age determination in crustaceans: a review. Hydrobiologia, 799: 21- 36. doi 10.1007/s10750-017-3233-0
- Klingenberg, C.P., 2011. MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources 11, 353-357.
- Landi, M., Garoia, F., Piccinetti, C. & Tinti, F. 2005. Isolation of polymorphic microsatellite loci from the European anchovy, *Engraulis encrasicolus*. Molecular Ecology. 5: 266–268.
- Ledesma, F.M., Van der Molen, S., Barón, P.J., 2010. Sex identification of *Carcinus maenas* by analysis of carapace geometrical morphometry. Journal of Sea Research 63, 213-216.
- Lenormand, T. 2002. Gene flow and the limits to natural selection. Trends in Ecology & Evolution. 17: 183-189.
- Librado, P., & Rozas, J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 25 (11): 1451-1452.
- Miller, J. 2010. Species Distribution Modeling. Geography Compass 4:490-509.
- Miller, M. R., Dunham, J. P., Amores, A., Cresko, W. A., & Johnson, E. A. 2007. Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Research 17(2): 240-248.
- Miller, M. R., Dunham, J. P., Amores, A., Cresko, W. A., & Johnson, E. A. 2007. Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Research 17(2): 240-248.
- Millikin MR, Williams AB. 1984. Synopsis of biological data on the blue crab, *Callinectes sapidus* Rathbun. FAO Fish. Synopsis N° 138.
- Minoche, A. E., Dohm, J. C., & Himmelbauer, H. (2011). Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and genome analyzer systems. Genome biology, 12(11), R112.
- Molinet, C., Fuentealba, M., Arévalo, A., Barahona, N., Ascencio, C., Ariz, L., González, J., Cortez, C., Matamala, M., Henríquez, J., Dorador, C., Valenzuela, A., Fernández, V., Almanza, V., Muñoz, J.,

Gutiérrez, J., Díaz, P. & Paredes, C. 2007. Diagnostico biológico–pesquero para recursos bentónicos de la zona contigua, X y XI Región. Proyecto FIP 2005-51. Universidad Austral de Chile. 288 pp.

- Monteiro, L.R., 1999. Multivariate regression models and geometric morphometrics: the search for causal factors in the analysis of shape. Systematic Biology, 192-199.
- Morgan, S.G., Fisher, J.L. 2010. Larval behavior regulates nearshore retention and offshore migration in an upwelling shadow and along the open coast. Marine Ecology Progress Series. 404:109-126.
- Muñoz, C.A., Pardo, L.M., Henríquez, L.A., Palma, Á.T. 2006. Variaciones temporales en la composición y abundancia de cuatro especies de Cancer (Decapoda: Brachyura: Cancridae) capturadas con trampas en bahía San Vicente, Concepción (Chile central). Investigaciones Marinas. 34:9-21.
- Nations, J.D. 1975. The Genus Cancer (Crustacea: Brachyura): Systematics, Biogeography and Fossil Record. LACMNH. 23 :1-104
- Nations, J.D. 1979. The Genus Cancer and its Distribution in Time and Space Biological Society Washington Bulletin. 3:153-187.
- O'Leary NA, Wright MW, Brister JR *et al.* 2016. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. *Nucleic acids research*, **44**, D733–45.
- Oksanen J, Blanchet FG, Kindt R .2010. vegan: Community Ecology Package. R package version 1.17-2. http://cran. r-project.
- Olguín A. 2006. Especies Bentónicas de Importancia Comercial 2006. Serie-Chile: Recursos Pesqueros N° 2. Valparaíso, Chile: IFOP. 28.
- Pardo L.M, Fuentes J.P, Olguín A. & Orensanz J.M. 2009. Reproductive maturity in the edible Chilean crab *Cancer edwardsii*: Methodological and management considerations. Journal of the Marine Biological Association of the United Kingdom 89(8): 1627–1634.
- Pardo L.M, Rosas Y., Fuentes J.P, Riveros M.P. & Chaparro O. 2015. Fishery Induces Sperm Depletion and Reduction in Male Reproductive Potential for Crab Species under Male-Biased Harvest Strategy. Public Library of Science One.; 10(3): e0115525.
- Pardo, L.M., Cardyn, C.S., Garcés-Vargas, J. 2012a. Spatial variation in the environmental control of crab larval settlement in a micro-tidal austral estuary. Helgoland Marine Research. 66:253-263.
- Pardo, L.M., K. González-Flores, J.P. Fuentes, K. Paschke & O. Chaparro. 2011. Survival and behavioral responses of juvenile crabs of *Cancer edwardsii* to severe hyposalinity events triggered by increased runoff at an estuarine nursery ground. Journal of Experimental Marine Biology and Ecology, 404: 33-39.
- Pardo, L.M., Mora-Vasquez, P., Garces-Vargas, J. 2012b. Daily settlement of Cancer crab megalopae in a microtidal estuary. Latin America Journal Aquatic Research. 40:142-152.
- Peakall R, Smouse PE.2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. *Bioinformatics* , **28**, 2537–2539.

- Pereyra, R. T., Saillant, E., Pruett, C. L., Rexroad, C. E., Rocha-Olivares, A. & Gold, J. R. 2004. Characterization of polymorphic microsatellites in the Pacific sardine *Sardinops sagax sagax* (Clupeidae). Molecular Ecology Notes. 4: 739–741.
- Pritchard JK, Stephens M, Donnelly P.2000. Inference of Population Structure Using Multilocus Genotype Data. *Genetics*, **155**, 945–959.
- Quintana R. Larval development of the edible crab, *Cancer edwardsii* Bell, 1835 under laboratory conditions (Decapoda: Brachyura). Rep USA Mar Biol Inst Kochi Univ. 1983; 5: 1–19.<u>R Core Team, 2018. R: A</u> <u>language and environment for statistical computing. R Foundation for Statistical Computing, Vienna,</u> <u>Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.</u>
- Rambaut, A., Suchard, M.A., Xie, D. & Drummond, A.J. 2014. Tracer v1.6, Available from http://beast.bio.ed.ac.uk/Tracer
- Raymond, M., & Rousset, F. 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity 86:248-249
- Retamal, M. 1981. Catálogo ilustrado de los crustáceos decápodos de Chile. Gayana Zoologica. 44:1 110.
- Retamal, M., Aedo, G., Suárez, C., Montecinos, S., Gacitúa, S., Pedraza, M., Arana, P. 2009. Estado actual del conocimiento de las principales especies de Jaibas a nivel nacional. Fondo Investigación Pesquera, Informes Técnicos FIP. 2007-39.
- Rochette, N. C., & Catchen, J. M. 2017. Deriving genotypes from RAD-seq short-read data using Stacks. Nature Protocols, 12(12), 2640.
- Rohlf, F.J., 2013. TPSdig, v. 2.17. . State University at Stony Brook. , NY
- Rohlf, F.J., Slice, D., 1990. Extensions of the Procustes methods for the optimal superimposition of landmarks. Systematic Zoology 39, 40-59.
- Rosenberg, M.S., 2002. Fiddler crab claw shape variation: a geometric morphometric analysis across the genus Uca (Crustacea: Brachyura: Ocypodidae). Biological Journal of the Linnean Society 75, 147-162.
- Rousset, F. 2008. genepop'007: a complete re-implementation of the genepop software for Windows and Linux. Molecular Ecology Resources 8(1): 103-106.
- Rufino, M., Abelló, P., Yule, A.B., 2004. Male and female carapace shape differences in *Liocarcinus depurator* (Decapoda, Brachyura): an application of geometric morphometric analysis to crustaceans. Italian Journal of Zoology 71, 79-83.
- Salzburger, W., Ewing, G. B. & Von Haeseler, A. 2011. The performance of phylogenetic algorithms in estimating haplotype genealogies with migration. Molecular ecology. 20(9): 1952-1963.
- Sayers EW, Barrett T, Benson DA *et al.* 2009. Database resources of the National Center for Biotechnology Information. *Nucleic acids research*, **37**, D5–15.
- Shanks AL, Grantham BA, Carr MH. 2003. Propagule dispersal distance and the size and spacing of marine reserves. Ecological applications. 159–169.

- Shanks, A.L., Brink, L. 2005. Upwelling, downwelling, and cross-shelf transport of bivalve larvae: test of a hypothesis. Marine Ecology Progress Series. 302 :1-12.
- Sheridan, M. & I. O'connor. 2018. Evidence of complete gastric mil ossicle loss at ecdisis in the European Green crab *Carcinus maenas* (Linnaeus, 1758) (Decapoda: Brachyura: Carcinidae). Journal of Crustacean Biology, 38(4): 435–442. doi: 10.1093/jcbiol/ruy045
- Sheridan, M., I. O'connor & A.C. Henderson. 2016. Investigating the effect of molting on gastric mill structure in Norway lobster (*Nephrops norvegicus*) and its potential as a direct ageing tool. Journal of Experimental Marine Biology and Ecology 484: 16–22.
- Sheridan, M., R.A. Officer, I. O'connor & C. Lordan. 2015. Investigating the feasibility of using growth increments for age determination of Norway lobster (*Nephrops norvegicus*) and brown crab (*Cancer pagurus*). Journal of Crustacean Biology 35: 495–498.
- Silva, I.C., Alves, M.J., Paula, J., Hawkins, S.J., 2010. Population differentiation of the shore crab *Carcinus maenas* (Brachyura: Portunidae) on the southwest English coast based on genetic and morphometric analyses. Scientia Marina 74, 435-444.
- Silva, I.C., Paula, J., 2008. Is there a better chela to use for geometric morphometric differentiation in brachyuran crabs? A case study using *Pachygrapsus marmoratus* and *Carcinus maenas*. Journal of the Marine Biological Association of the United Kingdom 88, 941-953.
- Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research. 25: 4876-4882.
- Ungfors A, McKeown NJ, Shaw PW, Andre C. 2009. Lack of spatial genetic variation in the edible crab (*Cancer pagurus*) in the Kattegat–Skagerrak area. ICES J Mar Sci. 66:462–469.
- Vandehey, J., Sloss, B., Peeters, P. & Sutton, T. 2009. Genetic structure of lakewhitefish *Coregonus clupeaformis* in Lake Michigan. Canadian Journal of Fisheries and Aquatic Sciences 66: 382-393.
- Vinuesa, J.H., Lovrich, G.A., Tapella, F. 1999. New localities for Crustacea decapoda in the Magellan region, southern South America. Scientia Marina. 63:321-323.
- Wang, Y-G, Fang, B, Zhang, C-Y, Rong, X-J .2006. "Etiology of skin ulcer syndrome in cultured juveniles of *Apostichopus japonicus* and analysis of reservoir of the pathogens". Journal of Fishery Sciences of China/Zhongguo Shuichan Kexue. **13** (4): 610–616.
- Waples, R. D. 1998. Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. The Journal of Heredity 98: 438–450.
- Wood DE, Salzberg SL. 2014. Kraken: ultrafast metagenomic sequence classification using exact alignments. *Genome biology*, **15**, R46.

ANEXOS

ANEXO 1. Acta de la reunión de coordinación proyecto FIPA N°2017-67.

ACTA DE REUNIÓN DE COORDINACION

PROYECTO FIPA 2017-67 "IDENTIFICACIÓN DE UNIDADES POBLACIONALES DE JAIBA MARMOLA, X REGIÓN"

EJECUTOR: Universidad de Concepción

JEFE DE PROYECTO: Sandra Ferrada Fuentes

FECHA: 28/07/2017

LUGAR: SUBPESCA-FIPA, VALPARAÍSO

TEMAS TRATADOS:

-Presentación general de aspectos metodológicos, enfoque del proyecto, actividades, búsqueda de información.

- Sandra Ferrada Fuentes, profesional de la Universidad de Concepción, y jefa de proyecto expone acerca de aspectos administrativos, financiero, fechas de informes, profesionales involucrados en el proyecto, rol y función de cada uno de ellos.

- Gustavo Aedo Urrutia, profesional de la Universidad de Concepción, a cargo del diseño y ejecución del plan de muestreo, así como aspectos biológicos pesqueros del recurso. En este punto se destaca que a pesar que las bases técnicas presentan como objetivo de estudio la X región, se propone incluir muestras de la IX, XI y IX región, con un total de 300 muestras a analizar es aspectos genéticos y morfométricos. Con respecto a este objetivo desde la Subsecretaría de Pesca y Acuicultura, se indica complementar la data presentada para el diseño del plan de muestreo, con la data disponible en el visualizador de mapas de la Subpesca sobre caladeros de pesca artesanales, considerando la distribución del esfuerzo pesquero.

- Se acuerda gestionar reunión con los profesionales de IFOP que están a cargo del programa de monitoreo de la jaiba marmola en Chile. Esto con la finalidad de incorporar la data disponible del programa de monitoreo, y mejorar de esta forma la revisión exhaustiva de data pesquera y así dar mayor soporte al diseño de muestreo espacial.

-Cristian Canales Aguirre, profesional de la Universidad de Los Lagos, a cargo del objetivo de aspectos genéticos, expone sobre las bases teóricas y prácticas de los marcadores SNPs comprometidos, así como sus alcances y utilidad en otros crustáceos de Chile, y el mundo. Se destaca el número de muestras a analizar, y la resolución de los marcadores moleculares, así como le hecho de ser la primera vez que se invierte en este tipo de información genética de última generación.

-Sandra Ferrada Fuentes, expone acerca de los objetivos relacionados con la morfometría geométrica para la comparación de patrones de estructuración genética con patrones de gradientes morfológicos.

- Sandra Ferrada Fuentes, expone a cerca de la actividad relacionada con el análisis del molinillo gástrico en la jaiba marmola como posible estructura para la determinación de la edad.

-Desde la Subsecretaria de Pesca y Acuicultura, se hace énfasis en la interacción con los usuarios artesanales de la X región, destacado la importancia de este proyecto como línea base en este recurso, y las futuras medidas de ordenamiento y gestión que se materialicen en torno al recurso.

- La jefe de proyecto se compromete a participar de la 8ª sesión del Comité de Manejo de Crustáceos bentónicos de la provincia de Chiloé a realizarse en el mes de septiembre en Dalcahue.

AS	SISTENTES	
NOMBRE	FIRMA	INSTITUCIÓN
Sandro Fercula Freitos	5 grif	Universided de Corresponde
Cristian Canales Aprille	flet	UNIVERSIDAD DE LOS LABOR
auling Aprilory	adome	FIPA-SUBRESCH
Gustavo, Acado	AL.	ude C
Algar to Kaister	XH	SJ PA
Francisco Salin	Sport	SERA.

ANEXO 2. Personal participante por actividad

Nombre	Actividad 1 Revisión y análisis de información biológica pesquera, diseño, implementación y ejecución de plan de muestreo	Actividad 2 Desarrollo de marcadores moleculares SNPs y análisis estadísticos	Actividad 3 Desarrollo de marcadores moleculares mitocondriales y análisis estadísticos	Actividad 4 Análisis Morfométrico	Actividad 5 Análisis molinillo gástrico	Total Horas
Sandra Ferrada F.	40	232	48	40	40	400
Cristian Canales A.		240				240
Daniel Gómez U.		63				63
Selim Musleh V.		113				113
Ricardo Galleguillos G.		163				163
Victoria Herrera Y		160	100	40		300
Hugo Benítez de la Fuente				80		80
Sandra Sampertegui E.				480	195	675
Roció Barrios F.		480		195		675
Ciro Oyarzún G.					111	111
Marco Retamal R.					111	111
Gustavo Aedo U.	244					244
TOTAL	284	1451	148	835	457	3175